
PProg Exam Prep.

Tom Offermann

August 2023

1 Introduction

This is a collection of different definitions and useful
corollary’s from the "Parallele Programmierung"
lecture held at ETH Zurich in Spring 2023.

* Note that the exam does not allow a Cheat-Sheet.
This is just meant to be a collection of (hopefully) all
the necessary information.
There is no guarantee that the information presented
is correct or complete. Do not hesitate sending an email
if you think something is wrong or missing.

2 Parallel Programming

T1: Time on one processor
TP : Time on P processors
T∞: Time on "infinite" processors (limP→∞ TP)

SP = T1

TP
: Speedup generated using P processors

• Amdahls Law assumes a fixed workload in vari-
able time it states:

SP = T1

TP
≤ 1

f+ 1−f
P

• Gustafsons Law assumes a fixed time window, but
measures the speedup in workload terms:

SP ≤ f + P (1− f)

Pipelining:

• Throughput ≈ 1
max(pipeline stage time

#execution units)

• Latency: The time to perform all pipeline stages at a
given execution time. Note that the latency can increase
indefinitely (if the longest pipeline stage is not the first
stage). If the latency remains constant, we say that the
pipeline is balanced.

Task Graphs:

• T1:
∑

val(node)
• T∞:

∑
node∈critical path val(node)

T1 − T∞ gives us the sum of nodes that are not on the
critical path.

3 Java Wait/ Notify
wait() and notify()/ notifyAll() are methods that can
be called on a lock/ locked object:

• wait(): Can only be called once the object obtained
the lock for the object, and will set the thread that called
wait() into a waiting state, and releases the lock (it can
be woken up by notify()/ notifyAll())

• notify()/ notifyAll(): These methods will wake up
other threads, that are currently in a waiting state. Both
methods can also only be called if the lock of the ob-
ject is currently held. notify() will choose a "random"
thread T to wake up, continues its execution until the
lock is released and moves T into the lock "acquire"
state. notifyAll() works the same, but it will wake up
every thread currently in the waiting queue, after the
thread that called notifyAll() releases the lock.

Two "rules" for using wait()/ notify():

// 1. Always enclose wait() in a while-loop:
synchronized(lock) {

while(!condition) {
lock.wait();

}
...

}
// 2. Only call wait() and notify() on locked obj.:
synchronized(lock) {

notifyAll();
...

}
// Conditions:
Condition C = lock.newCondition();
C.await();
C.signal();
C.signalAll();

4 Concurrent Programming
Different programming structures:

• Lock:
A lock has two methods: acquire() and release(). When
one thread acquires the lock, any other thread will fail
to acquire the lock, until the first thread releases it, the
second thread waits in that time.
Some lock implementations are at the end of this docu-
ment.
• Semaphore:
A Semaphore S is essentially a parallel counting variable,
usually initialized with some Integer value N, S = N or
S(N). It also implements the two methods acquire() and
release(). If some thread acquires S, it will decrement

1

the counter by one S = S - 1, if S > 0. If S == 0 the
thread will wait until S > 0 again and then continue
the acquire. releasing S will increment the counter S
= S + 1. Both of these methods are atomic (appear
instantaneously). A simple Semaphore:

int count = N; // Init
synchronized void aquire() {

while(count == 0) wait();
count--;

}
synchronized void release() {

count++;
notify();

}

• Barrier:
A Barrier is used to synchronize progress among N
threads/ processes. There are two variants of a bar-
rier implementation at the end of this document.

When implementing a concurrent data structure there is
a trade off between simplicity and speed. Analogously
there are four types of lock-granularity that go from sim-
plest & slowest to most complicated & fast:

• Coarse Grained Locking: Locks the entire data
structure, makes the operation sequentially and release
the lock after finishing.
• Fine Grained Locking: Locks only the parts of the
data structure that are needed to perform the operation
correctly. For a linked list this could be two locks that
are locked in a hand-over-hand fashion.
• Optimistic Locking: Tries to do the operation se-
quentially. Once the operation should take place it
checks if the state observed without locking is still cor-
rect (validation), then it locks the essential data and per-
forms the operation. Implemented correctly this gives
a big performance boost compared to the two methods
above. The key to such an implementation is to come
up with good in-variants.
• Lazy Locking: In case of a concurrent linked list lazy
locking uses a marked bit, that logically removes a node
from the list. This massively decreases the amount of
locks on our data structure and thus also improves per-
formance significantly. Lazy Locking is an optimization
on top of optimistic locking.

