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Morphogen gradients can instruct cells about their po-
sition in a patterned tissue. Non-linear morphogen de-
cay has been suggested to increase gradient precision
by reducing the sensitivity to variability in the mor-
phogen source. Here, we use cell-based simulations to
quantitatively compare the positional error of gradi-
ents for linear and non-linear morphogen decay. While
we confirm that non-linear decay reduces the positional
error close to the source, the reduction is very small
for physiological noise levels. Far from the source, the
positional error is much larger for non-linear decay in
tissues that pose a flux barrier to the morphogen at the
boundary. In light of this new data, a physiological role
of morphogen decay dynamics in patterning precision
appears unlikely.
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Introduction

According to Wolpert’s famous French flag model [1], mor-
phogen gradients encode readout positions xθ via concentration
thresholds Cθ = C(xθ), and differentiating cells base their fate
decisions on whether the local morphogen concentration lies
above or below such thresholds (Fig. 1A). Thus, these readout
positions mark the boundary locations between domains of dif-
ferent cell fates. Variations in the morphogen profile result in
variations in the readout positions. The accuracy of the spatial
information carried by morphogen gradients can be quantified
with the positional error, which is defined as the standard devia-
tion of the readout positions over different gradient realizations
[2]:

σx = stddev [xθ] . (1)

How the observed precision of tissue patterns arising from this
principle is achieved, in spite of natural molecular noise in mor-
phogen production, transport, decay, internalization, turnover
and other sources of variability, is a key question in develop-
mental biology [3, 2, 4].

Morphogen dynamics are often described by reaction-diffusion
equations of the form [5]

∂C

∂t
= D∆C − dCn/Cn−1

ref (2)

with morphogen concentration C, diffusion coefficient D, and
decay rate d. Cref is a constant reference concentration that we
introduce to make all units independent of n. The exponent
n models linear (n = 1) or non-linear (n > 1) decay of the

morphogen. Linear decay leads to exponential gradient profiles
(Fig. 1B) of the form [6]

C(x) = C0e
−x/λ, λ =

√
D

d
(3)

with an amplitude C0 at the source at x = 0, and a character-
istic decay length λ, set by the diffusion coefficient D and the
degradation rate d. Non-linear decay, on the other hand, results
in shifted power-law gradients (Fig. 1C) [7]

C(x) = C0

(
1 + x

mλm

)−m
, m = 2

n− 1 (4)

where λm is a gradient length scale that depends on D/d, n and
C0/Cref (see Supplement for details). Non-linear decay would
for instance arise in case of cell lineage transport, when ligands
interact with receptor clusters, or if ligand binding results in
receptor upregulation, as is the case for several morphogens,
most prominently for Hedgehog (Hh) [7–10]. Most reported
morphogen gradient profiles have been fitted assuming linear
decay (n = 1) [11–18]. For the FGF8 gradient in the developing
mouse brain, n ≈ 4 has been reported [19].

Embryos are subject to molecular noise, which can cause
fluctuations in morphogen production and transport rates, and
consequently, in the gradient amplitudes and morphogen fluxes
from the source to the patterned cells. This results in shifts
∆x between different gradient realisations (Fig. 1B,C). In the
case of linear decay, the shift is only related to the relative
morphogen influx or amplitude and not to the absolute mor-
phogen levels (Supplement, Eq. S5). However, with non-linear
decay, the shift depends on the absolute levels, with higher in-
fluxes resulting in smaller shifts (Supplement, Eq. S6). Previous
research [7] suggested that the circumstance that this shift van-
ishes for power-law gradients at sufficiently large morphogen
influx values leads to more robust patterning, because the read-
out position becomes independent of the influx in this limit
when the morphogen decay is non-linear (Supplement). In other
words, if two tissues are patterned by two different noise-free
power-law gradients, both with high (but different) morphogen
influxes from the source, the resulting gradients will be nearly
identical, resulting in a reproducible pattern. For exponential
gradients, the shift will not disappear, and the gradients will
thus differ. However, the gradients that result from non-linear
decay also possess significantly shallower tails, relative to the
higher concentration (Fig. 1C). Their usefulness for patterning
has therefore been questioned [5], and it has remained unclear
whether nonlinearity in the morphogen decay would in fact help
achieving higher positional accuracy. Indeed, to first order, the
positional error of variable gradients is inversely proportional
to the magnitude of their slope [11, 2] according to

σx ≈
∣∣∣∂C
∂x

∣∣∣−1
σC , (5)
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where σC is the standard deviation of local morphogen concen-
tration and x denotes the patterning axis. This suggests that for
patterning precision, the benefit of a smaller positional shift of
gradients with n > 1 might be offset or even overcompensated
by their flatter shape further from the source.

