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Robust embryonic development requires pattern for-
mation with high spatial accuracy. In epithelial tis-
sues that are patterned by morphogen gradients, the
emerging patterns achieve levels of precision that have
recently been explained by a simple one-dimensional
reaction-diffusion model with kinetic noise. Here, we
show that patterning precision is even greater if trans-
verse diffusion effects are at play in such tissues. The
positional error, a measure for spatial patterning ac-
curacy, decreases in wider tissues but then saturates
beyond a width of about ten cells. This demonstrates
that the precision of gradient-based patterning in two-
or higher-dimensional systems can be even greater than
predicted by 1D models, and further attests to the po-
tential of noisy morphogen gradients for high-precision
tissue patterning.
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Introduction

Morphogen gradients encode positional information to guide
tissue patterning during embryonic development [1]. In the
French flag model of patterning, morphogen concentration lev-
els determine tissue domains of different cell fates [2]. While
development is highly reproducible, reported gradient shapes
differ substantially between embryos [3–7]—a seemingly contra-
dictory situation. How a high patterning precision is achieved
in spite of considerable noise in morphogen kinetics is therefore
an active field of research. The problem has been studied in-
tensely, both theoretically and experimentally [3, 4, 8–11, 7, 12–
16], and recently gained new traction with the realization that
morphogen gradients may be considerably more precise than
previously measured [17–19].

Early theoretical models assumed a linear gradient shape [2,
20], but measurements of a wide range of morphogen gradients
have since demonstrated that most morphogen gradients are
better approximated by an exponential function,

C(x) = C0e
−x/λ, (1)

with gradient amplitude C0 and characteristic gradient length
λ [4, 21, 22, 6, 7] (Fig. 1A). The position of patterning domain
boundaries, herein termed the readout position,

xθ = λ ln C0

Cθ
,

is located where the morphogen concentration reaches a thresh-
old value C(xθ) = Cθ. Due to molecular noise, the gradient
shapes vary between embryos, and fitted exponential profiles
vary in their parameters λ and C0 [4, 5, 7, 17] such that the

concentration threshold is reached at different readout positions
in different embryos. On average, the readout position lies at

µx = mean[xθ],

where the arithmetic mean is taken over the different embryos
(or different tissue samples within an embryo). The amount
of variability or dispersion in the readout positions is called
the positional error. It is defined as their standard deviation
[3, 4, 17]:

σx = stddev[xθ]. (2)

On the experimental side, most precision measurements have
been carried out for the Bicoid (Bcd) gradient in the early
Drosophila embryo [4], the Decapentaplegic (Dpp) gradient in
the Drosophila wing disc [21, 5, 22], and Sonic Hedghehog (SHH)
in the mouse neural tube [6, 7, 23]. Strikingly, in all patterning
systems studied so far, the readout has been reported to be
more precise than the gradients [4, 5, 7]. As a result, there
has been a quest for precision-enhancing mechanisms. Spatio-
temporal averaging of the morphogen concentration [4], simul-
taneous readout of opposing gradients [7], cell sorting [24], in-
termittent signaling in the Drosophila notum [25], and triggered
self-organization in the Bcd gradient [26] have been suggested to
increase gradient and readout precision. At least in the mouse
neural tube, the positional error of the morphogen gradients
has been overestimated [7, 17]. When corrected, the gradients
are sufficiently precise to pattern the mouse neural tube. But
how are such high levels of gradient precision achieved in spite
of inevitable molecular noise?

In order to analyze how molecular noise translates into gra-
dient variability, and how the various mechanisms described
above would impact precision, we previously developed a nu-
merical framework to generate and statistically evaluate noisy
morphogen gradients. An exponential gradient shape can arise
from a simple 1D reaction-diffusion model with diffusion coeffi-
cient D, production at rate p in the source, and linear degrada-
tion at rate d:

∂C

∂t
= D

∂2C

∂x2 + pH(−x)− dC, (3)

