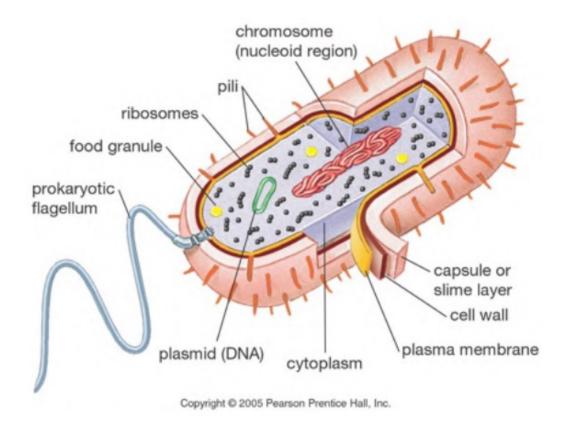


Valentin Baumann vbaumann@ethz.ch

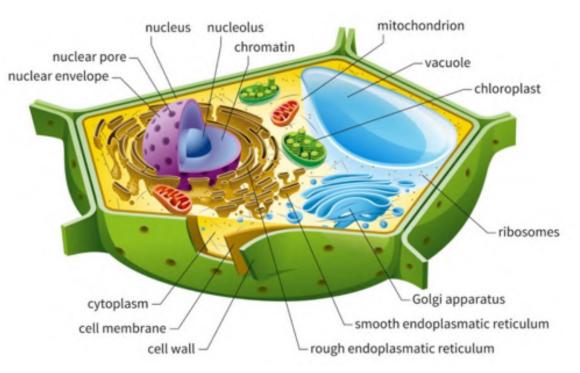
About me & the exercise

- BSc Health Sciences & Technology (D-HEST), 6th Semester
 - Biomedical Engineering
 - Neurology
 - Molecular Life Sciences
- TA in Bioengineering & Biomechanik I
- Mail: <u>vbaumann@ethz.ch</u>
- You can decide what serves you best:
 - Summary
 - Solving the exercise
 - Q&A

Agenda


- 1. Cells
- 2. Chemical Bonds
- 3. Functional Groups
- 4. Macromolecules
 - 1. Lipids & Carbonic acids
 - 2. Proteins
 - 3. Carbohydrates
 - 4. Nucleic Acids

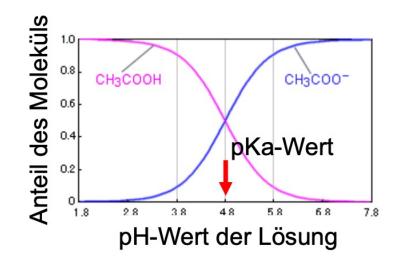
Cell Types


Cell Types - Prokaryotes

- DNA in cytoplasm
- NO nucleus
- NO organelles
- NO compartimentalisation
 - No internal sub-structures
 - No internal membranes
- INCLUDES:
 - Nucleoid bacterial chromosome
 - Ribosomes
 - Flagellum
 - Capsule

Cell Types - Eukaryotes

- Much larger than Prokaryotes
- Compartimentalisation
 - Organelles and nucleus surrounded by membranes
 - → Division of reaction and work spaces with specific milieus!!!
- INCLUDES:
 - Nucleus (DNA)
 - Nucleolus (Synthesis of ribosome sub-units)
 - Organelles (mitochondria (ATP prod.); ER; Golgi; etc.
 - Ribosomes (essential for protein biosynthesis)
 → discussed later on regarding translation


Basics in chemistry – pH and pKa

рΗ

- Used to characterise the H⁺ concentration in a solution.
- $pH = -log_{10}[H^+] = -log_{10}[H_3O^+]$
- pH = 1 very acidic solution
 pH = 7 neutral solution
 pH = 14 very basic solution
- At pH = 7, the concentration of [H⁺] and [OH⁻] are the same. (10⁻⁷M)

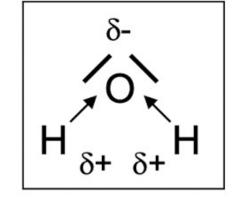
pKa = acid dissociation constant

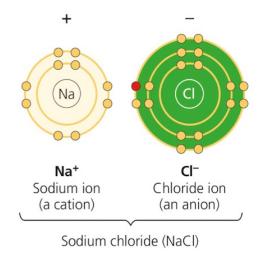
 pKa → pH value where 50% of the acid is protonated

- The lower the pKa the stronger the acid!
- # pKa's = # H-atoms a substance can bind
 - − Eg. $H_3PO_4 \rightarrow 3 \text{ pKa's}$