Non-Blocking Algorithms:

These algorithms heavily rely on atomic operations that
are most of the time implemented by the underlying
hardware (or their behaviour is guaranteed by java)

// Test And Set
bool TAS(bool* value) {

if(*value == false) {
*value = true;

return true;
}
return false;

}

// Compare And Swap
bool CAS(boolean* value, int expected, int new) {

oldValue = *value;
if(oldValue == expected) {

*value = new;
}
return oldValue;

}

ABA-Problem:
The ABA-Problem occurs, if we are reusing data ele-
ments, for example if we are using a node pool for our
concurrent Linked-List. The ABA problem then occurs
if we are checking two (or more) conditions, that should
be met, (which should actually be checked atomically to
ensure correct execution). If these to conditions cannot
be rechecked atomically a second thread could poten-
tially manipulate our data structure in a way that leads
to undesired behavior.

We can try to fix the ABA problem by using:
• Transactional Memory
• DCAS
• Pointer-Tagging (makes it unlikely)
• Hazard Pointers
• Garbage Collection

5 Important Definitions
• Thread-local: The memory is copied into each thread
and they do their work independently (share their results
in the end (barrier, thread.join(), ...))
• Immutable: The data that is operated on is shared,
but not changed (final keyword in java), which is always
a safe option, but not always applicable.
• Synchronized: The shared memory access is con-
trolled by some synchronization technique like locking.
• Atomic operations: Like with synchronization we
control the memory access, but usually in a non-blocking
manner (TAS, CAS, DCAS, LL/SC...) to increase per-
formance.

• Deadlock: Is a program-state whithout outgoing
edges, meaning it will not progress.
• Livelock: Is a cycle of program-states, where no
thread is in the critical section.
• Mutually exclusive: There is no program state, in
which more than one thread has entered the critical sec-
tion

• Deadlock-free: At least one thread is guaranteed
to proceed into the CS at some point in time.

2

• Starvation-free: All threads are guaranteed to pro-
ceed into the CS at some point in time.
• Lock-free: At least one thread always makes progress
in a finite number of steps.
• Wait-free: All threads make progress in a finite num-
ber of time.

When there are no locks in your program it is NOT
lock-free nor wait-free (spin-locks, ...)

• Note, that deadlock-freedom and starvation-freedom
are essentially the same definitions as lock-freedom and
wait-freedom respectively, but deadlock-freedom and
starvation-freedom are assuming some program/progress
conditions, that a Thread cannot just die while holding
a lock for example. Which makes it a much stronger
property

• Wait-free =⇒ Lock-free
• Wait-free =⇒ Starvation-free
• Lock-free =⇒ Deadlock-free
• Starvation-free =⇒ Deadlock-free
• Deadlock-free AND Fair =⇒ Starvation-free

A CS has to be Deadlock-free and mutually exclusive!

• Notion of Fairness (especially for locks):
For a given lock-implementation we are defining the
doorway and waiting section. Where the doorway al-
ways takes a finite amount of operations, but the waiting
section may be unbounded.
We call a lock fair according to the first-come-first-serve
principal, if whenever Thread A finishes its doorway sec-
tion before Thread B, then Thread A will also finish the
waiting section before Thread B.

Lock Deadlock
free

Starvation
free

Fair
(first-
come-
first-
serve)

Peterson-
Lock

Filter-
Lock ×

Bakery-
Lock

TAS-Lock
(Spinlock) × ×

6 Sequential Consistency & Lin-
earizability

• Histories A and B are called equivalent, if A and B’s
per-thread projections are identical
• A History H is called complete, if every invocation
has a matching response (not necessarily immediately
after the invocation).
• A History H is called well-formed, if its per-thread
projections are all sequential. Histories that are not well
formed usually do not make sense.
• A history H is called legal, if for every object x, the
projections H|x all behave like the sequential specifica-
tion of the object x.
• A History H is sequential, if there are no overlapping
methods (when every invocation is immediately followed
by the matching response)

• A History is SC (Sequentially Consistent), if:
1. Every Thread projection is a sequential history.
2. Method calls appear to follow PO (Program Order),
which allows for "reordering" of method-calls as long as
they follow the ordering determined by the correspond-
ing Thread-projection.

• For a program to be called SC (Sequentially Con-
sistent), every possible execution history has to be SC.

• A History H is
linearizable, if there is an extension H ′ to H, which
is equivalent (thread-projection-wise) to a legal sequen-
tial History S, where for all methods mx →H my =⇒
mx →S my. What linearizability means, is that the given
parallel/ concurrent execution is equal to some sequen-
tial history, where a preceding method call shows effect
before the later one, but overlapping method calls can
be "reordered" as wished. The reordering means, that
if m1 and m2 overlap (independent of which methods
invocation or response was first/second) we can choose,
if m1 or m2 shows its effect first.