In the previous analysis [7], molecular noise was considered
only in the form of a fold-change in the morphogen amplitude
or influx between different gradient realisations, resulting in
shifted deterministic gradients, as shown in Fig. 1B,C. To ac-
count for the intrinsic stochasticity of biological systems, we
now extend this deterministic view by incorporating kinetic
variability into the model, as depicted in Fig. 1D,E. This is
achieved by introducing randomness into all kinetic parame-
ters of the reaction-diffusion equation. Our model is cell-based,
meaning that each cell in the tissue is assigned its own specific
variable kinetic parameters, emulating inter-cellular variability
(Methods). With this quantitative statistical tool, we demon-
strate numerically that the positional error of noisy morphogen
gradients does not significantly improve with non-linear decay.
In the contrary, if the morphogen cannot leave the patterned
tissue opposite of the source, the power-law gradients become
shallow in a substantial part of the domain, leading to reduced
positional accuracy with non-linear decay.

Results

Noisy gradient model
We simulated steady-state diffusion to study the impact of non-
linear decay on the precision of noisy morphogen gradients.
Our model uses a one-dimensional cellular domain composed
of a source of length Ls and a patterning region of length Lp
(Fig. 1D,E). To represent morphogen-secreting source cells ex-
plicitly, the diffusion equation (Eq. 2) was extended by a mor-
phogen production term, resulting in

0 = D
∂2C

∂x2 − dC
n/Cn−1

ref + pH(−x). (6)

Here, H(x) is the Heaviside function, ensuring that production
at rate p only occurs in the source (x < 0). Zero-flux boundary
conditions were used at both outer ends of the tissue, mimicking
a situation in which morphogen molecules are restricted to the
patterned tissue by an impermeable boundary:

∂C

∂x
(−Ls) = 0 = ∂C

∂x
(Lp).

We generated variable morphogen gradients by numerically solv-
ing Eq. 6 with kinetic parameters pi, di and Di, and cell areas
Ai independently drawn from log-normal distributions for each
cell i = 1, ..., N in the domain [2, 20] (Fig. 2, for details see
Methods). The individual gradient realisations Cj(x) can be
thought of as representing different embryos, denoted by the
index j. They exhibit inter- and intra-tissue variability due to
the stochastic nature of the three kinetic parameters that vary
from cell to cell. Cells have to convert the spatial morphogen
distribution they are exposed to into a single concentration
value, which determines their fate in the tissue according to the
French flag model. There are several ways cells may achieve
this, such as averaging the morphogen signal over their entire
cell surface, beyond their cell surface via a cilium, or reading
out the signal at a single point. In a recent study we found
that the readout mechanism has little impact on the gradient
precision perceived by the cells [20]. We therefore only anal-
ysed the case where cells average the morphogen signal over
their cell surface, or over their diameter in the 1D model here,
respectively. The concentration in each cell is then compared
to the threshold concentration Cθ and the location xθ,j of the
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Figure 1: Comparison of linear and non-linear mor-
phogen gradients. A According to the French flag model,
morphogen gradients provide the spatial information required
for tissue patterning via concentration thresholds Cθ, numbered
by θ = 1, 2, 3 etc. If a cell lies above or below a certain thresh-
old Cθ, it switches fate, resulting in domain boundaries forming
at the respective cell borders at x = xθ (blue and red lines).
The morphogen source is located at x = x0 = 0. B Linear
decay leads to exponential gradients. Changes in the gradient
amplitude C0 (different colours) lead to a shift ∆x that is in-
dependent of the amplitude. C Non-linear decay (n = 2) leads
to power-law gradients. The shift ∆x due to a change of C0 is
amplitude-dependent. D,E Noisy example gradients obtained
numerically. Cell boundaries are denoted by black ticks along
the patterning axis. Molecular kinetic noise and cell area vari-
ability leads to noisy gradients. For a fixed readout threshold
Cθ, variable gradients result in different readout positions xθ,j
(inset plots). Non-linear decay (E) leads to shallower gradients
further in the patterning domain compared to linear decay (D).

first cell whose sensed concentration subceeds this threshold is
recorded. This process is repeated for all gradients j, allowing to
compute the positional error according to its definition (Eq. 1),
σx = stddevj{xθ,j} to quantify the precision of the positional
information conveyed by the morphogen gradients.

