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Abstract

Recent development in indoor localisation involving Ultra-wideband (UWB) technology
suggests its potential as a cheap, robust and scalable localisation system. The Automatic
Control Lab (IfA) has supervised multiple student projects involving UWB technology:
one concluded by a participation in the Microsoft Indoor Localisation Challenge and
another enabled UWB-localisation for the Crazy�ie quad-rotors used in the P&S course
at IfA. The accuracy of the systems resulting from these projects varied between 10 and
50 centimeters, however neither system is suitable for use in arbitrary environments and
with a varying number of moving agents (tags) to be localised.
The motivating application for this project is autonomous video production, where the
number and location of anchors needs to adapt to the environment, and the number of
moving objects to be tracked and �lmed varies. The goal of this group project is to take
the experiences from the previous UWB projects and develop a system that can be used
in an arbitrary environment and natively supports a varying number of anchors and tags.
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Preface

The importance of indoor localisation increases with the ever rising number of autonomous
systems performing a variety of tasks, especially where current localisation technology can
not be used due to environmental restrictions or the accuracy they provide. In contrast to
the Global Positioning System (GPS), which is strongly a�ected by the environment as a
result of the technology, an indoor system can provide localisation for buildings, tunnels
or mines. On the other hand, the position accuracy of the GPS is speci�ed to achieve an
error of less than 5 m [1], which is not suitable for small agents or in situations where a
greater precision is required (e.g. quad-copters, autonomous video production).

The approach taken to provide localisation in these scenarios is a Time Di�erence of
Arrival (TDoA) scheme, as the number of devices that can be localised simultaneously is
not limited, similar to GPS, where the tag is only listening to messages from the anchors.
The resulting system should be easy to use, fast to setup and provide a decent position
update rate.
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Chapter 1

The Idea

Previous work has proven UWB as a feasible technology for precise indoor localisation,
allowing for centimeter accuracy [2]. Using Two-way-ranging (TWR), a process consisting
of sending three messages back and forth between an anchor and a tag being localised,
the time of �ight can be measured and the distance between them calculated. By re-
peating this process for at least two other anchors, a unique position in 3D-space can
be estimated, assuming the anchor positions are known. This however comes at a few
drawbacks: Not only is TWR a rather slow process, the tag also has to be active (i.e.
send messages) in order to be able to localise itself. If multiple tags need to be localised,
each one of them must send messages to all of the anchors and some sort of coordination
has to be incorporated to prevent multiple messages being sent at the same time. [2]
enabled TWR-based localisation on a single nano-quadcopter used at the P&S course at
Ifa with an achieved positioning frequency that is barely usable. Increasing the number
of tags decreases the rate further, making the scheme unsuitable for more than one device.

To solve the issues introduced, a GPS-like approach was chosen for this project using
TDoA measurements. The mathematical theory is explained in detail in section 3. The
project aimed to create a system to provide localisation for di�erent scenarios found in
autonomous video production. The requirements for such a system included a fast and
convenient setup, low-power devices and fast localisation rate.

1.1 Advantages

The most important advantages of a TDoA scheme are summarised below:

Passive tags TDoA measurements can be achieved without a tag having to actively
send any messages. Like a GPS receiver, it only listens to data being broadcasted
by the anchors (satellites). This not only decreases power consumption, allowing the
system to be incorporated into low-power applications, but also eliminates the need
for coordination between the tags.

Arbitrary number of tags Without the need for coordination between the tags, a run-
ning system can be extended by any number of tags, most importantly without
reducing the positioning rate.
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Low power As the tag is passive, power intensive sending of messages can be avoided.

Small devices With a new generation of UWB devices, the whole system can be run
with comparatively small devices, that can be integrated into existing hardware,
using a serial connection.

1.2 Challenges

The aforementioned bene�ts and the requirements set for the system come at some crucial
challenges, strongly a�ecting performance of the resulting system.

Clock synchronisation While GPS satellites carry atomic clocks, the small devices used
need another way to reliably time their actions. Badly synchronised clocks inherently
a�ect the precision of the localisation.

Fast localisation Albeit not being a�ected by multiple tags, the rate of localisation still
is limited by numerous factors, e.g. propagation time of the signals, time to process
a message or to calculate location.

Ease of use To allow the system to be easy to use, easy to maintain, fast to set up and
convenient to adapt, a good amount of time needs to be dedicated to a carefully
structured architecture.

Solutions to these challenges, trying to make full use of the advantages, are explained in
detail in this report.
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Chapter 2

System Architecture

The architecture of the system is partitioned into four distinct parts, each of which enables
a certain set of features, described below. Figure 2.1 visualises the four components
Network Management, Synchronisation, Broadcast and Positioning, and their
connections among each other. The di�erent services run in di�erent combinations and
to various extent, depending on the role of a device. Inside a network, there are three
roles a device can take. The Master is a node unique in every network, responsible for
setting up and managing the network. It de�nes parameters, registers new anchors and
allows other devices to synchronise their clocks. It monitors the status of devices and is
also needed to start and stop broadcasts so a client can determine its position. These
broadcast messages come from Anchors, whose locations are known, similar to satellites
in the GPS. Their clocks are synchronised by the master and they can provide the master
with status and health information about themselves. The Client is the actual tag, that
is being localised. It receives clock synchronisation and broadcast messages from the
master and anchors respectively to use in the positioning service to calculate a position.
This position, amongst other information, can be retrieved by the user via an interface.

2.1 Network Management

To allow the system to be easy to set up and easy to maintain, the Network Management
service was designed with a high level of abstraction and, where possible, with automation
in mind. The main part of this service is running on the master device, as it acts as a
control interface for the whole network. It's most important features are explained below.