7

Chemical Bonds


Chemical Bonds – Strong Bonds


Covalent bonds → form molecules

- Electrons shared (always in pairs) \rightarrow single, double and tripple bonds
- If the two atoms are different (H₂O) \rightarrow shared electrons unevenly distributed:
 - More electronegative atom (here Oxygen) wants the electron more badly
 - \rightarrow «negative Partialladung»
 - Electrons mostly near Oxygen → Hydrogen seems positively charged
 - Molecules has pos. and neg. pole \rightarrow a dipole
 - The bonds are polar \rightarrow thus often reactive

Ionic Bonds → form salts in grids, not molecules

- Electrons taken by more electronegative atom \rightarrow formation of ions
- Cations positively charged
- Anions negatively charged
- In biological environment: ions surrounded by «Hydrathülle» & seperated from their counter-ion
- In solids: ions build salt crystals with grid structures

Chemical Bonds – Weak Interactions

Hydrogen Bonds

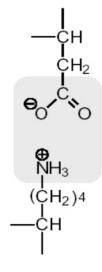
- Ineractions between dipole molecules (between «Partialladungen»)
- \rightarrow Much weaker and more transient than ionic bonds
- But particularly strong for Hydrogen Bonds if:
 - 1st molecule: Hydrogen bound to very electronegative atom (F, O, N) → pos.
 «Partialladung» stronger
 - 2nd molecule: free electron pair at strongly electronegative atom (typically N, O)

This hydrogen bond (dotted line) results from the attraction between the partial positive charge on a hydrogen atom of water and the partial negative charge on the nitrogen atom of ammonia.

Chemical Bonds – Weak Interactions

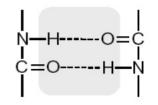
- Van der Waals interactions
 - Weak interactions due to asymmetric ever changing distribution of electrons within two interacting molecules
 - Distance max. 3-4 Å between molecules

- Hydrophobic interactions energy optimization
 - Goal: to minimize interactions between hydrophobnic and hydrophilic molecules (eg. H₂O)
 - Strategy: Apolar/hydrophobic molecules drawn together to minimize surface area of hydrophobic molecuels having to interact with the hydrophilic/polar water
 - Result: stabile energetic minimum
 - Seems like a bond to the outside

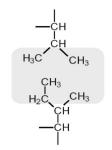

Basics in chemistry – chemical bonds

Strong chemical bonds

Covalent bonds



Ionic bonds



Weak chemical interactions

Hydrogen bonds

Van der Waals interactions & Hydrophobic interactions

Chemical Bonds – Weak Interactions

Hydrogen bonds, VdW and hydrophobic interactions

- Are essential for chemical processes in the cell and in biology
- Formed and dissociated quickly -> high turnover rate!
- Responsible for the stability of large molecules and their interactions

Hydrogen bonds

• responsible for the solublility of organic molecules in water!

 \rightarrow Weak interactions are essential for molecular processes inside a cell!

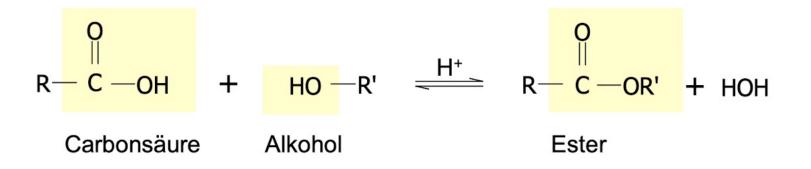
Functional Groups

Functional Groups – Know how to draw the structures!

• Give molecules specific chemical and biophysical properties (reactivity, polarity, etc.)