where H(x) is the Heaviside step function, limiting morphogen
secretion to the source domain x < 0 (Fig. 1A). As a result of
molecular noise, the kinetic parameters p, d,D will vary from
cell to cell. For the reported physiological amount of parameter
variability, the resulting 1D gradients differ between separate
realizations (i.e., between embryos) (Fig. 1A), and have a po-
sitional error similar to that observed for the readouts in the
mouse neural tube [17]. The previous analysis of 1D gradients
further revealed that a small average cell diameter along the
patterning axis is of key importance [18], potentially explain-
ing why epithelia that are patterned by gradients, such as the
neuroepithelium, are pseudostratified [27].
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Fig. 1: Molecular noise induces variability in gradient
shape and readout positions. A Inter-cellular and inter-
embryonic variability in the morphogen production, decay and
diffusion rates leads to differently shaped gradients (colors),
which attain a concentration threshold Cθ at different readout
positions xθ,1...xθ,3. Their standard deviation is termed the
positional error. B Morphogen diffusion in a two-dimensional
tissue. Morphogens (small circles) are produced in the source
(green), then secreted to the patterning domain (yellow). In
2D, morphogens can diffuse in both x and y directions, allowing
them to bypass malfunctioning cells (red). In 1D, such cells
have a greater impact on the gradient shape, effectively acting
as transport barriers that let the morphogen concentration drop
to zero beyond. C,D Simulated morphogen gradients on a 2D
domain, without (C) and with molecular noise (D). The mor-
phogen concentration C(x, y) is plotted on a logarithmic scale,
and a kinetic cell-to-cell variability of CVp,d,D = 4 (coefficient
of variation) is used for illustration purposes. Cells with poor
transport capabilities result in local dips in the gradient profile.

We wondered whether there would be additional effects at
play that further reduce the variability of morphogen gradients.
Spatio-temporal averaging over the cell surface has only minor
effects on the precision of the gradient readout [18]. As a con-
sequence, cilia and cell surface receptors can be expected to
achieve a similar readout precision. Self-enhanced decay has
been suggested to increase gradient robustness to noise in the
morphogen source [28], but this effect is negligible when con-
sidering the effects of molecular noise more explicitly [19]. One
aspect, however, has not been analyzed systematically: That of
tissue dimensionality. After all, tissues are three-dimensional,
and patterning domains are at least two-dimensional, even if
morphogen sensing is restricted to the apical surface, as seems
to be the case for SHH in the neural tube as its receptor PTCH1
is restricted to a cilium located on the apical surface [29]. One-

dimensional domain approximations are known to overestimate
the variability of gradients as morphogens can bypass defective
cells in 2D and 3D [5] (Fig. 1B). How this effect translates into
the spatial accuracy of patterning, and how it depends on the
width of the patterning domain has, however, not been studied.

By extending our stochastic gradient analysis to 2D tissues
(Fig. 1B–D), we now find that the readout precision and the ro-
bustness of gradient shape are further enhanced if transverse dif-
fusion effects are considered. We show that the positional error
decreases as the tissue widens, but then saturates as the width
reaches about ten cells. Our findings provide further evidence
that noisy morphogen gradients are able to guide high-precision
tissue patterning, and offer a reason why certain developing tis-
sues may favor a specific dimension over another in the context
of patterning precision.

Results

A 2D model for cellular tissue patterning
We approximate the cellular tissue with a regular rectangular 2D
lattice of length Lx and width Ly, such that patterning occurs
along the x-axis. The lattice represents a 2D patch of cells of
diameter δ each, which determines the domain length Lx = Nxδ
and width Ly = Nyδ, given the number of cells Nx and Ny in
x and y direction (Fig. 1B–D). We ignore variability in cell
areas or diameters here, as physiological levels were previously
shown to have negligible impact on gradient precision [18]. The
patterning axis of length Lx is further divided into a morphogen
source [−Ls, 0] and a patterning domain [0, Lp], such that Lx =
Ls + Lp. The steady-state reaction-diffusion equation from 1D
(Eq. 3) is extended to 2D by writing

∂C

∂t
= 0 = D

(
∂2C

∂x2 + ∂2C

∂y2

)
+ pH(−x)− dC. (4)

We solved Eq. 4 numerically with cell-to-cell stochasticity in
the three kinetic patameters (see Methods for details), with
two sets of boundary conditions (BCs): 1) zero-flux boundary
conditions on all four sides of the domain, and 2) periodic BCs
in y direction and zero-flux BCs in x direction. The latter is
to mimic an infinitely wide domain and to minimize the finite
size effects that result from the choice of specific BCs in y.
While zero-flux boundaries along y may be the more relevant
case for flat tissue geometries, we included periodic boundaries
to demonstrate that our results are largely independent of the
chosen BCs. A further motivation is that periodic BCs model
tubular tissues that are patterned along their long axis.

