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The 3D organisation of cells determines tissue function and integrity, and changes dramatically in development
and disease. Cell-based simulations have long been used to define the underlying mechanical principles. However,
large computational costs have so far limited simulations to either simplified cell geometries or small tissue patches.
Here, we present SimuCell3D, a highly efficient open-source program to simulate large tissues in 3D with subcellular
resolution, growth, proliferation, extracellular matrix, fluid cavities, nuclei, and non-uniform mechanical properties, as
found in polarised epithelia. Spheroids, vesicles, sheets, tubes, and other tissue geometries can readily be imported
from microscopy images and simulated to infer biomechanical parameters. Doing so, we show that 3D cell shapes in
layered and pseudostratified epithelia are largely governed by a competition between surface tension and intercellular
adhesion. SimuCell3D enables the large-scale in silico study of 3D tissue organization in development and disease at an
unprecedented level of detail.

Introduction

The acquisition and maintenance of proper morphology are
crucial for the normal physiological functioning of a biologi-
cal tissue. Their disruptions are associated with a range of
pathological conditions, including cancer and birth defects. The
shape of tissues is determined by the dynamic positioning of
their constituent cells, which can collectively deform or migrate
to induce macroscopic changes in the tissue morphologies [1, 2].
These cellular behaviors are regulated by the mechanical proper-
ties of both the cells and extracellular matrix (ECM) [3], along
with the distribution of stresses within tissues [4]. Therefore,
understanding how tissues acquire and maintain their shapes
requires a deep comprehension of the interplay between the
stress distribution within them and the mechanical properties
of their cells and ECM.

Various experimental methods have been developed to con-
tribute to this understanding [5–7], e.g., micropipette aspira-
tion [8], atomic force microscopy [9], optical stretcher [10], and
laser ablation [11]. Nonetheless, these experimental techniques
are generally limited to the rare tissues directly accessible to
probing, or to small tissue portions. In addition, even when all
the factors influencing a tissue morphology have been experi-
mentally identified, their synergy might remain unclear.

Recent advances in the fields of fluorescent microscopy, image
processing, and computation power now allow to complement
these direct measurements with in silico models, and thus to
gain a more global understanding of the cellular dynamics un-
derlying tissue morphogenesis and homeostasis [12–17]. Among
these numerical methods, cell-based models have become widely
used in the fields of developmental and cancer biology due to
their high spatio-temporal resolution and accurate predictions.
Cell-based models recreate virtual versions of tissues by rep-
resenting cells as individual agents with their own mechanical
properties and behavior. These models offer an in silico en-
vironment where the stress distribution and the mechanical
properties of cells can be modulated to study their impact on
tissue morphology and function. Cell-based models can thus
predict the tissue shape arising from experimentally measured

∗Corresponding Author: dagmar.iber@bsse.ethz.ch

cell properties or, conversely, in conjunction with parameter
estimation methods, they can allow to infer the cell proper-
ties that led to an imaged tissue morphology. The high level
of spatio-temporal details of cell-based models, however, en-
tails a substantial computational cost which forces them to a
tradeoff between the number of cells they can simulate and the
spatial resolution of their representation [18]. For this reason,
cell-based models with varying levels of resolution have been
developed to address different types of biological problems. For
instance, center-based models are a class of cell-based models
that represent cells as simple spheres, making them suitable
for phenomena where the abundance of cells is more crucial
than their shape. These models have been used to gain deeper
understanding of a wide range of phenomena including, for
instance, the development of tumors [19] or the inflammation
of tissues [20].

Vertex models are another class of cell-based model that have
been developed to study tissues in which cell shapes can be
approximated by polygons in 2D [21–25] or polyhedrons in 3D
[26]. This simplification allows them to represent each cell
with only a few points, enabling them to simulate large tissues.
Vertex models have been employed to study a wide range of
phenomena, including the transition between solid-like and
fluid-like tissue states [27], as well as various morphogenetic
processes such as the polarization of early embryos [28], the
formation of branched structures [29], and the biased elongation
of tissues [30, 31]. However, their simplistic representation of
tissues comes with the drawback that they cannot adequately
represent cells with complex shapes. Furthermore, the highly
restricted topology permissible for the mesh in vertex models
significantly complicates the simulation of phenomena like cell
extrusion or tissue fusion. The mechanisms underlying these
developmental events are among the fundamental open problems
in morphogenesis.

To address the limitations of vertex models, a family of cell-
based models sometimes referred to as Deformable Cell Models
(DCMs) has been developed. These models provide a more
geometrically realistic representation of tissues by discretizing
each cell membrane separately into a closed loop of connected
points in 2D [40–51] or a closed triangulated surface in 3D
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Table 1: Comparison of SimuCell3D to existing 3D DCM models. Cell numbers are approximate. Pub: Publication.
Lic: License. OS: Open source. Ref: References. CC: Creative Commons. GPL: GNU General Public License. BSD: Berkeley
Software Distribution.