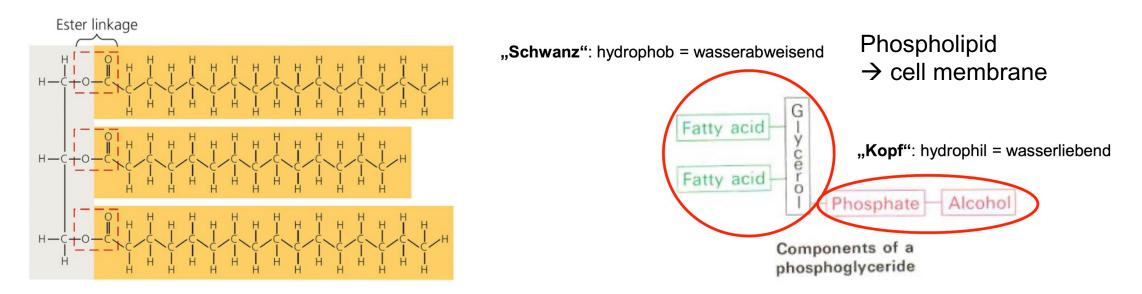
Functional Group Name	Structure (written)	Molecuels	Properties
Hydroxyl	R-OH	"Alkohole"	Polar & reactive
Carbonyl	R-CHO or R-CO-R	"Aldehyde oder Ketone"	Polar and very reactive
Carboxyl	R-COOH	"Carbonsäuren"	Acidic (weak) and charged (-)
Amino	R-NH ₂	"Amine & Aminoverbindungen"	Polar bound, basic and charged (+)
Sulfhydryl	R-SH	"Thiole"	Polar
Phosphate	R-PO ₄ ³⁻	Phosphates	Acidic, charged (-) Very energy rich (ATP)

Macromolecules

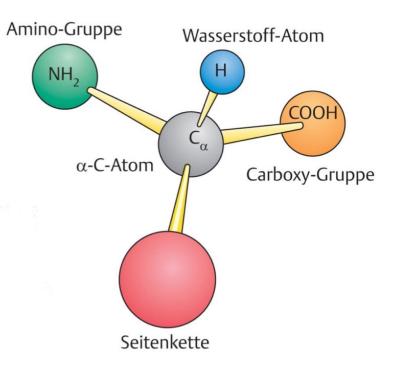


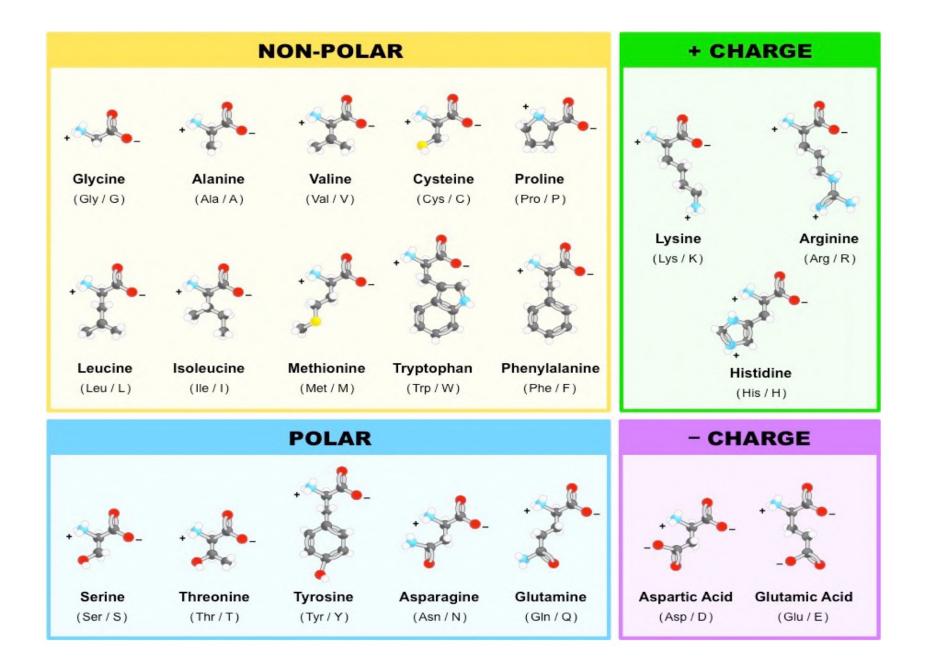
Macromolecules – Content of cells

• Wasser				77%
Hydratisierte Ionen				3%
 Lipide Proteine Kohlenhydratartige Nukleinsäuren 	~	erbindungen es Kohlenstoffs	 <	2% 14% 1% 3%

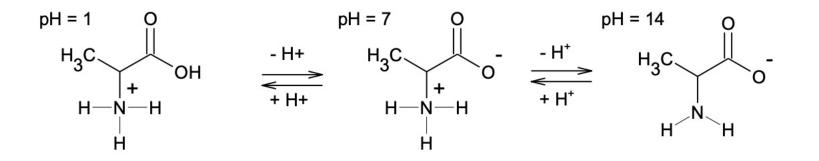

Macromolecules - Lipids

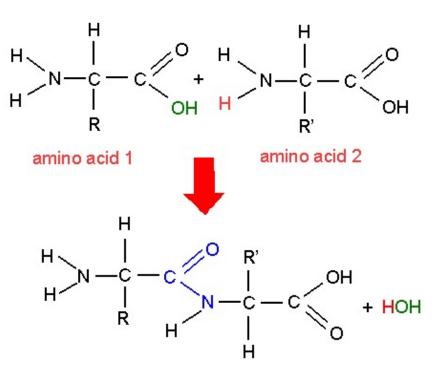
- Consist of alcohols and carboxylic acids ("Carbonsäuren")
- Glycerine (alcohol) is often the backbone of the lipid and hydrophilic
- "Carbonsäuren"/fatty acids (long amphiphilic chains) are the tails
- Ester bonds link the –OH groups of both molecules, producing water