Gradients are more robust in wider tissues
The 2D solution can be viewed as an ensemble of gradients
along each cell row, correlated by transverse diffusion. For a
patterning domain with Ny cells in width, Eq. 1 can be fitted
to each of the Ny cell rows. The variability in the gradient
parameters λ and C0 is then quantified by the coefficient of
variation CVλ = σλ/µλ and CV0 = σC0/µC0 at a fixed position
y, but over independent realizations of the 2D gradient. As the
number of cells orthogonal to the patterning axis, Ny, increases
from 1 to 40 at fixed cell size, our stochastic gradient analysis
shows that the variability of λ and C0 is inversely proportional
to the square root of Ny (Fig. 2A,B,E,F):

CVλ(Ny) = aλ√
Ny

+ CVλ(∞),

CV0(Ny) = a0√
Ny

+ CV0(∞).
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Fig. 2: Impact of domain width on gradient variability and readout precision. Statistical evaluation of n = 1000
numerically generated, noisy morphogen gradients with cell-to-cell variability in the kinetic parameters k = p, d,D defined by
a coefficient of variation CVk = 0.3. The gradient variability and positional errors were calculated at a single cell-row at the
middle of the domain (i.e., at y = Ly/2). Error bars are SEM, but are mostly smaller than the symbols. Generated 2D gradients
with a single cell row (Ny = 1, orange) are identical to 1D gradients within statistical errors. A,B Gradient variability, as
measured by the coefficients of variation for the gradient decay length (CVλ) and amplitude (CV0) as a function of the domain
width. Results for zero-flux (blue triangles) and periodic (red circles) BCs are nearly equal. C,D Positional error in units of
cell diameters, measured at three different readout positions along the patterning axis (different symbols), as a function of the
domain width, for zero-flux (C, blue) and periodic tissue boundaries (D, red). E–H Log-log plots of A–D reveal the square-root
scaling of gradient variability and of the positional error with the domain width. Solid lines are fitted relationships of the form
CV(Ny) − CV(∞) = a/

√
Ny and σx(Ny) = a/

√
Ny. Deviation from the square-root scaling sets in as Ly exceeds a certain

width (see also Supplemental Figs. S1 and S2).

Specifically, under zero-flux boundary conditions and with a
physiological amount of cell-to-cell kinetic variability (Meth-
ods), aλ = 0.0294 ± 0.0004, CVλ(∞) = (9.96 ± 1.91) × 10−4,
a0 = 0.2113 ± 0.0026 and CV0(∞) = 0.0028 ± 0.0012 as de-
termined by curve-fitting (bounds are standard errors). This
square-root relation can be explained by the Law of Large Num-
bers, which (among other things) states that the sampling vari-
ance of the mean of N identically distributed random variables
is proportional to 1/N . In a 2D tissue, up to an offset accounting
for the finite reach of transverse diffusion, the gradient variabil-
ities can be understood to be sampling standard deviations of a
correlated population of gradients, therefore scaling as 1/

√
Ny.

The offsets CVλ(∞) and CV0(∞) let the variability saturate
as the domain width reaches infinity. The gradient variability
parameters CVλ and CV0 decrease significantly as the tissue
width reaches about ten cells, before the gradient variability
gradually flattens (Fig. 2A,B).

Our findings echo with Bollenbach et al. [5] in that 2D tissues
weaken the effect of deficient cells on morphogen concentration,
thus lowering the concentration uncertainty. From this point of
view, the wider the tissue, the larger the set of diffusion paths
morphogens can choose from to bypass deficient cells, at the
cost of a longer path to travel. Increasingly long detours gradu-
ally weaken this compensatory effect, such that the benefit of
even wider tissues tends to zero. More generally, diffusion in y
smooths out local fluctuations by allowing the noise experienced
by one gradient to disperse among its neighbors, which is oth-
erwise harder to achieve in 1D. Indeed, the gradient variability
in wider tissues is considerably lower than that predicted in 1D

(marked in orange in Fig. 2A–D) [17, 18].

Patterning precision increases in wider tissues

Not only gradient variability is reduced, but also the spatial ac-
curacy they convey to the patterned cells is enhanced in wider
tissues (Fig. 2C,D,G,H). Similar to the scaling of gradient vari-
ability with respect to the domain width, the positional error is
inversely proportional to the square root of the domain width
at fixed cell size:

σx(Ny)
δ

= ax√
Ny

(5)

where ax is a dimensionless factor discussed in detail in the
following sections. Our data from n = 1000 two-dimensional
morphogen gradients suggests that, unlike the gradient vari-
abilities, the positional error does not possess a statistically
significant intercept σx(∞).

The further away from the morphogen source, the larger the
positional error [5, 17, 18], an effect that we also observe here
in 2D. Nevertheless, our gradient quantifications revealed that
even for a readout position as far as µx = 9µλ (where µλ = 4δ
is the average gradient decay length), the positional error is
significantly reduced in wider domains. Eq. 5 holds independent
from the position in the pattern (Fig. 2), and regardless of the
boundary conditions.