Model parameters

To define the stochastic nature of the morphogen kinetics in-
volved in the formation of the gradients, we express the mean
value and standard deviation of a parameter q by µq and σq,
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Figure 2: Numerical model to simulate noisy gradients. A 1D cellular domain is constructed by drawing cell areas from
log-normal distributions with mean cell area µA and standard deviation σA. Cell areas are then converted to diameters (δi). This
procedure is repeated N times until source and patterning domains of length Ls and Lp are filled with cells. Kinetic parameters
k = p, d,D are drawn independently from log-normal distributions with a mean µk and standard deviation σk for each cell.
Production only takes place in the source (blue cells). Then, the reaction-diffusion equation (Eq. 6) is solved on the cellular
domain, generating one noisy gradient Cj(x). To determine a unique readout concentration of a cell, the average concentration
along the cell boundary is computed for each cell in the patterning domain. Based on these concentrations the readout position
xθ,j where Cj(xθ,j) = Cθ is recorded for each gradient. This step is repeated 1000 times. Lastly, the average readout position µx
and the positional error σx is calculated based on the 1000 noisy gradients. PDF denotes the probability density function.

respectively (Fig. 2). Based on measurements of the Hedgehog
morphogen gradient in the Drosophila wing disc and mouse
neural tube [13, 16, 2], we used a mean diffusivity of µD =
0.033 µm2/s and a mean gradient length µλ = 20 µm. We fur-
thermore set the average degradation rate to µd = µD/µ

2
λ, and

the average production rate to µp = µdCref , where Cref = 1 arb.
units to normalise the concentrations. Other specific values of
gradient parameters would not change the results reported here,
which are for the steady state, but would only alter the timescale
it takes for the steady state to be reached. The noise-to-signal
ratio in each quantity q is given by the corresponding coeffi-
cient of variation, CVq = σq/µq. Reported physiological noise
levels in morphogen production, decay, and transport differ be-
tween morphogens and tissues, but are around CVp,d,D ≈ 0.3
[2], which we use to define the distribution widths of the kinetic
parameters.

In addition to the morphogen kinetics, our simulations also
include cell-to-cell variability in the cell areas. The widths
and cross-sectional areas of cells vary in all layers along the
apical-basal axis [21]. Most quantifications have been carried
out on the apical surface. One of the highest reported values
for the apical area CV is found in the vertebrate neural tube
(CVA ≈ 0.9) [22–24], but most values are considerably lower
[25]. We therefore used CVA = 0.5 in all simulations unless
specified otherwise.

The diffusion coefficient, D, and the degradation rate, d, set
the steady-state patterning length scale, λ =

√
D/d. Thus,

our results are independent of the absolute values chosen for D
and d, and only depend on their ratio. Positional quantities,
such as the positional error, are reported relative to the average
cell diameter, which in turn was chosen to be a fixed multiple
of the average gradient decay length. We fixed the average
cell diameter at a fourth of the exponential gradient length,
µδ/µλ = 1/4, as found in the developing mouse neural tube
[26, 16].

Impact of non-linear decay on gradient precision

We previously showed that in case of linear decay, there is
a negligible impact of cell area variability as long as CVA <
1 [20]. We now find that this holds similarly for non-linear
decay (Fig. 3A), justifying the use of a fixed CVA = 0.5 in the
remainder of our analysis.

Much as for linear decay [20], the positional error scales with
the square root of the mean cell diameter also for non-linear
decay (Fig. 3B). Small cell diameters, as observed in all known
tissues that employ gradient-based patterning [20], are therefore
important for high spatial precision also in case of non-linear
decay.

The positional error increases from less than one cell diameter
close to the source to about two cell diameters at a distance
of 75 cell diameters away from the source (Fig. 3C). Close to
the distant domain boundary opposite of the source, where
a no-flux condition was imposed, the positional error rapidly
increases for non-linear decay, while remaining relatively low
for linear decay. If only the production in the source is varied
(CVp = 0.3, CVd,D = 0), the positional error remains constant
as the readout distance from the source increases, but increases
again sharply close to the distant end in case of non-linear
decay (Fig. 3D). But even for strong non-linearity (n = 4), the
positional error remains in the sub-cellular range when only
production noise is considered, as long as the readout position
is further than about λ away from the distal end.