2.1.1 Anchor Registration

In order for a client to be able to calculate its position, at least four anchors need to be
present and working in the system. When an anchor is initialised, it request a unique
network address, similar to an IP address in a computer network, which is provided by
the master. It keeps track of all anchors in the network with their assigned addresses,
positions and status. Before an anchor can participate in the broadcasting schedule,
it needs to be assigned a position. This can either happen manually by entering the
respective coordinates of the device, or as part of the initialisation process, where all the

17



(a) Master schematic (b) Anchor schematic (c) Client schematic

Figure 2.1: Schematic view of the system architecture and their connections. While Network
Management serves as a mean to administer and interface with the network, Synchronisation
is used to accurately synchronise the individual clocks. Finally Broadcast contains all necessary
information that allow the Positioning service running on a tag to compute its position in 3D
space. Synchronisation messages from a master node reach all devices, while broadcasts are
only considered by client nodes. Administrative messages are exchanged between the master
and multiple anchor nodes. Every device features a user interface that allows the access to
information of the respective service.

anchors perform a localisation using trilateration, to determine all their positions. Once
a position is assigned, an anchor is ready to broadcast it's position as part of the network.

2.1.2 System Con�guration

The requirements in terms of localisation speed vary widely depending on the use scenario.
While a robot in a factory might move with a few kilometers per hour, a race car on a
track can reach a multiple of that. For the former, a few position updates per second
might su�ce, since it will move only some meters, whereas the latter will move dozens.
To allow the system to be used in any of theses scenarios, the positioning rate, amongst
other related parameter is adjustable from the master interface. From arbitrarily slow 1

up to 87 Hz, the frequency can be arbitrarily chosen, keeping some limitations (see also
sec. 2.3) in mind.

2.1.3 System Monitoring

Since the system can be used in arbitrary environments, the anchors don't need to be
connected to a host device (computer). Nonetheless, to allow the administrator of the
network to get information about the status of the network and the individual devices,
anchors are capable to transmit their status to the master node. A user can request status
reports from individual anchors, containing vital information such as supply voltage, chip
temperature, assigned network address and the devices location. To reduce user e�ort,
these details are repeatedly checked autonomously by the master node, collecting status
information about the entire network and notifying the user about any anomalies, such as
low battery or overheated chip of an anchor. In case of such a situation, the corresponding
anchor is automatically excluded from the broadcasting schedule as not to damage the
hardware or drain the battery even more. Since all the status information is preserved,
after �xing the issue, the device can be integrated into the network readily.

1Actually the lowest possible update frequency is limited by the data type used to store the localisation period,
which would correspond to 233 pHz.
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2.2 Synchronisation

The accuracy of TDoA measurements are heavily a�ected by the precision of the clocks
used in the devices. Where the GPS copes with this challenge by using atomic clocks
on each device (satellite), a system o�ering comparable precision in this setup would not
be suitable in terms of size and power consumption. To synchronise two clocks, two
quantities need to be taken into account: Clock o�set and clock drift.

2.2.1 Clock O�set

Clock o�set is the di�erence between the values two clocks tell at the same moment in
time. Imagine having two wall clocks A and B, A telling 2 p.m., B telling 3:15 p.m., when
your wrist watch actually tells 2:45 p.m. Taking the wrist watch as a reference, the o�set
of clock A would then be −45 minutes and the o�set of clock B would be 30 minutes.
More formally, the o�set of a clock i can be de�ned as

∆i = t(i) − t(r), (2.1)

where t(i,r) are the times on clock i and the reference clock r respectively at the same
moment in time. This de�nition implies, that a clock with a positive o�set runs ahead,
one with a negative o�set runs behind a reference clock. The reasons for clock o�set are
diverse, but in this setup the two most important are: Devices are switched on (their
clock started) at di�erent times, and their clocks do not run at the same rate. Whatever
the reason, the way it is handled stays the same. In this system, the master clock is
used as a reference. Although this clock cannot achieve the same precision as for instance
an atomic clock might deliver, it is accurate enough to allow for localisation with decent
precision. In order to synchronise two clocks in terms of o�set, the following approach
was chosen:

1. Determine timestamp of synchronisation t
(r)
SI on the reference clock2.

2. Send synchronisation message at t
(r)
SI .

3. Note timestamp of reception on the remote device t
(i)
SI .

4. Using the known distance between the devices dr,i, calculate the time of �ight of the
message t̂r,i.

5. Correct eq. 2.1 by the time of �ight:

∆i = t
(i)
SI − (t

(r)
SI + t̂r,i). (2.2)

This procedure assumes, that the clocks run at the same rate, at least for the duration of
t̂r,i. Since the propagation time is comparably small to the synchronisation interval, this
assumption is valid. Also noteworthy is the fact, that since the o�set calculation uses the
known distance between the devices, this cannot be done for a tag, since the master node
has no information about any tags present, especially not about their location. It turns

2The desired timestamps for synchronisation t
(r)
SI are network parameters, that are known to all devices con-

nected to the network.
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Figure 2.2: Schematic view of the synchronisation process. Since the sending time t
(r)
SI cannot be

chosen arbitrarily, the correction δSI has to be calculated and provided in a follow-up message
SR.

out, o�set is not a crucial variable for the localisation of the tag, since the timestamps
of arrival of the broadcast messages are all measured in the time frame of the client and
only time di�erences are used.
Furthermore, the hardware used, in fact does allow to specify a timestamp when a message
should be sent, but this timestamp cannot be chosen with the same resolution as the clock
o�ers. Instead, the message will be sent within a small interval around the desired time
and the actual timestamp can be recovered afterwards. This introduces an uncertainty

in eq. 2.2 which only can be corrected by knowing the exact time (t
(r)
SI + δSI). This

uncertainty can be calculated by comparing the desired sending time with the actual one
and can therefore be de�ned as

δ = t̃− t, (2.3)

where t̃ is the actual sending time. A second message can then be sent containing δSI for
the receiving device to use. Inserting into eq. 2.2 and replacing t(r) with t̃(r) yields the
formula used to calculate the clock o�set:

∆i = t
(i)
SI − (t̃

(r)
SI + t̂r,i)

= t
(i)
SI −

((
t
(r)
SI + δSI

)
+ t̂r,i

)
.