In Eq. 5 and Fig. 2, we non-dimensionalized the positional
error by the constant cell diameter δ to provide some intuition
for the patterning precision relative to the size of the cells.
Remarkably, extending the tissue width from one to two cells is
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sufficient to bring the positional error to subcellular levels even
at the readout position furthest from the source, µx = 9µλ, and
in wider domains it can go considerably lower still. Specifically,
for a nearly square tissue with 50 cells along the patterning axis
and 40 cells in width, the positional error at µx = 3µλ is reduced
to less than a fourth of a cell diameter (σx/δ = 0.22). With a
readout position far away from the source, i.e. at µx = 9µλ, the
positional error is still reduced to 28% of one cell diameter.

In the generation of these gradients, we fixed the cell diameter
δ = 5 µm. Similar behavior is observed with larger and smaller
cells, the only qualitative difference being that the deviation
sets in at different number of cell rows Ny, but at approximately
equal domain widths Ly = Nyδ (Supplemental Figs. S1 and S2).
Moreover, we determined the gradient variability and the posi-
tional error between different tissues or embryos in the middle
of the domain width, at y = Ly/2, in Fig. 2. The results are
unchanged if averaged over the entire width, as may be more
relevant for robust development, except that the square-root
scaling (Eq. 5) is found to hold even more robustly, over the
entire range of tested tissue widths (Supplemental Fig. S3).

Patterning precision increases with narrower cells
Cell shapes are not always isotropic. To test the effect of polar-
ized cell shapes on patterning precision, we relaxed the previous
assumption that cells have the same diameter δ in both tissue di-
rections, and tested how the readout precision would be affected
by the cell aspect ratio r = δx/δy, defined as the ratio between
the cell diameters along the patterning axis and orthogonal to
it (Fig. 3A). As the diameter along the patterning axis is fixed
but cells widen orthogonal to it, we observe that the positional
error increases (Fig. 3B,C). The cell aspect ratio affects the
positional error, now a function of both cell diameters δx and
δy, as

σx(δx, δy)
δx

= a

√
δy
δx

(6)

where a is a dimensionless proportionality constant. Narrower
cells thus increase the precision of the positional information
carried by the morphogen gradients, and this effect intensifies
the narrower the cells become. The prefactor a encodes the
scaling effect of other length scales in the patterning system,
such as the mean readout position µx, the average gradient
decay length µλ, and the source size Ls. From 1D simulations, it
is known that a ∼ √µxµλ/Ls asymptotically [18], a relationship
that we have verified to also hold in 2D analogously. Through
the omitted prefactor, a will also depend on the type of 2D
cell arrangement (here a rectangular array for simplicity), the
morphogen sensing strategy employed by the cells [18] (here
concentration averaging over the cell area), and possibly on
other factors like the non-uniformity of cell sizes or the precise
nature of the variability in the kinetic parameters.

As Eq. 6 shows, relative to the cell diameter in patterning
direction, it is the cell shape that determines the patterning
precision, through its aspect ratio. In absolute terms, on the
other hand, it is the cell area instead: Eq. 6 can be rearranged
to

σx(δx, δy) = a
√
A (7)

where A ∝ δxδy is the cell area. Fixing the aspect ratio but
changing the cell area alters the absolute positional error, but
not the relative one. Keeping the cell area constant while vary-
ing the aspect ratio, on the other hand, alters the relative posi-
tional error (Fig. 3D,E), but not the absolute one.

In summary, not only cell size, but also cell shape affect
the patterning precision in a 2D tissue, but it is a matter of
perspective which of the two does. The absolute positional error
carried by morphogen gradients in a two-dimensional patterning
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Fig. 3: Effect of cell aspect ratio on patterning precision.
A Schematic of a 2D tissue with anisotropic cell shapes. B
When cells have a fixed diameter of δx along the patterning axis
and a varying diameter δy in transverse direction, patterning
precision decreases with wider cells (larger aspect ratio). C Log-
log plot of the data shown in B, revealing a square-root scaling
σx/δx ∝

√
δy/δx. D Dependency of the positional error on cell

aspect ratio for fixed cell area A = δxδy. E Log-log plot of D,
revealing a square-root scaling as in C. Data points indicate
mean ± SEM from n = 1000 independent gradient realizations.
Different symbols represent different readout positions along the
patterned axis. Solid lines are fitted square-root relationships.

scenario with kinetic cell-to-cell variability is lower if cells are
narrower not only along the direction of the gradient, but also
if they are narrower in the transverse direction (Eq. 7). This
can intuitively be understood from the smoothing effect that
transverse diffusion has on morphogen levels.