Program Pub. # cells after Adjustable Automatic Cell Cell Nuclei ECM Lumen OS Lic. Ref.
name year 1 day of spatial mesh divisions polari-

computation resolution remodelling zation

SimuCell3D 2024 125,000 3 3 3 3 3 3 3 3 BSD-3 —

— 2023 unknown 3 3 3 7 7 7 7 7 — [32]

— 2023 unknown 3 3 3 3 7 7 7 7 — [33]

Interacting 2022 4 3 3 3 7 7 7 7 3 CC [34]
Active
Surfaces (IAS)

— 2020 <1,000 3 7 3 3 3 7 7 7 — [35]

CellSim3D 2018 75,000 7 7 3 7 7 7 7 3 GPLv2 [36]

— 2014 starting number 3 3 7 7 7 7 7 3 BSD-2 [37]

— 2013 starting number 3 3 7 7 7 7 7 7 — [38]

The Surface 1992 starting number 3 7 7 7 7 7 7 3 — [39]
Evolver

[32–39, 52, 53]. The complex shapes cells can adopt in DCMs
make these models particularly suited to simulate phenomena
such as the development of early embryos [54] or the cellular
movements during wound healing [35]. However, the accuracy
offered by these models comes at a staggering computational
cost. To mitigate this computational cost, one 3D DCM imple-
mentation named CellSim3D [36] constrains the cell geometries
to spheroidal shapes. This approach is however not suited for
the study of tissues with complex (non-polyhedral) cell shapes.
The remaining 3D DCMs preserve a high geometrical resolution
of the cell membranes but are limited by their computational
efficiency. At best, they can simulate the growth of a tissue
from one to a thousand cells in a week of computation time
[35], precluding their use for large-scale computational studies.
Additionally, the numerical stability of these models may be
compromised when the simulated cells undergo large deforma-
tions. We review the features of available 3D DCMs in Table
1.

Here we present SimuCell3D, a highly efficient open-source
DCM in 3D. Thanks to its efficient design, SimuCell3D can
simulate tissues composed of dozens of thousands of cells with
high spatial resolution. SimuCell3D overcomes the classical
trade-off that has so far constrained cell-based models between
their resolutions and the number of cells they can simulate. In
addition, our program natively allows one to represent intra-
and extra-cellular entities such as nuclei, lumens, ECM, and
non-uniform mechanical cell membrane properties, as found in
polarized cells (Fig. 1a). By combining speed and versatility,
SimuCell3D can simulate processes that were not yet amenable
to existing numerical methods. We first present the strategy
used to represent the biomechanical and geometrical state of
cells in SimuCell3D. Then, we demonstrate the computational
efficiency of our program and its versatility by simulating vari-
ous tissue topologies. Given the biological importance of cell
polarity, we then present a ray casting method allowing Simu-
Cell3D to automatically polarize cells based on local tissue
topology. Finally, we apply SimuCell3D to the study of two
morphogenetic problems, the formation and maintenance of lay-
ered epithelia, and the cellular organization in a pseudostratified
epithelium.

Results

Biophysical model

SimuCell3D aims to simulate the morphodynamics of cellular
tissues at a high spatial resolution with full account of complex
cell shapes. The shapes and motion of the simulated cells are not
constrained by the model representation, and their mechanical
properties are based on the physical principles governing the
dynamics of their biological counterparts. This unconstrained
representation of the cells is achieved by modeling their surfaces
with disjoint closed triangulated surfaces (Fig. 1b). The spatial
resolution of these surfaces can be tuned by adjusting the size
of their triangles. To ensure that the simulations are initialized
at the desired resolution, a custom triangulation algorithm
has been incorporated into SimuCell3D (Fig. S1), allowing the
use of geometries obtained from microscopy images as starting
point of the simulations. A local remeshing algorithm (Fig. S2)
preserves the mesh resolution and quality even under large cell
deformations. Apart from viscous damping as well as repulsive
and adhesive cell-cell contacts, the biomechanical state of each
cell membrane is defined by the following energy potential
(Fig. 1c):
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The first term is the energy associated with a net internal
pressure, p = dW/dV = −K ln(V/V0), which arises from the
volumetric strain of the cell cytoplasm, modeled as a slightly
compressible fluid. W denotes work, V and V0 are the current
and target cell volumes, and K the cytoplasmic bulk modulus.
Shrinkage or growth of cells can be achieved by evolving their
target volumes in time. The second energy term allows each
cell to actively regulate its membrane area A by penalizing
deviations from a target value A0 with an effective isotropic
membrane elasticity parameter ka. The first term in the surface
integral, which runs over the cell surface ∂Ω, models the tension
generated by the cell actomyosin cortex. γ is the isotropic
cortical tension, analogous to surface tension of fluid interfaces.
The second integrand models the resistance of the cell cortex
to bending [68], with H denoting the local mean curvature of
the cell membrane, and kb its bending rigidity. γ and kb are
field parameters that can vary along the cell surface according
to cell polarity (Fig. 1b).
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Figure 1: Representation of cellular tissues in SimuCell3D. a Schematics of the features cell-based models must possess
to be applicable to a broad range of morphogenetic problems. b, Representation of cell membranes as closed triangulated surfaces
with non-uniform material properties based on cell polarity (colors). c, Summary of different forces acting on the triangulated
cell membranes. d, Illustration of cell division perpendicular to a division plane (purple). e, Computational efficiency of different
3D cell-based models in an exponential growth scenario. The dashed black line is a fitted power law T = aNα