7 MPI & Fork-Join Patterns
• MPI (Message Passing Interface):
MPI is an interface for parallel computing. It defines the
syntax and semantics of many different library methods
(like send, receive, reduce, map, ...) that are useful to
write a program that runs on millions of processors.

In MPI we have multiple processes, that share data/
state via messages. Each process is associated with an
integer value called the rank (unique ID), which ranges
from [0,#processes − 1]. Each message also has an ID,
called the destination or source (from sender or receiver
perspective). Processes communicate via a communica-
tor, the default is COMM_WORLD, where all processes

3

communicate via the same "channel". When using MPI,
we do not touch the implementation of the different
methods, but rather use the interface in a language we
like (C/C++, Java, Python, ...)

The two core methods of MPI are Send() and Receive(),
which are defined as follows:

// Sends "<count>-many" elements of
// the <data> reference (of type: <datatype>)
// to the process with rank (<destination>)
// the <tag> identifies the message (id) and
// the <communicator> is a handle to distinguish
// between different communicators/ groups
MPI_Send(

void* data,
int count,
MPI_Datatype datatype,
int destination,
int tag,
MPI_Comm communicator

)

// Receives "<count>-many" elements of
// the <data> reference (of type: <datatype>)
// from the process with rank (<source>)
// the <tag> identifies the message (id) and
// the <communicator> is a handle to distinguish
// between different communicators/ groups
// <status> keeps track of the messages status :)
MPI_Recv(

void* data,
int count,
MPI_Datatype datatype,
int source,
int tag,
MPI_Comm communicator,
MPI_Status* status

)

• Parallel Algorithm Patterns:
• Map:
A map maps the elements of one set through a function
onto a new set containing the modified results.

MAP([1,2,3,4], x 7→ 2 · x) → [2,4,6,8]:

1 2 3 4

2 4 6 8

1 * 2 2 * 2 3 * 2 4 * 2

• Reduce:
A reduce will perform an associative operation onto all
elements in a set and return a single resulting value.

REDUCE([1,2,3,4], +) → [10]:

1 2 3 4

3 7

10

1 2 3 4

3 7

• Prefix Sum:
The prefix sum of a list of integers is calculated like this:

PREFIX_SUM([1,2,3,4]) → [1,1+2,1+2+3,1+2+3+4]
= [1,3,6,10]:

1 2 3 4

3 7

10

3 7

1 2 3 4

1 3 6 10

1 2 3 4

3 7

left=0 left=3

left=0 left=1 left=3 left=6

+= left += left += left += left

• Pack/ Filter:
The pack or filter routine takes a set of elements and a
predicate p(x) 7→ 0/1. It filters the set for all elements
x where p(x) = 1. The parallel algorithm works the
following:
1. Perform a parallel map to compute the bit-vector for
all true elements.
2. Compute the prefix-sum on the bit-vector
3. Perform another map, this time on the bit-vector,
which picks an element x at index i, where p(x) = 1 and
calculates its result index inew by prefix_sum[i] − 1.
It maps this value into a result array (result[inew] = x)
with length prefix_sum[n − 1], where n is the input
array length.

PACK([1,2,3,4], p(x) = 1 ⇐⇒ x mod 2 = 0) →

4

[2,4]:

1 2 3 4

0 1 0 1

0 1 1 2

2 4

odd even odd even

Prefix-Sum Prefix-Sum Prefix-Sum ...

final map
final map

7.1 MPI Methods

• Gather: Gather the data from different processes and
collect them in one root process
• AllGather: Gather the data from different processes
and collect them in all processes
• Scatter: Split the array of data in chunks and send
them from one process to all other processes
• Broadcast: Send the whole array of data from one
process to all other processes
• Reduce: Reduce data into one value (associative op-
erator) and save the result in a root process
• AllReduce: Reduce data into one value (associative
operator) and save the result in all processes

8 Merksachen für die Prüfung

• Executorservice

// Ohne Rückgabewert:
class Work1 extends Runnable {

public Work1 (...) { ... }
@Override
public void run() {

...
}

}
// Mit Rückgabewert:
public class Work2 extends Callable<T> {

public Work2 (...) { ... }
@Override
public T call() {

...
return <T>();

}
}

• ForkJoin

// Ohne Rückgabewert:
public class Task1 extends RecursiveAction {

public Task1 (...) { ... }
@Override

protected void compute() {
...
Task1 l = new Task1(...);
Task1 r = new Task1(...);
l.fork();
r.compute();
l.join();