Fast transverse diffusion increases patterning
precision in wide tissues
Given the buffering effect that transverse diffusion has on mor-
phogen gradients as shown above, it is natural to ask whether
a variability reduction can be achieved with anisotropy in the
morphogen diffusivity. While the relevance of anisotropic diffu-
sion for gradient-based patterning in specific developing tissues
remains to be studied experimentally, we will provide a theoret-
ical analysis. We restrict our analysis to the simplest case with
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a diagonal diffusion matrix aligned with the x and y-axes of the
tissue. This introduces a single new parameter, the degree of
diffusion orthotropy, α = Dy/Dx (see Eq. 8 in Methods). Intu-
itively, the noise buffering effect is expected to be boosted by
faster transverse diffusion. Indeed, varying α in simulations, we
observed a reduction both in the gradient variability and in the
positional error as the transverse diffusivity becomes stronger
(Fig. S4). Naturally, this effect is observed only for Ny > 1
in our model. Asymptotically toward wide tissues (large Ny),
we found that the variabilities and positional error are reduced
proportionally to 1/

√
α as expected from the 1/

√
Ny scaling

found in Fig. 2. In combination, we thus have

CVλ,CV0, σx ∼
1√
αNy

.

Altogether, we arrive at the overall positional error of noisy
exponential morphogen gradients in 2D epithelia of sufficient
width,

σx ∼
√
δxδyµx
Ly

µλ
Ls

√
Dx
Dy

.

Thus, our theoretical model predicts that patterning precision
does not only increase with smaller cells, but also with faster
transverse diffusion in wide enough tissues. Notice that ulti-
mately, the cell width δy affects the positional error through
the number of cells along the tissue width, Ny = Ly/δy.

Patterning precision in the Drosophila wing disc
In the Drosophila wing disc (Fig. 4A), the Dpp gradient de-
fines the positions of the longitudinal veins. Strikingly, Dpp
readout positions remain at the same relative location in the
domain despite substantial tissue growth, a phenomenon that is
referred to as pattern scaling [22, 30]. The position of the ante-
rior Spalt domain boundary, which places the L2 vein, remains
at 40–45% of the anterior domain length [31, 5, 30]. Scaling
of the readout with the length of the patterning domain is
achieved by the parallel increase in the gradient amplitude and
length [22, 32]. We previously showed that the positional er-
ror remains largely constant in spite of the growing absolute
readout distance from the source and the expanding gradient
length, because the parallel increase in the source width and
decrease in the average apical cell areas [33–35, 22, 36] compen-
sate according to σx ∼

√
δxµxµλ/Ls [18]. While the predicted

positional error at µx/Lp = 0.4 remains below about 4 µm when
considering a 1D domain [18] (Fig. 4B, green), this still corre-
sponds to more than two cell diameters. With a domain that is
Ny = 10 cells in width—a number easily surpassed in the wing
pouch—we find a positional error well below a single cell diam-
eter throughout development (Fig. 4B, orange) with isotropic
2D diffusion, a more-than-3-fold reduction compared to the 1D
perspective. These observations suggest that 2D effects are key
to ensuring high patterning precision in tissue development.

Patterning with subcellular precision is possible
in wide tissues irrespective of cell size
The absolute positional error grows in proportion to the square
root of the cell area (Eq. 7). In epithelia that are patterned by
morphogen gradients, cells have indeed been found to possess
smaller apical areas than in epithelia that are not [18]. This
raises the question whether morphogen gradient-based pattern-
ing can still be sufficiently precise in tissues with larger or less
densely packed cells, such as mesenchymes. The reported cell
densities of 11–28 cells/1000 µm2 [37] imply a cell diameter of
6–10 µm (including extracellular matrix) in the chick forelimb
bud at Hamburger–Hamilton (HH) stages 18–25. Images of the
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Fig. 4: Effect of tissue width on patterning precision
in developing tissues. A Schematic illustration of the
Drosophila wing disc (gray) with its Dpp source along the
anterior-posterior boundary (blue). The tissue width orthog-
onal to the Dpp gradient is in dorsal-ventral direction. The
wing pouch is shown in beige. B Evolution of the predicted
positional error of the Dpp gradient as the wing pouch widens
over time, at µx = 0.4Lp for µλ = 0.11Lp, Ls = 0.16Lp, and
δx = 5.1 µm−0.012Lp [18]. When the tissue width is accounted
for by 10 cell rows (Ny = 10, orange), the positional error is
substantially lower than with only one cell row (Ny = 1, green),
and remains well below once cell diameter (gray dashed line).
C Comparison of absolute positional errors at µx = 9µλ for
varying tissue widths, as a function of cell size, for isotropic cell
shapes and diffusion. D Comparison of positional errors as in
C, relative to the cell diameter. Data points indicate mean ±
SEM from n = 1000 independent gradients.

chick forelimb bud at HH 21 [38] suggest a similar cell diameter
of about 8–10 µm. Compared to the 5 µm of neuro-epithalial
cells [6], this would entail a 1.2–2-fold reduction in absolute
patterning precision. In units of cell diameters, however, the
precision remains unaltered (Eq. 6), ensuring that the right cell
numbers choose their fate according to plan also when they are
large.