Independent of whether all parameters are varied or only
the production rate, the positional error drops in close vicinity
to the source with stronger non-linearity in the decay (insets
of Fig. 3C,D). However, with less than 20% of a single cell
diameter from n = 1 to n = 4, the effect is likely too small to be
physiologically relevant. Further away from the source, linear
decay yields a smaller positional error than non-linear decay
(Fig. 3D–E). No matter how long the patterning domain is, non-
linearity always increases the positional error as the distal tissue
boundary is approached (Fig. 3F).

What then causes the increased positional errors with non-
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Figure 3: Impact of non-linear decay on gradient precision. A Physiological variability in the cross-sectional cell areas
has no significant impact on gradient precision. The positional error σx is plotted in units of the mean cell diameter µδ at different
readout positions in the patterning domain (symbols), and for different degrees of non-linearity (colours). B The positional error
increases with the square root of the cell diameter, irrespective of n. Dotted lines show σx = α

√
µδ for α = 2.6, 5.2 for reference,

with lengths in units of µm. Lp = 100µδ. C Non-linear decay leads to a marginally lower positional error close to the morphogen
source. Inset plot shows σx/µδ at a distance of two cells from the source as a function of decay non-linearity. With a no-flux
boundary at x = Lp, the shallowness of gradients from non-linear decay lets the positional error increase strongly far from the
source. Colours correspond to different decay exponents n, as specified in panel D. D Variability in the production rate alone
has no effect on the positional error along the domain for linear decay (blue). The stronger the non-linearity, the smaller the
positional error close to the source (inset). Far from the source, the positional error increases rapidly with non-linear decay. E
Difference between the positional error for n > 1 and for n = 1 relative to the mean cell diameter, at fixed readout positions
(colours). F Effect of finite patterning domain size. The positional error increases close to the distant zero-flux boundary in case
of non-linear decay (shades of blue, n = 2). Patterning remains precise across a larger distance in the case of linear decay (black,
n = 1). In all panels, each data point represents the mean from 103 independent simulations. Error bars represent standard
errors.

linear decay near the distal domain boundary? A zero-flux
boundary condition there implies shallower gradients than on
infinite domains: C′(x) → 0 as x → Lp. This effect occurs
irrespective of n, but the spatial range over which the gradient
flattens (and thus deviates from the pure exponential and shifted
power-law forms for infinite domains, Eqs. 3 and 4) increases
with n. By virtue of Eq. 5, non-linear decay thus leads to greater
positional errors at readout positions in the vicinity of the distal
boundary compared to linear decay.

In summary, our computer simulations of noisy morphogen
gradients suggest that it is insufficient to quantify gradient ro-
bustness and patterning precision by considering variability in
the morphogen production alone. Moreover, if the morphogen
cannot exit the patterning domain opposite of the source, shifted
power-law gradients that result from non-linear morphogen de-
cay flatten over a significantly larger range than exponential
gradients, leading to increased positional errors. The gain in
positional accuracy close to the source for non-linear decay is
negligible and therefore barely physiologically relevant. Overall,
exponential gradients lead to more robust patterning.

Impact of boundary condition at the source
Given the impact of the distal domain boundary, we wondered
whether the representation of the morphogen source by either
a spatial production domain (Fig. 4A), by a flux boundary

condition −DC′(0) = j0 (Fig. 4B) as used by Eldar et al. [7], or
by a fixed gradient amplitude C(0) = C0 (Fig. 4C) would affect
the positional error predicted by the model. While there are
small quantitative differences, the gradient shapes (Fig. 4A–C)
and positional errors (Fig. 4D–F) are overall very similar.

As we increase the variability in the production rate via CVp

(Fig. 4D), in the influx from the source via CVj0 (Fig. 4E),
or in the gradient amplitude at the source boundary via CVC0

(Fig. 4F), we find the smallest increase in the positional error for
the production rate and the largest increase for the gradient am-
plitude. Neumann or Dirichlet boundary conditions thus over-
estimate the positional error when the variability in the source
is high. Instead of using such boundary conditions, a spatial
source domain should explicitly be modeled, where applicable.
With the physiological values CVp ≈ 0.3 and CVC0 / 0.3 [2],
however, variability in the morphogen production plays merely
a subordinate to moderate role in the overall gradient variabil-
ity. Molecular noise in morphogen degradation and diffusivity
dominates the patterning precision.