Macromolecules - Lipids


- Gylcerins with long fatty acid chains \rightarrow Lipids
- Hydrophilic head and hydrophobic tail
- Lipids lipophilic substances (soluble in fat) \rightarrow normally hydrophobic

 If you have many phospholipids in a polar environment (such as water), how are they going to be organised and which of the previously discussed chemical interactions are responsible for said organisation?

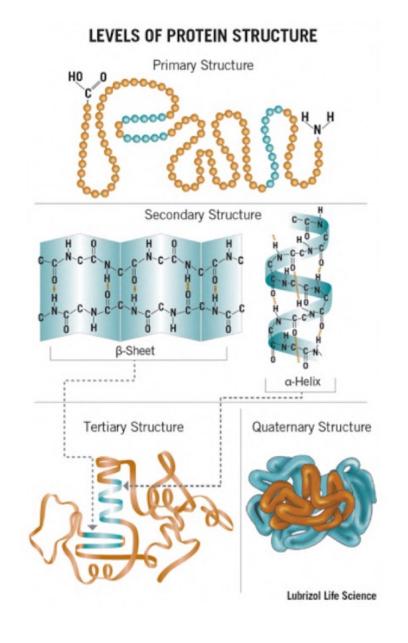

- Building blocks: Amino acids (ca. 20)
- Amino acid: consists of a central C atom which (usually) has four different bonding partners. Three of them are fixed, while the fourth determines the properties and qualities of the amino acid.
 - Amino-group (NH2)
 - Carboxy-group (COOH)
 - Hydrogen atom
 - Side chain (non-polar, polar, + charged, charged)
- Amino acids are Enantiomers → Its mirror image is not the same molecules and thus has different properties.
 - For amino acids we have D- and L-types (more generally R & S)
 - Most organisms use L-type Amino acids


Side Note to amino acids

- The physicochemical properties of the amino acid depend on the pH of the environment.
 - If the pH is low (=1), the amino acid is fully protonated (+ charge).
 - At neutral pH (= 7), the amino acid is partially protonated (no charge due to compensation).
 - If the pH is high (= 14), the amino acid is fully deprotonated (- charge)

Formation

- In proteins, the amino acids form the backbone of the structure. The amino-group and the carboxy-group are linked together in a condensation reaction one molecule of H₂O is released with every bond formation.
 → Primary structure of the polypeptide
- Amino Acid side chains start to interact with each other causing the polypeptide chain to fold in a 3D structure


Structure

- <u>Primary structure</u>: Sequence of amino acids
- <u>Secondary structure</u>: alpha helix or beta sheet (primary structure is "formed" into these structures by hydrogen bonds between the backbone)
- <u>Tertiary structure</u>: folded up, functional arrangement of secondary structure (due to interactions between the amino acid side chains!)

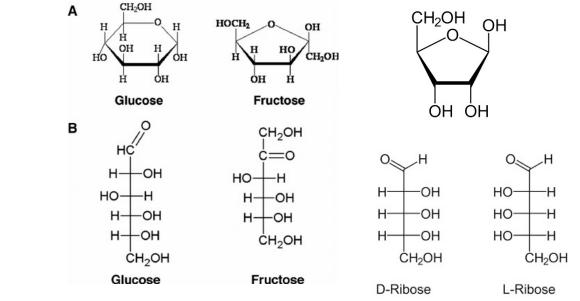
If you have a part with primarily non-polar side chains, do you think these will be presented on the outside of the protein in an aqueous environment or on the inside? Why?

• <u>Quaternary structure</u>: composed of multiple protein domains (several strands of amino acids) – eg. Haemoglobin

 \rightarrow Only when the polypeptide is correctly folded and has a function we call it a protein!