The absolute positional error grows with increasing cell diam-
eter, i.e., σx ∼

√
δ in 1D [18]. Given the square root relation-

ship, the positional error will exceed a cell diameter for small
cells, but for sufficiently large cells, the opposite is the case
(Fig. 4C). Patterning with subcellular precision is possible be-
yond a cell diameter of about 10 µm in a quasi-one-dimensional
tissue (Fig. 4D). In 2D, this relationship transitions to linear,
i.e., σx ∝ δ for δ = δx = δy (Eq. 7, Fig. 4C). The crossover
point σx = δ is attained at a smaller cell diameter, the wider
the tissue. Already with Ny = 4 cells, we observe a subcellular
positional error at cell diameters of about 2.5 µm or greater
(Fig. 4D). In developing tissues that are more than ten cells
wide—which they commonly are—subcellular patterning res-
olution is obtained even with cells as small as δ = 1 µm or
greater. The precision-enhancing buffering effect in 2D makes
high-precision patterning possible in tissues covering a wide
range of cell sizes.
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Discussion

Molecular noise has long been believed to cause large variabil-
ity during embryonic development. This has started to change
recently, and our present findings underpin this trend. By statis-
tically analyzing the effect of molecular noise on morphogen con-
centration gradients, we show that for realistic morpho-kinetic
noise levels, positional information can be expected to be con-
veyed to cells in two-dimensional tissues with sub-cellular res-
olution. While our study builds on recently developed mod-
eling ideas [17, 18], a new perspective was required to arrive
at this result: Tissue patterning typically occurs in at least
two dimensions, and morphogens can diffuse also orthogonal to
the patterning axis. Not only does this allow them to bypass
malfunctioning cells [5], transverse diffusion also substantially
smoothens out local morphogen fluctuations in the entire tissue,
leading to a considerable drop in gradient variability and in the
positional error.

We found that patterning precision scales with the square
root of the number of cells along the tissue width—an intuitive
relationship with theoretical roots in statistics. Arriving at this
result required extending the previous 1D model for patterning
to two dimensions. A striking consequence of this relationship
is that even a few cells across are sufficient to allow morphogen-
sensing cells to differentiate according to their location in the
pattern with a positional accuracy below a single cell diameter.
Compared to 1D patterning scenarios, 2D morphogen transport
allows for a considerable precision enhancement up to a tissue
width of roughly ten cells, before saturation sets in. The posi-
tional error in 2D tissues differs from the 1D expression [18] in
that it contains an additional scale encoding the tissue width
in units of cells, and the degree of anisotropy in the morphogen
diffusivity:

σ2D
x ∼ σ1D

x

√
Dx
DyNy

.

In wide enough tissues, the precision gain can be as big as 3-
to 4-fold even with isotropic diffusion, which further reinforces
recent results suggesting that morphogen gradients in the ver-
tebrate neural tube carry more precise spatial information for
patterning than previously thought [17]. While a 1D noisy gra-
dient model just explained the observed accuracy of the central
readout boundaries in neural tube patterning, 2D diffusion al-
lows that accuracy to be surpassed even, leaving wiggle room for
additional sources of noise not accounted for by our stochastic
gradient model. The precision-enhancing 2D effects observed
here are not limited to a close vicinity of the morphogen source,
but they apply anywhere in the tissue, also in regions distal from
the source. Our data suggests that high-precision tissue pattern-
ing with morphogen gradients is possible in spite of molecular
and biological variability also far away from the origin.

Our work also reveals how morphogen gradient variability
depends on the cell area and aspect ratio in epithelia. The abso-
lute positional error is proportional to the cell area. Therefore,
the patterning precision increases when cells are narrower in
both tissue directions. However, we found that this dependency
applies only to the absolute error σx. For robust and precise
tissue development on the cellular level, it may be relevant to
let cells differentiate in the right numbers, and so the positional
error in units of the cell size in patterning direction, σx/δx, may
be the relevant quantity instead. Strikingly, we found this rela-
tive error to depend on the cell aspect ratio instead of the cell
area. The wider the cells are compared to their length along the
patterning axis, the larger the positional error in terms of num-
bers of cells. This may equip Nature with a tunable degree of
freedom that can be tailored to a required level of developmental
precision—a hypothesis that could be amenable to experimental

testing, and which could be relevant for gradient-based tissue
engineering.