Impact of the morphogen source strength
As the gradient amplitude determines the sensitivity of the read-
out position to amplitude changes for non-linear decay (Supple-
ment, Eq. S6) but not for linear decay (Supplement, Eq. S5),
the average morphogen production rate is expected to affect the
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Figure 4: Impact of the boundary condition (BC) at the source. A–C Noise-free gradient shapes when the morphogen
is either secreted in a source domain at rate p (Eq. 6) (A), with flux BC, −D∂C/∂x|x=0 = j0(B), or Dirichlet BC, C(0) = C0 (C).
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production rate (D), influx (E), and gradient amplitude (F) leads to a larger positional error above a certain threshold variability
CV ' 0.1–0.3. Kinetic variability was fixed at CVp,d = 0.3 (except for CVp in D). Further parameters: µj0 = µDCref/µλ (E),
µC0 = Cref (F). In panels D–F, each data point represents the mean from 103 independent simulations. Error bars represent
standard errors.

patterning accuracy in the case of non-linear decay, but not for
linear decay. We put this theoretical prediction to the test by
varying the mean relative production rate, the mean influx from
the source, and the mean morphogen amplitude in the three
different simulated morphogen production models. Changes in
these parameters have no effect on the positional error if mor-
phogen degradation is linear, which is consistent with the theory
(Fig. 5A–F, blue lines). With non-linear decay, on the other
hand, we indeed observe the positional error to be highly depen-
dent on morphogen abundance. Precision arguments previously
brought forward for deterministic morphogen gradients [7] do
not appear to directly quantitatively translate to the positional
error in settings where cell-to-cell variability is included, and
where morphogen production remains at physiological levels.

For high morphogen supply levels, non-linear decay leads to
a smaller positional error close to the source (Fig. 5A–C). The
effect is, however, substantially less pronounced in the model
that includes a spatial morphogen source domain (Fig. 5A) than
in those that do not (Fig. 5B,C), highlighting once again the
limitations of the latter. With an explicit source domain, non-

linear decay yields only marginally more spatial accuracy, when
production is high (p/dCref ' 0.4). Lower production levels
increase the positional error close to the source substantially
in all three models, reaching several cell diameters, for n > 1.
The gradients effectively flatten out at low production, reducing
their usefulness for spatial tissue patterning. The stronger the
non-linearity in the degradation, the more pronounced this loss
of patterning precision.

Further away from the source, the benefit of non-linear decay
is lost entirely, and exponential gradients remain more precise
than shifted power-law gradients also at high morphogen supply
levels (Fig. 5D–F).

In summary, simplified models without explicit representa-
tion of morphogen-secreting cells overestimate the beneficial
impact of non-linear decay on patterning precision. In all mod-
els considered here, the benefit of non-linear morphogen decay
is restricted to a close vicinity of the morphogen source, where
patterning precision is high anyway [2] and may thus not be as
critical for robust development, and to a regime of very strong
morphogen production. Further into the tissue, and at moder-
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Figure 5: Impact of the morphogen source strength. Numerically obtained spatial patterning accuracy in units of average
cell diameters µδ at different positions in the tissue (symbols) and for different degrees of non-linearity (colours). A–C Readout
close to the source, at xθ = 5µδ; D–F Readout far from the source, at xθ = 150µδ. Morphogen production scenarios are identical
to Fig. 4: Production in a source domain with morphogen-secreting cells (A,D), with a morphogen influx from the source at the
source boundary (B,E), and with a specified morphogen concentration at the source boundary (C,F). Very low (high) influxes or
amplitudes lead to flat (steep) gradients at strong decay non-linearity, limiting the parameter range over which the positional
error can be reliably determined for n = 4 (B,C,E,F). In all panels, each data point represents the mean from 103 independent
simulations, error bars represent standard errors.

ate morphogen abundance, linear decay yields more accurate
patterning.