(2.4)

A schematic view of the synchronisation process is depicted in �gure 2.2.

2.2.2 Clock Drift

Clock drift is the di�erence in time intervals two clocks tell. Using the analogy above,
imagine measuring 15 minutes on the wrist watch. When starting the timing process,
clocks A and B both show 2 p.m. After 15 minutes, clock A tells 2:17 p.m. and clock B
2:11 p.m. While the o�set was 0 at the beginning, after 15 minutes it is 2 minutes and
−4 minutes respectively. This process can be formalised using t0 and t1 as the reference
(true) timestamps of the start and end of the timing respectively:
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Figure 2.3: Schematic view of clock drift synchronisation. Sync 1 and Sync 2 denote two
independent synchronisation processes (c.f. �gure 2.2). The process allows to determine ∆(t0)
and ∆(t1) in order to calculate the clock drift.

κi = ∆i(t1)−∆i(t0). (2.5)

It should be noted, that since the clocks now don't necessarily run at the same rate, the
o�set becomes a function of time. A positive o�set means, that a clock is running faster
than the reference, a negative value analogously means, the clock is running slower than
the reference clock. Knowing the clock drift, one can correct for how much a clock counts
too much or too little between two o�set calculations. Combining clock o�set and clock
drift, one can translate the timestamps of the remote clock into the reference time frame.
This scheme will be used in section 2.3 and a visual interpretation can be found in �gure
2.3.
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2.3 Broadcast

All explanations in this chapter are made using the assumption, that the clocks of di�erent
devices are synchronised by the means detailed in section 2.2. This means that the clocks
are corrected for clock o�set and clock drift. The implication can be formalised as follows:

t = t(i) ∀i. (2.6)

2.3.1 Information

In order to allow localisation using a TDoA scheme, the device being localised needs
information about an anchor, consisting of the position r and the TDoA value τ . Since
the localisation algorithm uses distance di�erences ω and not time di�erences (see also
section 3), using the speed of light, they can be converted into one another using

ωi = c · τi. (2.7)

The set of data corresponding to an anchor i is denoted by

Γi = [ri, ωi]
T = [xi, yi, zi, ωi]

T . (2.8)

Before a position can be computed, the vector Γ of at least four anchors needs to be
known.

2.3.2 Time Di�erence of Arrival

The way the TDoA values are computed will be explained by �rst following an intuitive
approach and re�ning it step wise to avoid the disadvantages introduced. This approach
relies on the fact, that all clocks (also the one on the client) are synchronised. At a given
point in time tBR, known to all devices on the network, every anchor sends out a message
containing its identi�er. Due to the di�erence in distance di,c − dj,c between a client and
anchors i and j respectively, the messages will (most of the time) not arrive at the same
time. If the timestamp of arrival of a message from anchor i at the client is denoted with

t
(c)
BR,i, then the time of �ight (and thus the distance) could easily be calculated using

t̂i,c = t
(c)
BR,i − tBR. (2.9)

However, as explained in section 2.2.1 the clocks of clients are not synchronised for clock
o�set, which prevents the use of equation 2.9, since the value tBR has no meaning in
the frame of reference of an unsynchronised clock. Using equation 2.9 nonetheless, the
di�erence in propagation time between the messages of two anchors can be calculated
as

τi,j = t̂i,c − t̂j,c
(2.9)
= (t

(c)
BR,i − tBR)− (t

(c)
BR,j − tBR)

= t
(c)
BR,i − t

(c)
BR,j.

(2.10)

An interpretation for di�erence in distance and arrival time is depicted in �gure 2.4. As
it turns out, the di�erence in propagation time is equal to the di�erence in arrival time.
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Figure 2.4: Interpretation of the term Distance Di�erence. The signals from anchors i and j were
emitted at the same time and travel di�erent distances, resulting in a di�erent time of arrival
at the client. Using anchor i as a reference, the TDoA value of anchor j can be expressed as
τj = ωj/c = (dj,c − di,c)/c.

This might seem intuitive, but the fact that this calculation does not rely on the sending
time point is crucial as it allows the client to work without o�set correction. The only
requirements are the synchronisation of the anchors and the clock drift correction on the
client.

The equations 2.7 and 2.8 suggest, that the TDoA values τi are functions of the corre-
sponding anchors only, but this is not the case. Since time di�erences are considered, a
reference time point needs to be considered. This point tr could be chosen arbitrarily and
the resulting time di�erences of arrival of an anchor i is obtained by

τi = t
(c)
BR,i − tr. (2.11)

Despite not losing any information, a di�erent transformation that is useful in the local-
isation problem can be made, by considering the time of arrival of a reference anchor as

reference time: tr := t
(c)
BR,r. Inserting this into equation 2.11 yields the �nal statement to

calculate the TDoA values:

τi = t
(c)
BR,i − tr

= t
(c)
BR,i − t

(c)
BR,r.