Our findings also hint at a developmental advantage for widen-
ing tissues, as long as their cells do not widen with it. What
brings down the positional error is the number of cells across
the tissue, Ny, not the width itself, Ly, if noise in the gradients
indeed arises from inter-cellular kinetic variability. These results
put our previous analysis on the effect of cell size on patterning
precision [18] into a broader context. In the Drosophila eye disc,
the initial size at 40 h after hatching is about [Lx, Ly] = [50, 100]
µm [39]. With an apical area of 7 µm2 and smaller [34], 100 µm
corresponds to at least Ny = 60 cells in width. We now find that
for such tissues, the positional error is reduced by about 4-fold
compared to the traditional 1D perspective. For larger number
of cells, the precision-enhancing effect, however, plateaus. Fran-
cis Crick started his seminal paper on the role of diffusion in
gradient patterning by quoting Lewis Wolpert, “It has been a
great surprise and of considerable importance to find that most
embryonic fields seem to involve distances of less than 100 cells,
and often less than 50.” [20]. In light of our work, such tissue
widths appear sufficient for precise patterning.

Although we linked the implications of 2D diffusion for pat-
terning precision to two specific epithelial tissues—the verte-
brate neuroepithelium and the fly wing disc—the main results
presented here are system-agnostic, and might underlie devel-
opmental precision across species more generally. As with all
theoretical and modeling work, our predictions from a statistical
analysis of synthetically generated noisy morphogen gradients
requires experimental validation, which we hope to motivate
herewith. An open question is the impact of complex tissue
architecture, such as that of pseudostratified epithelia [40], on
patterning precision [27]. In light of our study, it appears plau-
sible that the densely packed cells with stratified nuclei can help
buffer morphogen level fluctuations similar to the stratified cell
rows in our 2D cell arrays here, at least for morphogens that
are sensed along the lateral sides of cells, such as Bone Mor-
phogenetic Protein (BMP) in the neural tube [41]. Our results
would then suggest that the positional error cells experience
from reading out the BMP gradient is reduced by the strong
pseudostratification. Generally, one may ask if (and to which
degree) patterning precision can be further enhanced in three-
dimensional tissues, a question that we leave for future research.
While our model is straightforward to generalize to 3D, previous
results by Bollenbach et al. [5] hint at an affirmative answer.

Finally, a few potential limitations of our model deserve be-
ing mentioned. While our statistical approach to generate noisy
morphogen gradients is among the ones with the most detailed
representation of molecular noise in the literature, there can be
a range of other sources of biological variability involved in tis-
sue patterning processes that were not represented here. Noise
in the molecular readout mechanism, in regulatory interactions
(either during the formation of the morphogen gradient or down-
stream), or in the fate decision process, are some of them. We
restricted our analysis of spatial precision to the pure gradients
here. Moreover, our analysis is based on a representation of
the morphogen concentration as a continuous function C(x, y),
ignoring the discrete, particulate nature that may become rel-
evant at low morphogen numbers. Variability in the cell areas,
on the other hand, would not be expected to alter our findings
[18], although it may be of interest to extend the present model
from a rectangular cell grid to more realistic tissue geometries
with irregular cell arrangements.
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Methods

Generation of 2D morphogen gradients from molecu-
lar noise. To study the inter-embryonic variability and intra-
embryonic noisiness of morphogen gradients in a quantitative
way, we generated large numbers of statistically independent
gradients numerically. We discretized the 2D tissue domain
[−Ls, Lp] × [0, Ly] into a rectangular array of biological cells
(Fig. 1B). The standard setup consisted of five columns of cells
making up the morphogen source domain (x < 0), and 50
columns in the patterning domain adjacent to it, where the
morphogen gradient forms (x ≥ 0). To observe the effect of
tissue width, the number of cell rows was varied in the range 1–
40. For each cell at position i, j in the tissue, we drew random
morpho-kinetic parameters pij , dij , Dij from log-normal dis-
tributions analogous to previous 1D studies [17–19], such that
the noisy exponential morphogen gradients C(x, y) emerged as
approximate solutions of the 2D steady-state reaction-diffusion
problem

0 = Dij

(
∂2C(x, y)
∂x2 + α

∂2C(x, y)
∂y2

)
+ pij H(−x)− dij C(x, y).

(8)
The parameter α represents the degree of orthotropy in mor-
phogen diffusion, which we set to 1 (isotropic diffusion) except
where the effect of polarized morphogen transport was ana-
lyzed explicitly. Each of the kinetic parameter distributions
was defined by a mean value µk and a coefficient of variation
CVk = σk/µk for k = p, d,D. Physiological molecular noise
levels were identified previously [17], and we used the same
value CVk = 0.3 here. We then solved the PDE (Eq. 8) with
the finite difference method, using a five-point central difference
stencil, in Matlab 2021b. Each biological cell used 3× 3 finite
difference grid points, which offered a good compromise between
computational speed and numerical accuracy.