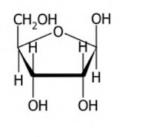
Cellular functions

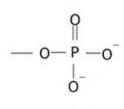
- Structure protein
- Catalysator (enzymes)
- Membrane proteins (eg. Pores, or ion channels)
- Locomotion apparatus (Myosin)
- Antibodies


 \rightarrow Wherever something actively happens within a cell and the body, there are proteins involved!

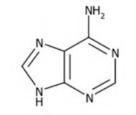
Macromolecules - Carbohydrates

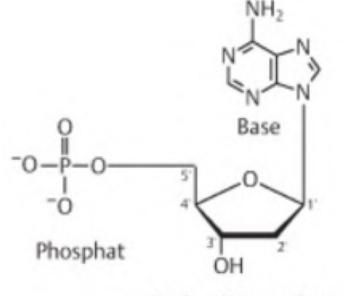
- Linear and/ or circular molecules consisting of C, H and O atoms, additional functional groups are possible. The common formula for carbohydrates is (CH₂O)_x
- C atoms have four valence electrons and thus can enter up to four bonds with other atoms. C atoms are the backbone of carbohydrates, OH-groups and H-atoms are attached to them.
- Saccharides are circular carbohydrate molecules. They are grouped first and foremost by the amount of linked circular carbohydrate molecules. Their chemical properties depend on the placement of the OH-groups in space.


Macromolecules - Carbohydrates


- Monosaccharides
 - Hexose: 6 C-atoms
 - Glucose and Fructose
 - Pentose: 5 C-atoms
 - Ribose
- Disaccharides
 - Two monosaccharides linked together via a condensation reaction
 - Sucrose: Glucose + Fructose
- Polysaccharides
 - Multiple monosaccharides linked together
 - Depending on linkage of monosaccharides the polysaccharide will have different properties: α-linked monomers (spiral form, more soluble but less stiff) will create a starch while ß-linked (stiffer but not as soluble) monomers will create cellulose

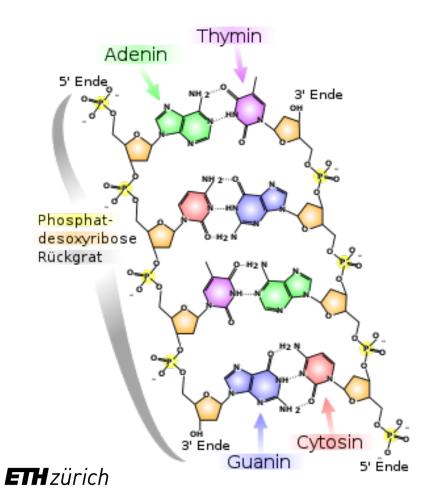
Macromolecules - Nucleic acids

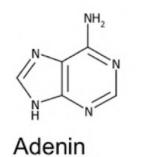

- Carriers of genetic information
- Important in the whole process of Proteinbiosynthesis
- Building Blocks (Monomers): Nucleotides
 - Pentose
 - Phosphate-rest (at 5th C of the Pentose)
 - Base (at 1st C of Pentose)

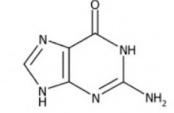


Pentose (Ribose)

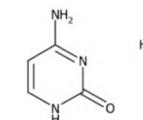
Phosphat-Rest

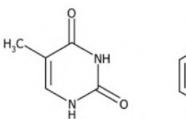

Base (Adenin)




Zucker (Deoxyribose)

Macromolecules - Nucleic acids


- 5 Bases
- A, G, C, T \rightarrow DNA
- A, G, C, U \rightarrow RNA



Guanin

Doppelringsystem "Purinbasen"

Einfachringsystem "Pyrimidinbasen"

Cytosin

Thymin

Uracil

NH

Macromolecules - Nucleic acids

Formation

- Nucleotides bind and build a nucleic acid chain via Phosphate-Bridge between the Phosphate group (On the 5th C) and the 3rd C of the next nucleotide
- \rightarrow gives nucleic acid a direction (5' and 3')
- Elongation always on the 3' end of the nucleic acid chain. (Synthesis: 5' to 3')

Types of Nucleic acids

- Ribonucleic Acid (RNA) containing ribose and bases: AGCU
- Deoxyribonulceic Acid (DNA) containing deoxyribose and bases: AGCT
 - Forms double helix, G-C and A-T bind via Hydrogen bridges between the two backbones

Roles of nucleic acids

- Genetic material long term storage (DNA)
- Replicating material, mediator/short-term storage (RNA)
- Carry out own function (protein-like); eg. In ribosomes
- Energy exchanger/carrier and chemical activator