(2.12)

Per de�nition, the TDoA value of the reference anchor will be zero τr ≡ 0.
The scheme introduced up to this point would work, if messages can be processed as fast
as they arrive. Since the manufacturer claims 10 cm precision, this is a desirable distance
to be able to resolve. It takes light 0.33 ns to travel this distance, so messages should
be processed within less time. Tests revealed that processing a message takes more than
700µs, which would only allow for a resolution of around 210 km. In order to work with
a TDoA scheme on the hardware present, a small but important change was introduced
to the procedure.
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Instead of sending all broadcast messages from the anchors at the same time tBR, every
anchor sends its broadcast at a previously determined time tBR,i. Since all anchors are
known to the master node, these times could be set at initialisation time and broadcasted
to the client appropriately. Another way is to use a mathematical function to describe
these times. A delay ∆BR is introduced between the broadcasts of two anchors and the
resulting broadcast time can be expressed iteratively

tBR,i+1 = tBR,i + ∆BR (2.13)

tBR,0 = tSI + ∆BR, (2.14)

or equivalently

tBR,i = tSI + (i+ 1) ·∆BR. (2.15)

Equation 2.15 is known to all anchors while equation 2.13 is used on the client. The delay
parameter ∆BR is provided as a network parameter with every synchronisation message
from the master node and the anchor number i corresponds to its identi�er (network
address). This implies, that the TDoA values calculated from equation 2.12 need to be
corrected by a multiple of ∆BR. Using anchor 0 as reference, the values can be translated
as if the broadcasts had happened simultaneously. The delay from anchor 0 to anchor i
is i ·∆BR and the corresponding value thus

τi = (t
(c)
BR,i − i ·∆BR)− t(c)BR,r. (2.16)

Sending a broadcast message underlies the same limitations as explained in section 2.2
regarding the precision of the sending timestamp (c.f. �gure 2.2) and thus a complete
broadcast from one anchor also includes two messages and the calculated times need to
be adapted similarly.

From equation 2.16 it can be seen, that the whole broadcast process is running sequen-
tially. A visual representation can be found using a time line (schedule), and is presented
in �gure 2.5. As soon as the last slot has ended, another synchronisation message can
be sent and the whole process repeats itself. The interval between two synchronisation
messages de�nes the synchronisation period TSI . As all anchors need to have a time slot
allocated, the synchronisation period has a lower limit

TSI ≥ (N + 1) ·∆BR, (2.17)

where N is the number of anchors. The additional slot is used for the synchronisation
message that initiates a new broadcast round.

2.3.3 Position

As explained in section 2.1.1, the location of the anchors is know at the time of initiali-
sation of the network and each anchor is informed about its position before the network
starts operating. The scheme assumes the position to be static, i.e. the anchors location
will not change over time. Ideally, the position of all anchors would be broadcasted once
and then used for every iteration of the localisation, but this would require every tag to
be present and operational at the time this information is provided. To enable a client to
join the network at any time, each anchor provides its own location with every broadcast
it makes. The position is then stored together with its identi�er and TDoA value on the
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Figure 2.5: Visual representation of the broadcasting schedule using four anchors A-D. After
the initial synchronisation message, every anchor uses its allocated timeslot of duration ∆BR to
send its corresponding broadcast message. The synchronisation also happens during an intervall
of ∆BR and the process is repeated after the slot of the last anchor has ended. The interval
between two synchronisation messages de�nes the synchronisation period TSI .

Figure 2.6: Visual representation of a complete network schedule using four anchors A-D and
slots allocated for up to ten anchors. After the tenth slot, a slot dedicated for the calculation of
the position is inserted. After the interval TSI , the next broadcast round is initiated.

client until enough broadcasts are received to start the calculation of the clients position.

As the localisation algorithm takes a fair amount of time, the client needs to be left some
time to do the necessary calculations. As the algorithm is computationally expensive, in-
terrupting it is associated with large overhead and thus an interruption is not favourable.
Due to the fact that it is running as a separate process on the client node, interruption
must be prevented by suspending all communication inside the network. This is achieved
by using a timeslot in the schedule dedicated to these calculations. Once all anchors have
sent their respective broadcast, a slot is inserted before the master node sends the next
synchronisation packet. The time needed for the calculation depends on the complexity
of the optimisation problem, which increases with the number of anchors considered. The
time is denoted by σ(N) and a slot of that length is added at the end of the broadcasting
slots. Figure 2.6 shows a general schedule, using four anchors A-D and slots allocated for
up to ten anchors, together with the synchronisation and the positioning slot.

If the σ(N) also needs to be considered, then the synchronisation period is also in�uenced
by it, leading to a new lower bound

TSI ≥ (N + 1) ·∆BR + σ(N). (2.18)
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Figure 2.7: Visualisation of the data �ow from the reception of a broadcast message to its use in
the localisation process. The Broadcast ID (BR ID) is stored to assign the received broadcast
to a speci�c round. Once a new round begins, the accumulated data set is provided to the solver
and replaced with the new incoming data. If the id corresponds to the current round, then the
data is just appended to the existing data set.

2.4 Positioning

As mentioned in section 2.3.1, the broadcasts of at least four anchors need to be received
before the localisation algorithm can be initiated. Every broadcast round has an associ-
ated id, the group id, that is incorporated into every anchors message. After a new id has
been received, the old messages are provided to the localisation algorithm an a new round
of broadcasts can be stored. If enough messages have been captured, the localisation
algorithm will start within its dedicated time slot of the broadcasting schedule. Further
details of the localisation algorithm can be found in section 3, and a schematic of the data
�ow is depicted in �gure 2.7.
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Chapter 3

Localisation

If both the anchor i and reference anchor r send a message at the exact same time,
because of their di�erent distances to the client, these packets will reach the client at
di�erent timestamps. The delay/latency in the arrival of one packet with respect to the
other is then de�ned as the TDoA value τi of anchor i.

By using the speed of light c in vacuum, one can calculate the corresponding distance
di�erence of arrival ωi (see �gure 3.1):

ωi = ‖Ai −Xc‖ − ‖Ar −Xc‖ (3.1)

Where ‖.‖ is the 2-norm (‖A−B‖ =
√

(xA − xB)2 − (yA − yB)2 − (zA − zB)2).