Discussion

Non-linear morphogen decay was proposed as a potential
precision-enhancing mechanism for tissue patterning in the sem-
inal theoretical work by Eldar et al. [7] in a deterministic setting,
where morphogen gradients are devoid of noise. Here we have
explored this idea with a stochastic model, taking noisy gradi-
ents into account, as they arise from cell-to-cell variability in
morphogen kinetics. The surprising outcome of our quantitative
analysis is that, while a small advantageous effect indeed exists
near the morphogen source, this gain is outweighed by a substan-
tial loss of precision in the spatial information that signalling
gradients provide to cells in the interior and distal parts of a
patterned tissue when morphogen decay is non-linear. In tissues
that pose a diffusion barrier to the signalling molecule at their
boundary, shifted power-law gradients that emerge with self-
enhanced degradation, flatten out over a substantial portion of
the spatial domain, whereas exponential gradients remain more
graded (Fig. 1). This leads to greater spatial precision with
linear decay (Fig. 3), and is contrary to the original expectation

[7].
This long-range boundary effect is not the only reason why

linear morphogen decay is favourable for precise pattern forma-
tion. The positional error, which is the decisive quantity that
measures the spatial accuracy with which cells can determine
their location in the pattern, and ultimately their fate in differ-
entiation, is highly sensitive to morphogen supply levels when
morphogen decay is non-linear, but largely insensitive when de-
cay is linear (Fig. 5). This implies that patterning is more robust
to variations in the size and strength of the morphogen-secreting
source, if decay is linear. These results challenge the established
view that power-law gradients buffer fluctuations in morphogen
production [7]. We find that the positional error behaves in
the opposite way, buffering production fluctuations only with
linear, but not with non-linear decay. From an evolutionary
perspective, the linear case may be favoured, as patterning pre-
cision is unaffected by changes in the size and kinetics of the
morphogen-secreting source only if n = 1.

Our study demonstrates that a stochastic approach is re-
quired to quantify patterning precision of real noisy gradients.
Moreover, we find the positional error to be overestimated in
simplified models that replace the morphogen-secreting cells by
a Neumann or Dirichlet boundary condition (Fig. 4). Based on
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this, we recommend to include an explicit representation of the
source in future theoretical or numerical work on the subject,
as we did with Eq. 6.

Distinguishing exponential gradients from shifted power laws
can be very difficult in practice, as they can appear similar
over the short distances over which they can be reliably mea-
sured with classical imaging techniques. The FGF8 gradient
in the developing mouse brain is the only case we are aware
of where n > 1 has been reported robustly [19], and whether
this is linked to patterning precision in any way remains un-
clear. Available gradient data in other systems, such as Sonic
Hedgehog and Bone Morphogenetic Protein in the neural tube
[17], is too variable to confidently reject the hypothesis that
n = 1. Most further reports of morphogen gradient shapes
[11–18] are consistent with exponentials within measurement
accuracy. New measurement techniques are needed to deter-
mine whether non-linear decay is at work in the formation of
known morphogen gradients during development. In light of
our findings, a physiological role of non-linear ligand decay in
patterning precision appears implausible. If anything, our data
suggest an overall advantage of linear decay, also considering
the evolutionary aspect of tissue size and protein synthesis rate
differences between species.

The morphogen concentration declines significantly over sev-
eral orders of magnitude, independent of whether there is linear
or non-linear decay. At low morphogen concentrations, thermal
fluctuations and stochastic binding kinetics of ligands and recep-
tors will affect gradient and readout precision [27, 28, 5]. Cells
can, in principle, achieve high readout precision despite such
fluctuations via spatial and temporal averaging [28]. To assess
such effects, quantitative measurements of morphogen numbers
and cellular responses would be required far away from the
source. This requires the further development of more sensitive
measurement technology [29]. Once the absolute concentration
levels of the morphogen gradients can be determined, it can
be assessed whether the approximation of the gradients by a
continuous functions is valid along the whole tissue or, whether
discrete models have to be considered.

In future work, the simulated gradients can be used as inputs
to complex downstream networks, and the effect of noise in the
readout can be studied. However, these downstream networks
would not alter the relative precision of gradients generated
by linear and non-linear decay. In conclusion, non-linear decay
may slightly enhance precision close to the source, but it rapidly
deteriorates far from the source.