}
}
// Mit Rückgabewert:
public class Task2 extends RecursiveTask<T> {

public Task2 (...) { ... }
@Override

protected void compute() {
...
Task2 l = new Task2(...);
Task2 r = new Task2(...);
l.fork();
T a = r.compute();
T b = l.join();
return <T>combine(a,b);

}
}

• Barrier Implementations

class BarrierTurnstiles {
private int threshold;
private int count = 0;
private Semaphore barrier1 =

new Semaphore(0);
private Semaphore barrier2 =

new Semaphore(1);

public BarrierTurnstiles(int threshold) {
this.threshold = threshold;

}

public void await() {
synchronized(this) {

count++;
if(count == threshold) {

barrier2.aquire();
barrier1.release();

}
}
barrier1.aquire();
barrier1.release();
synchronized(this) {

count--;
if(count == 0) {

barrier1.aquire();

5

barrier2.release();
}

}
barrier2.aquire();
barrier2.release();

}
}

class BarrierWaitNotify {
private int threads;
private int waiting = 0;
private boolean doorOpen = true;

public BarrierWaitNotify(int threads) {
this.threads = threads;

}

public synchronized void await() {
while(!doorOpen) wait();

waiting++;
while(doorOpen && waiting < threads)

wait();

if(doorOpen && waiting == threads) {
doorOpen = false;
notifyAll();

}

waiting--;

if(waiting == 0){
door_is_open = true;
notifyAll();

}
}

}

• Lock
A lock has to be deadlock-free (in itself, not in the
sense that it can lead to deadlocks), starvation-free
and mutually exclusive. This definition implies how-
ever, that all spin-locks from the lecture are not correct
lock-implementations.

* Note that in the following lock implementations when-
ever we write volatileT [] of size n, we actually mean n
independent volatile values. This could also be achieved
with AtomicBooleanArray, ...

• Peterson-Lock

volatile boolean[] flag = new boolean[2];
volatile int victim;
void lock(int id) {

flag[id] = true;
victim = id;

while(flag[1-id] && victim == id) {/*wait*/}
}
void unlock(int id) {

flag[id] = false;
}

• Deckers-Algorithm

volatile boolean want0;
volatile boolean want1;
volatile int turn;
void lock(int id) {

want<id> = true;
while(want<1-id>) {

if(turn == 1-id){
want<id> = false;
while(turn == 1-id){};
want<id> = true;

}
}

}
void unlock(int id) {

turn = 1-id;
want<id> = false;

}

• Filter-Lock

volatile int[] level;
volatile int[] victim;
volatile int n;

// k: k != me: level[k] >= i
boolean Others(int me, int lev) {

for (int k = 0; k < n; ++k)
if (k != me && level.get(k) >= lev)

return true;
return false;

}

public void lock(int me) {
for (int lev = 1; lev < n; ++lev) {

level[me] = lev;
victim[lev] = me;
while(me == victim[lev]

&& Others(me,lev));
}

}

public void unlock(int me) {
level[me] = 0;

}

• Bakery-Lock

volatile boolean[] flag;
volatile int[] label;
volatile int n;

// k: k != me: level[k] >= i

6

boolean Conflict(me) {
for(int i = 0; i < n; i++) {

if(i != me && flag[i]) {
int diff = label[i] - label[me];
if(diff < 0 || diff == 0 && i < me)

return true;
}

}
return false;

}

public void lock(int me) {
flag[me] = true;
label[me] = max(labels) + 1;
while(Conflict(me));

}

public void unlock(int me) {
flag[me] = false;

}

• TAS-Lock
volatile inCS = false;
public void lock() {

while(inCS.getAndSet(false)){};
}

public void unlock() {
inCS = false;

}

• TATAS-Lock
volatile inCS = false;
public void lock() {

do{
while(inCS.get()){}

}
while(inCS.getAndSet(false));

}

public void unlock() {
inCS = false;

}

• CAS-Lock

volatile inCS = false;
public void lock() {

while(!inCS.compareAndSet(false,true));
}

public void unlock() {
inCS = false;

}

• Consensus
An implementation of a consensus protocol implements
a method decide(v), which returns a value t. The value
t has to be the same across all calls to decide (for every
thread). And has to be some threads input value to de-
cide (v). The decide method also has to be implemented
wait-free!

If we are solving binary consensus, there are 3 differ-
ent types of states:

• univalent: State, were the output is settled on ei-
ther 0 or 1
• bivalent: both outputs 0 and 1 are still possible
• critical: bivalent & the following state-transition ends
in two univalent states

7