Figure 3.1: Schematic showing the distances of a reference anchor r and anchor i with respect
to the client. Their di�erence represents the Distance Di�erence of Arrival ωi

It is more convenient to work with distance di�erences, as we drop the 10−9 factor from
the TDoA values (since they are given in the nanoseconds range). This can be a major
advantage when considering the error generated by multiple arithmetic operations related
to the computer's precision (a 32 bit micro-controller in this case).

If we look at the expression for a constant distance di�erence of arrival ωi, one can see
that the expression represents a one sided hyperboloid for the client's position as shown
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(a) Hyperbolic function - two anchors (b) Hyperbolic function - three anchors

Figure 3.2: Hyperbolic function of A1 and A2 using Ar as reference. In (b), the possible client
positions would be given by the intersection of both hyperboloids.

in �gure 3.2. That is, if the position of all devices and their respective distance di�erence
of arrival are given, all points on the hyperboloid shown are going to satisfy the same
expression (3.1) and can be a valid position for the client.

This shows that it is not possible to uniquely determine the client's position by using
only two anchors. Uniqueness is only achieved by intersecting at least three hyperboloids,
totalling four anchors: one as a reference and the other delivering three hyperboloids,
whose intersection will give the unique position.

3.1 Minimisation Problem

Considering the measured distance di�erence values ω
(m)
i , the pool of possible positions

for the client can be further minimised by intersecting all hyperboloids found, as shown
in �gure 3.2 (b). For more than three anchors, this would yield a single point in space,
assuming perfect knowledge of the TDoA data. But because of noise and errors in the
calculated TDoA values, in general no point will be intersected by all hyperboloids of an
overdetermined system (considering a non-ideal world). Therefore, a minimisation of the
total error is calculated.

The error with respect to a calculated position Xc can be de�ned as

ei = ω
(m)
i − ωi = ω

(m)
i − ‖Ai −Xc‖+ ‖Ar −Xc‖ , (3.2)

where ωi is the true distance di�erence for the given clients position Xc.
The objective is to �nd the client's position Xc that minimises this error for all anchors
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(a) Cost function for z = 0 (b) Contour plot of the cost function

Figure 3.3: Cost function for a four anchor system (z = 0) where anchors are placed on a random
position on the xy-plane within the given range. The client's position Xc can be determined by
�nding the local minimum of the function.

Ai. The non-linear least-squares to be solved is therefore

min
Xc

N∑
i

e2i = min
Xc

N∑
i

(ω
(m)
i − ‖Ai −Xc‖+ ‖Ar −Xc‖)2 (3.3)

Figure 3.3 shows a possible plot for the cost function at z = 0. In this case, four anchors
were placed at random positions and noise added to the real TDoA values. No noise was
added to the position of the anchors, i.e., the positions are considered to be perfectly
known.

By studying both plots it is possible to localise the minimum of the function, where
theoretically, the client was placed. Looking at it by eye this would be close to the origin
(0, 0). In this particular simulation the client was positioned at (2 cm, 0 cm) with z = 0
(making it a 2-D problem).

3.1.1 Solving the Optimisation Problem

Of the di�erent iterative and non-iterative algorithms available for solving such problems
in embedded devices, two came into question in this project: an iterative Levenberg-
Marquardt algorithm and a non-iterative algebraic solver (see section 3.2).

In the case of the iterative Levenberg-Marquardt algorithm, which is an interpolation
between the conventional Gauss-Newton and a steep descent algorithm, the iteration step
is de�ned as follows:

Xc
(s+1) = Xc

(s) + (Je
TJe + λ · I)−1Je

Te(Xc
(s)) (3.4)

where λ is the damping factor1 and Je is the Jacobi-matrix of the error e with respect to
the variables of Xc (which are the Cartesian coordinates x, y, z):

(Je)ij =
∂ei(Xc

(s))

∂Xc[j]

,with j = x, y, z (3.5)

1Note that λ = 0 leads to the conventional Gauss-Newton algorithm.
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Applied to our residual function ei:

(Je)ij =
Ai[j] −Xc[j]

‖Ai −Xc‖
−
Ar[j] −Xc[j]

‖Ar −Xc‖
(3.6)

Je =


xA1
−xc

‖A1−Xc‖ −
xAr−xc

‖Ar−Xc‖
yA1
−yc

‖A1−Xc‖ −
yAr−yc
‖Ar−Xc‖

zA1
−zc

‖A1−Xc‖ −
zAr−zc
‖Ar−Xc‖

xA2
−xc

‖A2−Xc‖ −
xAr−xc

‖Ar−Xc‖
yA2
−yc

‖A2−Xc‖ −
yAr−yc
‖Ar−Xc‖

zA2
−zc

‖A2−Xc‖ −
zAr−zc
‖Ar−Xc‖

...
...

...
xAn−xc

‖An−Xc‖ −
xAr−xc

‖Ar−Xc‖
yAn−yc
‖An−Xc‖ −

yAr−yc
‖Ar−Xc‖

zAn−zc
‖An−Xc‖ −

zAr−zc
‖Ar−Xc‖



The implementation of the algorithm is quite simple. By having the data structure with
all the anchor positions Ai and measured distance di�erence values wi in the following
format,

data =


xA1 xA2 . . . xAn−1 xAr

yA1 yA2 . . . yAn−1 yAr

zA1 zA2 . . . zAn−1 zAr

w1 w2 . . . wn−1 0


a possible implementation is given by Algorithm 1.