c with coefficients
a = 0.013 s and α = 1.33. f, Illustration of different tissue topologies and intra- or extracellular features that can be simulated
with SimuCell3D. All surfaces can be non-convex.

SimuCell3D offers two distinct contact models to simulate in-
tercellular interactions. The first model mediates interactions
through local elastic contact forces, taking into account cell-cell
adhesion and volumetric exclusion (Methods, Eq. 2, Fig. S3).
Its two constitutive parameters, the adhesion strength ω and the
repulsion strength ξ, are field quantities that can vary among
cells or membrane regions. This contact model is somewhat
mesh resolution-dependent (Fig. S4), just like adhesion in biol-
ogy will depend on the adhesion protein density. The second
contact model mechanically couples the nodes of adjacent cells
and directly transfers forces generated on one cell surface to
that of the neighboring cell. We validated this second model
by reproducing the Young–Dupré relationship in cell doublets
and triplets (Fig. S5a,c). The resulting contact mechanics are
mesh resolution-independent (Fig. S5a). All parameters related
to intercellular interactions are summarized in Table 2.

SimuCell3D can simulate entities such as nuclei, lumens, and
extracellular matrices (ECM) by also representing them with
closed triangulated surfaces like the cell membranes. To model

cell death, cells can be removed from the tissue if their volume
drops below a minimum threshold Vmin. Conversely, if cell
volumes exceed the maximal value Vmax, they undergo cytoki-
nesis (Fig. 1d). The division plane can be randomly oriented or
perpendicular to the longest cell axis (Hertwig’s rule). A cell
division only takes a few microseconds of computation time,
allowing the simulation of tissues with high cell division rates.
To demonstrate the computational efficiency and stability of
our program, we simulated the exponential growth of a tissue
in an out-of-equilibrium regime with the growth rate pushed to
the limit, starting from a single cell (Fig. 1e, Movie S1). The
cells in this test are simulated without nucleus. Only one day
of computation time is required to grow the tissue to 125,000
cells on an Intel Xeon W-2245 CPU (8 cores, 3.9 GHz) using 16
threads, for cells that possess 121 nodes and 238 triangular faces
on average. The total time complexity of such a simulation is
O(N

4/3
c ), where Nc is the number of cells in the tissue, which is

equivalent to the scaling observed in 2D simulations [51]. Under
similar settings, we tested the performance of CellSim3D [36]
and Interacting Active Surfaces (IAS) [34], two other cell-based
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Table 2: Model parameters. Default parameter values are given for the two types of equations of motion implemented in
SimuCell3D (dynamic versus overdamped). In the parameter dimension, M represents mass, L length, T time. Default values
produce a typical tissue growth scenario.

Symbol Default Default Measured Unit Dimension Description Ref.
dynamic overdamped

Cell volume parameters

ρ 1000 1000 1045 – 1099 kg/m3 M/L3 Mass density [55]
K 2500 2500 2250 Pa M/LT2 Bulk modulus [56]
pmax 2500 2500 300 – 2200 Pa M/LT2 Max. internal net pressure [57–59]
Vmin 3.7×10−16 3.7×10−16 2.5 – 3.7×10−16 m3 L3 Min. volume (apoptosis) [60, 61]
Vmax 1.4×10−15 1.4×10−15 0.9 – 1.3×10−15 m3 L3 Max. volume (cell division) [60, 61]
g 10−11 10−11 0.1 – 1.8×10−20 m3/s L3/T Volumetric growth rate [62, 63]