For mass conservation, we imposed continuity of the mor-
phogen concentration and flux fields everywhere in the 2D do-
main. Note that in a strict mathematical sense, this implies
that Eq. 8 can only be approximated, but not solved exactly,
in dimensions higher than one and with uncorrelated random
diffusivities Dij . This is akin to the situation in reality, in which
the diffusivity field will not be a perfect step function as used
here, with discontinuities at the cell boundaries. Within spatial
accuracy of the finite difference discretization, the numerical
approximation of Eq. 8 automatically smoothens the parameter
fields to enable a mass-conserving solution.

Zero-flux boundary conditions were imposed in x direction,
and zero-flux or periodic boundaries were assumed in the width
direction (y) as indicated in the figures. A relative error toler-
ance of 10−10 was used to terminate the iterative solver. Repeat-
ing this process with new random kinetic parameters for all cells
yielded n = 1000 independent realizations of 2D morphogen con-
centration profiles (as shown exemplarily in Fig. 1C,D), which
we then evaluated statistically.

Calculation of gradient variability. To extract the amount
of variability in the gradient decay length and amplitude, we
sliced the 2D morphogen concentration profiles C(x, y) along
rows of cells j in the direction of patterning. These 1D slices
Cj(x) of the gradients are spatially correlated due to transverse
diffusion, and were approximately exponential along x, with a
slight bend at the distal tissue boundary due to the imposed
boundary conditions. Along the central cell row j = Ny/2 (or
along all of them for Supplemental Fig. S3), we therefore fitted
the deterministic homogeneous solution [17]

C(x) = C0
cosh[(Lp − x)/λ)]

cosh[Lp/λ]

to the noisy concentration profiles in the patterning domain,
after logarimizing them first. Repeating this process for all n
2D gradients yielded a set of statistically independent gradient
decay lengths {λ1, ..., λn} and amplitudes {C0,1, ..., C0,n}, each
representing one embryo or tissue, from which we computed the
coefficients of variation, CVλ and CV0. Standard errors were
determined using bootstrapping.

Note that the coefficients of variation CVp,d,D in the kinetic
parameters quantify inter-cellular variability that governs the
gradient noisiness within embryos, but also determine the vari-
ability thus emerging between them, as measured by CVλ and
CV0.

Statistical evaluation of readout positions and pattern-
ing precision. We used spatial averaging over the cell sur-
faces to determine the morphogen concentration each cell is
exposed to—a choice that does not affect the positional in-
formation conveyed to the cells significantly [18]. With the
resulting concentration profiles in the form of step functions,
we determined the positional error according to its definition,
as the standard deviation of the locations where the gradients
attain a threshold value (Eq. 2). Since 2D gradients are not
always monotonic, there can be multiple such locations along
a single gradient. In such cases, we used their mean location
to define the readout position xθ. The average readout posi-
tion was then determined by averaging over all gradient realiza-
tions, µx = mean[xθ]. At three different such (average) read-
out positions µx = 3µλ, 6µλ, 9µλ, we evaluated their standard
deviations σx = stddev[xθ] over the n = 1000 noisy gradients.
Standard errors were then again calculated using bootstrapping.

Code Availability

The source code is released under the 3-clause BSD license. It is
available as a public git repository at https://git.bsse.ethz.
ch/iber/Publications/2023_long_2d_precision.
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Figure S1: Impact of domain width on gradient readout precision for small cell diameters. Simulations analogous
to those shown in Fig. 2C,D,G,H, except that the cell diameter is halved to δ = 2.5 µm. See caption of Fig. 2 for details.
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Figure S2: Impact of domain width on gradient readout precision for large cell diameters. Simulations analogous
to those shown in Fig. 2C,D,G,H, except that the cell diameter is increased to δ = 12.5 µm. See caption of Fig. 2 for details.
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Figure S3: Impact of domain width on gradient readout precision averaged across the domain width. Simulations
analogous to those shown in Fig. 2C,D,G,H, except that the positional error averaged over all cell rows is plotted. See caption of
Fig. 2 for details.
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Figure S4: Effect of anisotropic morphogen transport on patterning precision. A,B Gradient variability as a function
of the degree of orthotropy in morphogen transport, α = Dy/Dx. C Positional error at µx = 6µλ as a function of α. D–F
Log-log plots of A–C at a tissue width of Ny = 40 cells, revealing square-root scaling when Ny is large enough. Data points
indicate mean ± SEM from n = 1000 independent 2D gradients obtained on a tissue of square cells (δx = δy).
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