Algorithm 1 Levenberg-Marquardt

1: function Solver(data, init, iter, lambda)
2: ## Initial values (init is a 3x1 vector)

3: xk ← init
4: for count := 1 to iter step 1 do
5: for i := 1 to na step 1 do
6: ## Get the distances between anchors and current position

7: dist(i)← norm(data(1 : 3, i)− xk)
8: end for

9: for i := 1 to na− 1 step 1 do
10: for j := 1 to 3 step 1 do
11: ## Populate Jacobian

12: J(i, j) = (data(j, i)− xk(j))/dist(i)− (data(j, na)− xk(j))/dist(na)
13: end for

14:

15: ## Populate residue (error)

16: err(i) = data(4, i)− dist(i) + dist(na)
17: end for

18: xk ← xk − (JTJ + lambda · I)−1JT err
19: end for

20: return xk
21: end function

3.1.2 Initial Condition and Damping Factor

The initial condition init used by the solver plays an important role on the correct conver-
gence to the local minimum of the cost function and the number of iterations needed to
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do so. To enhance the algorithm's e�ectiveness with the hope of minimising the number
of iterations needed, a non-zero initial condition is fed to the solver. In this case the
mid-range of all anchors (the arithmetic mean of the maximum and minimum of their
positions):

init[j] =
1

2
(max

i
Ai[j] + min

i
Ai[j]),where j = x, y, z (3.7)

This approach is only e�cient if no prior position data is available yet, as it is assumed
that the client is somewhere in-between the anchors. As soon as the solver returned at
least one valid position, the last recorded data point can be used as the initial condition.
With high refresh rates (solving of the problem), the client is expected to be close to the
last calculated position and a convergence is expected to happen much faster.

As for the damping factor, any value di�erent from zero (which leads to the conventional
Gauss-Newton algorithm) showed to be e�ective. Many simulations were performed using
di�erent setups (number of anchors and their position, amount of noise added to the TDoA
values, etc.) for di�erent damping factors λ ∈ [0, 1]. To �nd the best �t for our applica-
tion, no mathematical and physical characteristics were studied to �nd λ's impact on the
e�ectiveness of the solver. It was purely tuned by simulations. As for now, λ = 0.1 is used.

3.1.3 Evaluating the Solver

Figure 3.4 shows a possible evolution of the output position given by the solver for each
iteration step. As can be seen in (a) and (b), each iteration brings the resulting position
closer to the minimum of the cost function (contour plot (b)).

According to the many simulations performed using di�erent setups (noise added, an-
chor/client positions, etc.), an average of �ve to eight iteration steps are needed to get a
reasonable position. These simulations were performed using only the mid-range concept
introduced in section 3.1.2. Using the last recorded position as the initial condition for
the case of a dynamically moving client, this number may be lowered even further.

Since the micro-controller used may take up to 1.5 ms per iteration step to solve the prob-
lem (according to simulations using four anchor points), a default constant number of 10
iterations is set for the current system (this parameter may be changed in the system
con�guration - see section 4.2.1). Note that this implementation does not have a break
condition. The number is constant, independent of the quality of a given position for a
given iteration step.

3.2 Algebraic Solver

Besides the iterative algorithm mentioned in section 3.1.1, a non-iterative algebraic solver
was tested. The advantages of such a solver is the computation time needed. The actual
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(a) Simulation - Plot of the solver in action

(b) Simulation - Contour plot of the cost function

Figure 3.4: One of the many simulations performed using the iterative algorithm. In this case
the initial condition is given by the origin (0, 0, 0). (a) Plot of the evolution for each component
(x, y, z). (b) Evolution of the position (in red) plotted on a contour plot of the initial cost
function (z = 0). The green dots represent the positions of the anchors.
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implementation of the iterative algorithm needs up to 10 ms of dedicated processing time
in order to �nd a reasonable position. An algebraic solver would drastically decrease this
computation time, making it possible to increase the overall refresh frequency at which
position data is delivered.

The algorithm in question was developed by Stephen Bancroft with an attempt of solving
the GPS equations with an algebraic solver [3]. It showed to be very e�ective with perfect
data, giving positions with the same accuracy as the Levenberg-Marquardt algorithm in
most cases. However it failed to do so with noisy TDoA data. With noise up to 10 cm
(which may be expected according to the DW1000's datasheet), the calculated position
was completely unpredictable and random, giving output position values that were up to
kilometers apart from the actual position.

With data that does not contain much noise, this would certainly be a good approach, as
the computation time is indeed very low compared to other algorithms (according to the
simulations done). But because the hardware currently used cannot deliver the accuracy
needed to make the algebraic solver reliable enough, it is not implemented in the current
implementation.

3.3 Two-Way-Ranging (TWR)

Two-Way-Ranging is a two-way communication ranging procedure that takes place be-
tween two independent devices. The idea is straightforward: by sending and receiving
packets, one can calculate the time it took for the packet to go from one node to the other
and back. Thus, the distance can be determined by knowing the propagation speed. Since
this assumes that both devices are actively sending packets back and forth, this will not
be the focus of the positioning system studied here.

TWR comes in hand when initialising the whole system. The localisation using TDoA
assumes all positions of the anchors to be known. Instead of hard-coding all these po-
sitions, the Master requests a TWR between all anchor pairs in order to get all relative
distances. Using this information, the position of each individual anchor can be estimated.
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Chapter 4

Hardware and Software

This chapter discusses the hardware and software used to implement and debug the system
mentioned above. It also describes the methods used to counteract the problems regarding
o�set shift/drift, for example, and how the available features of the hardware were applied
in order to get all the data needed for a precise and fast localisation.

4.1 Device Nodes

One interesting aspect of the system is that the device nodes (master, client and anchor
points) all share a common piece of hardware. They are all based on the same DecaWave
Development Board DWM1001-DEV and di�er only in the �rmware. Figure 4.1 shows
the front view of the DWM1001-DEV module used, which is equipped with an UWB
module (DW1000) and the nRF52 chip as the host micro-controller.

The main features of this hardware combination are listed below:

� Bluetooth capability

� J-Link probe for debugging purposes

� 8 Mbps SPI communication with the UWB DW1000 module

� Crystal-trimming for �ne clock speed adjustments

� A double-bu�er to cope with the high rate of incoming UWB packets

The board is also equipped with many other features like multiple status LEDs, user
buttons, serial ports for communication etc.