Methods

Generation of variable morphogen gradients
To generate noisy morphogen gradients numerically, we con-
structed the one-dimensional cellular domains in an iterative
process, cell by cell. For each cell i, an area Ai was drawn
from a log-normal distribution with specified mean value µA
and coefficient of variation CVA [20]. The drawn area was then
converted to a cell diameter δi = 2

√
Ai/π. Using the transfor-

mation properties of log-normal distributions, the cell areas was
drawn according to

µA = π(µδ/2)2(1 + CV2
A)1/4,

allowing to accurately fix the mean cell diameter µδ. This
procedure was repeated for cells i = 1, 2, 3... until the sum of
the diameters equaled the source length Ls or the patterning
domain length Lp. The spatial axis was then discretized into
cellular sub-intervals accordingly (Fig. 2). We used a patterning
domain length of 200 cells (Lp = 200µδ) and a source domain
length of 5 cells (Ls = 5µδ), unless otherwise stated.

Once the patterning axis was constructed, the kinetic pa-
rameters pi, di, Di, were drawn from log-normal distributions
for each cell i independently. For simulations without explicit
source domain, a random morphogen influx j0 or an amplitude
C0 was also drawn from a log-normal distribution. We then
numerically solved Eq. 6 using Matlab’s built-in fourth-order
boundary value problem solver bvp4c (version R2020b). At cell
boundaries, we imposed continuity of both the morphogen con-
centration and flux. Repeating this procedure 103 times using
independent random parameters and cell areas yielded statisti-
cally independent realisations of noisy morphogen gradients. To
estimate the standard errors of the positional errors as shown
in the plots, we used bootstrapping.

Choice of parameter distribution

In this article, we assume log-normally distributed cell areas and
kinetic parameters, analogous to our previous works [2, 20]. For
the cell areas, this choice is rooted in the reported distributions
of apical areas in the Drosophila larval and prepupal wing discs,
and in the mouse neural tube [30, 23]. The results reported here
are, however, largely independent of the probability distribution,
as long as it satisfies certain physiological criteria:

• The random parameters must be strictly positive. This
rules out probability distributions which allow for negative
values, including for example a normal distribution.

• The probability of drawing a near-zero parameter must
vanish quickly. This is because tiny diffusion coefficients,
fluxes, or amplitudes do not allow for successful patterning
over biologically relevant distances or timescales. A nor-
mal distribution truncated at zero, for example, is ruled
out because minuscule diffusion coefficients would occur
frequently.

In recent related work [20], we demonstrated that other distri-
butions which fulfill the above criteria yield similar results.

If the morphogen source is not modeled explicitly (omitting
the production term in Eq. 6), the gradient amplitude or mor-
phogen influx levels at the source boundary can serve as a proxy
for the production of the morphogen. For these simulations, the
amplitudes and fluxes were also drawn from log-normal dis-
tributions. The width of these distributions is controlled via
their coefficients of variation, CVC0 or CVj0 as specified in the
respective figures.
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2Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland

April 27, 2023

Qualitative difference between linear and
non-linear morphogen decay

In this section we present some theoretical considerations about
the consequences of nonlinear decay for noise-free morphogen
gradients. We consider deterministic steady-state gradients ob-
tained by analytically solving

∂C

∂t
= 0 = D∆C − dCn/Cn−1

ref . (S1)

Solving Eq. S1 on an infinite one-dimensional domain for linear
morphogen decay (n = 1) with a concentration that drops to
zero at infinite distance from the source (C(x)→ 0 as x→∞),
results in exponential gradient profiles (Fig. S1A) of the form

C(x) = C0e
−x/λ, λ =

√
D

d
, (S2)

with an amplitude C0 at the source at x = 0. The amplitude can
be set by Dirichlet boundary conditions or by flux boundary
conditions at the source, −D∂C/∂x|x=0 = j0. Imposing flux
boundary conditions leads to an amplitude C0 = j0λ/D. Thus,
with linear decay, influx and amplitude are proportional.

Non-linear decay (Eq. S1, n > 1), results in shifted power-law
gradients (Fig. S1A) that can be expressed as

C(x) = C0

(
1 +

x

mλm

)−m

, m =
2

n− 1
, (S3)

where

λm = λ

√
1 +

1

m

(
Cref

C0

) 1
m

(S4)

is a length scale determining the shift in the power law, and
C0 = C(0) is the amplitude analogous to Eq. S2. As the linear
decay is approached (n→ 1), m diverges (m→∞), the power-
law length scale approaches the exponential length scale (λm →
λ), and the power-law gradients (Eq. S3) become exponential
(Eq. S2). For a flux boundary condition at the source, the
morphogen amplitude is

C0 =
j0λm
D

=

(
λ

√
1 +

1

m

j0
D
C

1
m
ref

) m
m+1

.