4.1.1 Clock O�set & Drift

As mentioned in section 2.2.1 and 2.2.2, one has to account for the di�erences in clock rate
and o�set of the two communicating devices in order to properly calculate a TDoA value.
This showed to be very hard, as the clocks come with an uncertainty in their counting
(due to the clock accuracy). They have a ppm (parts-per-million) property which gives
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Figure 4.1: The complete DWM1001-DEV module with an UWB chip and a nRF52 chip as the
host MCU

the time in cycles a clock deviates from its actual frequency after one million clock cycles.
This gives rise to the complexity of calculating the real o�set and drift as no two clocks
will be ticking at the same frequency.

Three major approaches were used to counteract the e�ects of di�erent clock speeds:

Crystal trimming The nRF52 comes with a feature which allows so-called crystal trim-
ming. It gives the board the capability of adjusting the capacitances parallel to the
oscillating crystal (which meditates the clock speed). By changing these capaci-
tances in discrete steps, one can make the clock run faster or slower. As the Master
node has the task of giving the reference time, all anchors will dynamically change
their crystal-trim properties after each sync packet, making the clock go faster or
slower until their relative drift with respect to the Master is minimised.

Modelling of the drift The available discrete trim values are very limited, so it is not
possible to completely get rid of the drift with this feature. Their contribution to
the recorded timestamps are further handled by software. The drift is modeled as
being a constant. The o�set will consequently have a linear temporal dependency,
whose slope is given by this drift:

∆i(t) = κi · t+ ∆i(0) (4.1)

The reason crystal trims were used to minimise the drift, although it is simply mod-
elled as a constant, is that it makes the deviations for this time correction much
more subtle for the case of small slopes.

Sync period Since the contribution of the linear modelling mentioned above is only
updated after a sync packet, increasing the frequency at which these updates hap-
pen may increase the accuracy of the correction term. 50 ms showed to be a very
good value for the synchronisation period, but it may be tuned according to other
characteristics of the system (like broadcast interval, for example - see section 4.2.1)
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4.1.2 Double-bu�er

Because of the high frequencies at which broadcast packets have to be sent, the client may
not be able to serially read all packets in time without missing data. The speed at which
the UWB module communicates with the host controller is very low (8 MHz, way below
the supported 20 MHz of the DW1000 chip). Many packets may arrive at the DW1000
before prior stored data is completely transferred to the host controller. Old data will
then be partially overwritten by the time it is transferred to the host controller, which
then receives corrupted data.

The solution to this problem is to activate the double-bu�er of the UWB chip. Its purpose
is to write the information in to one of the bu�ers, while the host controller reads from
the other. As soon as the data has successfully been transferred, the bu�er is freed and
can now receive new arriving packets, while the host now reads from the �rst bu�er.

4.2 System Interface

The overall system is very complex, with many di�erent parameters mediating refresh
rates, sync periods, anchor data and positions and much more. The sections below discuss
the many interfaces implemented to make the experience of con�guring and interpreting
all the data more user-friendly.

4.2.1 System Con�guration

One major concern with respect to the system's complexity is the amount of tunable
parameters that control the whole system. If one of these parameters is not set correctly,
other features may also be a�ected. A more convenient way is needed in order to change
these values in a fast and reliable manner, as hard-coding these values simply takes too
long and goes against the concept of ease-of-use (uploading the code and setting up the
system every time a hard-coded value is changed takes too much time).

The solution was the creation of a simple but helpful command-line interface that enables
the user to easily change any parameter of the system during execution. Figure 4.2 (a)
shows an example for the remote status report command which gives all the details for a
given anchor point. This includes hardware details (voltage, temperature), anchor posi-
tion, device identi�er and much more.

This command-line also gives the possibility of taking full control over the anchors, like
performing a hardware reset. This can be useful in the case that the Master node loses
all anchor information (because of an external reset, for example). It resets the anchors
in order for them to resend their previous IDs.
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(a) Command for status report

(b) Interface's help menu

Figure 4.2: Command-line interface for con�guring the system. (a) remote status report that
reads detailed anchor information (here for anchor 0x0C). (b) Help menu with all commands
supported (master node).

38



4.2.2 Graphical User Interfaces

To debug the received distance di�erences of arrival and calculated position of the client,
two user interfaces were created (See �gure 4.3). One Graphical User Interface (GUI)
plots only the TDoA values of the anchors and the other plots the resulting estimated
position of the client. The broadcast of the TDoA/position data is activated by sending
the pos [-l] or tdoa command to the Client connected to the PC. This triggers a thread
that sends debugging information through the serial port, in human or machine readable
text formats.

The GUIs also support multiple devices connected to the same computer. The information
of all devices are all mapped and plotted on the same map canvas but with di�erent colors
and upper ID text (in order to distinguish them). Besides that, the following features
come with the software:

� Anchor position with printed individual ID

� Client position with printed individual ID

� Line collection with client path history (last 2 seconds)

� Grid with scale for dimensioning

� Logger with debug information

� Start/Stop button to activate/deactivate plotting
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(a) User Interface for TDoA values

(b) User Interface for position

Figure 4.3: User Interfaces used to debug and graphically represent the data received. (a)
Plots the TDoA values for all anchors, giving the time/distance di�erences in DecaWave ticks
and meters (b) Plots the estimated position of the client together with the position of all the
anchors.
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Chapter 5

Conclusion

The �ndings of this project con�rmed UWB as a reliable and accurate source of localisa-
tion. Furthermore, the bene�ts of a TDoA scheme could be utilised, in order to achieve
the desired goals. Additional considerations can be made with respect to accuracy, speed,
robustness and the ease of use. A few options will be considered below.

5.1 Clock Synchronisation

As mentioned in section 2.2, the accurate synchronisation of the clocks used on individual
devices a�ects the localisation accuracy crucially. In this setup, a global time frame is
established by using the clock of the unique master node as a reference in terms of o�set
and clock rate. This procedure proved to be accurate enough to meet the requirements
for autonomous video production, but cannot deliver the accuracy a vision based system
o�ers (cf. [2]). In order to further improve localisation accuracy, a more robust clock
synchronisation could be established, which can be achieved in multiple ways.

5.1.1 Oscillator

One approach would be to improve the accuracy and/or resolution of the on-board os-
cillator used on the DW1000 Module. The datasheet [4] speci�es an oscillator with a
resolution of 64 GHz with several ppm (parts-per-million) o�set. Assuming a worst case
scenario of ±3 ppm, this would generate a relative o�set of 3 µs after only 1 s, correspond-
ing to a distance error of ∼900 m! Without periodic clock synchronisation, including drift,
a reliable localisation would not be possible. Additionally, with a nominal frequency of
64 GHz, the distance resolution is limited to ∼4.7 mm. Using an oscillator with higher
resolution would increase spatial resolution, whereas higher accuracy (lower ppm o�set)
allows for fewer synchronisation messages and thus higher broadcast rate. For millimeter
resolution, a clock rate of ∼300 GHz would be necessary, the clock rate can be stabilised
by using oscillators less sensitive to external in�uences, such as temperature or voltage.

5.1.2 External Clock

Using an external device dedicated to timekeeping allows more sophisticated methods to
be applied to clock synchronisation. Using atomic clocks for example would allow them to
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be synced once and the network would maintain accuracy over extended periods of time.
This approach however is much more costly and the clock itself would exceed the size
and energy consumption of the device by orders of magnitude. An alternative approach
involving atomic clocks would make use of the time synchronisation capabilities of the
GPS by attaching a receiver to every node. On the other hand, this would require all
nodes to be able to receive such signals, which is an assumption disagreeing with the
desired application scenarios of the system.

5.1.3 Clock Synchronisation Algorithm

The third, and most e�ective, option would be to use a sophisticated clock synchronisation
algorithm. Algorithms such as Christian's Algorithm or The Berkeley Algorithm [5], both
being successfully used in IP-Networks could o�er a more reliable timing performance.
Since the whole network communication is based on similar principles as an IP-Network,
adaptions of such algorithms can be used to try to improve accuracy.

Another approach is to use TDoA measurements, which would be an interesting approach,
since the network architecture is designed for such measurements. Tests performed on
similar hardware by McElroy et al. suggest di�erent protocols in order to synchronise
clocks in a distributed sensor network [6].

5.2 Hardware

While testing the system for performance, two limiting factors where discovered. The
biggest limiter was found to be the solving of the optimisation problem σ(N) (also cf.
section 2.3.3 and equation 2.18). With a minimum number of anchors (4), the algo-
rithm already takes ∼15 ms to complete, whereas the corresponding sync and broadcast
messages only take up ∼4.5 ms combined! Using on-board calculations, the positioning
frequency is thus limited to around 50 Hz, although the theoretical limit without solving
the optimisation problem would allow positioning with up to 220 Hz. The use of dedi-
cated hardware to solve the optimisation problem, such as FPGAs1 or ASICs2 is thus a
reasonable consideration. Apart from solving the problem faster, they are more energy
e�cient compared to solving the problem in software.

The second limiter is the speed at which messages can be sent. Since every localisation-
relevant message (sync and broadcast) consists of two packets, the time it takes to prepare
and send these also in�uences the positioning rate. Considering equation 2.18, the factor
∆BR is limited by this time. If the sending of the two messages is denoted by ϑm, the
limit can be found to be

∆BR ≥ ϑm + max
i,j

t̂i,j, (5.1)

where maxi,j t̂i,j corresponds to the longest time of �ight between two nodes. The time
of �ight can only be reduced by decreasing the longest distance between any two nodes,

1�eld programmable gate array
2application-speci�c integrated circuit

42



which is not always a viable option. The other possibility to decrease ∆BR is to decrease
ϑm, which was found to be around 700µs. Considering the data rate o�ered by the devices
used [4, 7], this time could be lowered, as the DW1000 IC exceeds the I2C3 speed of the
host IC. If the speed of the host IC would match the one of the DW1000, smaller delays
between preparing and sending a message could be achieved. If a transceiver was used,
that allows to incorporate the timestamp of sending into a packet itself, the second packet
would be super�cial. This is expected to half the time of sending a message ϑm.

5.3 Network Layout

The current architecture of the network builds on the assumption, that the master node
is always in reach of any node connected. Furthermore to reliably synchronise clocks,
all devices (except client nodes) have to be stationary. Using considerations from sec-
tion 5.1.3, a re�ned clock synchronisation algorithm would allow the master node (in this
scenario acting as a time server) to be out of direct sight (prohibiting a direct commu-
nication link) to some of the other nodes. This would require the network to be able to
relay messages through it, similar to a computer network, and every node having at least
one path to the master. Removing the restriction of direct connection would also allow
the devices to communicate over a di�erent channel for administrative purposes, such
as Ethernet. Network administration messages and status reports could be transmitted
over the secondary channel to avoid interruption of the broadcasting schedule, increasing
the throughput of localisation-relevant messages. Another advantage is a more complex
geometry of the space covered by the network. Instead of having one large open space,
multiple rooms or buildings can be reached within the same network.

Alternatively, the network could be con�gured in a way, that allows multiple networks
to be present and distinguishable. This would enable them to operate in close proximity
of one another without interfering and covering multiple applications, having di�erent
requirements on localisation speed.

3inter-integrated circuit; synchronous bus used to communicate between devices.
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