Amplitude and influx at the source boundary are thus not pro-
portional for non-linear morphogen decay, unlike in the linear
case. Moreover, power-law gradients do not possess a constant
gradient decay length λ that quantifies a distance over which a
fold-change in morphogen concentration occurs. Nevertheless, if
one were to locally fit an exponential to the power-law gradient
[1],

x−m ∼ exp[−x/λ(x)],

one would observe the “gradient decay length” λ(x) to increase
with the distance from the source according to λ(x) = x/(m lnx)
(Fig. 1C).

Morphogen gradients define readout positions xθ via concen-
tration thresholds Cθ = C(xθ) (Fig. 1A,D,E). For linear decay,
the readout position follows from Eq. S2 as

xθ = λ ln
C0

Cθ
,

and for non-linear decay from Eq. S3 as

xθ = mλm

((
C0

Cθ

) 1
m

− 1

)
.

Due to inevitable molecular noise in morphogen production,
transport, and decay, morphogen gradients differ between em-
bryos, and hence readout positions xθ,i vary between different
gradient realisations i for both linear and non-linear morphogen
decay [2]. In the past, the impact of changes in morphogen
production on readout precision has been studied for gradients
that remain otherwise unchanged between embryos [1]. We now
revisit this scenario. In response to a change in the morphogen
amplitude from C0 to C∗

0 , the readout position shifts along
the patterning axis (Fig. 1B,C). For linear decay, this shift ∆x
is independent of the absolute gradient amplitude C0 and de-
pends only on the relative amplitude change, C∗

0/C0, and the
characteristic gradient length λ:

∆x = x∗θ − xθ = λ ln
C∗

0

C0
. (S5)

For non-linear decay, the shift is given by

∆x = mλm

(
1−

(
C0

C∗
0

) 1
m

)
. (S6)

According to Eq. S6, the shift ∆x is proportional to λm which in
turn is proportional to C

−1/m
0 , implying that the shift increases

with decreasing amplitude (Fig. S1A,B). This dependency of
non-linear decay on the gradient amplitude qualitatively distin-
guishes linear from non-linear decay. Alternatively, the shift
may be expressed as a function of a change in morphogen influx
from the source from j0 to j∗0 . For linear decay, it simply reads

∆x = λ ln
j∗0
j0
,

because flux and amplitude are proportional, making the shift
again independent of absolute morphogen levels. For non-linear
decay, however, amplitude and influx are related as(

C0

C∗
0

) 1
m

=

(
j0
j∗0

) 1
m+1

.
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Figure S1: Shift in morphogen gradients due to changes in morphogen production. A Comparison of noise-free
gradients arising from linear (blue) and non-linear (green) decay. A fold-change in the influx j0 from the source shifts the gradients
by ∆x. B Positional shift of the morphogen gradient as a function of the amplitude and degree of non-linearity, for a fold-change
in the amplitude, C∗

0/C0 = e. C Positional shift as a function of the influx and degree of non-linearity, for a fold-change in the
influx, j∗0/j0 = e.

The resulting readout shift is therefore

∆x = mλm

(
1−

(
j0
j∗0

) 1
m+1

)
with a power-law length scale λm that can be expressed in terms
of the influx j0 as

λm = λ

(√
1 +

1

m

(
jref
j0

) 1
m

) m
m+1

, jref =
DCref

λ
.

Therefore, since ∆x is proportional to λm, which is in turn pro-
portional to j

−1/(m+1)
0 , the shift also increases with decreasing

influx (Fig. S1A,C), albeit slower than with the amplitude.

References

[1] A. Eldar, D. Rosin, B.-Z. Shilo, and N. Barkai. Self-
Enhanced Ligand Degradation Underlies Robustness of
Morphogen Gradients. Dev. Cell, 5:635–646, 2003. doi:
10.1016/S1534-5807(03)00292-2.

[2] R. Vetter and D. Iber. Precision of morphogen gradients
in neural tube development. Nat. Commun., 13:1145, 2022.
doi: 10.1038/s41467-022-28834-3.

2