Cell surface parameters

γ 0.001 0.001 0.0005 – 0.0025 N/m M/T2 Surface tension [64–66]
kb 2×10−18 2×10−18 1 – 2×10−18 J ML2/T2 Bending stiffness [67]
ka 10−15 10−15 — J ML2/T2 Area elasticity modulus —
Q0 250 250 300 — — Target isoparametric ratio [61]
ξ 109 109 — Pa/m M/L2T2 Repulsion strength —
ω 109 109 — Pa/m M/L2T2 Adhesion strength —
Hmax 5×106 5×106 — 1/m 1/L Max. coupling curvature —

Numerical parameters

lmin 2×10−7 2×10−7 — m L Minimum edge length —
c 2×10−7 2×10−7 — m L Contact cutoff distance —
ζ 2.5× 10−10 3× 10−9 — kg/s M/T Viscous damping coefficient —
∆t 10−7 10−7 — s T Time step —

3D models offering low and high spatial resolution, respectively.
CellSim3D generated a tissue of 75,000 cells in a day of compu-
tation time while IAS produced a tissue of 4 cells in the same
amount of time. CellSim3D achieves comparable performance
as our program by constraining the cell geometries to simple
spherical shapes with a fixed number of nodes. SimuCell3D
thus offers the performance of low-resolution models such as
CellSim3D while possessing the flexibility and accuracy of high-
resolution models like IAS. SimuCell3D is parallelized with
OpenMP. The parallelization efficiency follows Amdahl’s law
(Fig. S6). To showcase the versatility of our program, we simu-
lated various tissue topologies such as a vesicle, a bulk spheroid,
a sheet, and a tube, alongside several intra- or extracellular
built-in features like lumens, nuclei, and ECM (Fig. 1f, Movie
S2).

Cell membrane polarization

Cells form regions with distinct biochemical and mechanical
properties along their cytoplasmic membranes. Correct estab-
lishment of this cell polarity is crucial to numerous developmen-
tal processes [69]. Its impairment has also been linked to the
onset of tumor formation [70]. SimuCell3D takes cell polarity
into account by allowing the triangular faces to be of different
types with distinct mechanical parameters γ, kb, ω, and ξ. Two
mechanisms are implemented to automatically identify differ-
ent regions on the cell surfaces. In the first, lateral sides are
inferred from the face contact information, leaving regions that
are not in contact as either apical or basal. The second, more
robust and versatile algorithm is based on a spatial partitioning
of the simulation domain into voxels representing one of four
possible regions: cell boundaries, luminal, cytoplasmic, and ex-
ternal (Fig. 2a-c). Voxels containing mesh nodes are marked as
boundary voxels. The remaining unmarked voxels are clustered
with the Hoshen–Kopelman algorithm [71]. The different voxel
clusters thus created are then labeled as cytoplasmic, luminal,
or external based on their positions in the discretized simulation

space. Then, each surface triangle probes its environment by
casting a ray in the direction of its outward normal to detect
which type of region it faces (Fig. 2d). The type of voxel the
ray first passes through determines whether the mesh triangle is
lateral (facing another cell), apical (facing an enclosed volume
such as a lumen) or basal (facing the surrounding medium or
ECM). Iteration over all mesh triangles thus tags the entire
surface (Fig. 2e). We demonstrate the strength of this approach
by reproducing in silico a monolayer prostate organoid whose
cells exhibit apico-basal polarity (Fig. 2f). The cell surfaces
were extracted from 3D microscopy images with CellPose [72]
(Fig. 2g). SimuCell3D then reproduced the organoid with cor-
rect tissue polarity (Fig. 2h) without requiring any input on
tissue orientation or topology by the user.

Application 1: Transition from monolayer to
multilayer tissue

We now demonstrate how SimuCell3D can be used to gain
insight into the cellular dynamics of biological tissues. As a
first showcase, we investigate the relationship between biome-
chanical cell parameters and the internal structure of a tissue
as a mono- or multilayer. Such a difference in cellular organiza-
tion is particularly striking between different types of epithelial
tissues [73]. Strong evidence suggests that this variability is the
result of an interplay between intra-cellular surface tension and
inter-cellular adhesion [74, 75]. In a tug of war with cortical
tension, in which the actomyosin cortex tends to minimize the
cell surface area, adhesion molecules between adjacent cells tend
to increase it. We investigated this competition by numerically
exploring the parameter space spanned by adhesion strength
and surface tension. The simulations were initialized with a
spherical monolayer vesicle consisting of 432 columnar cells gen-
erated from a Voronoi tesselation of the sphere (Fig. 3a). All
cells were initially in contact on their apical sides with a luminal
region and on their basal sides with an ECM encasing the tissue.
Note that no ECM located at the apical side of the cells nor any
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Figure 2: Automatic cell surface polarization algorithm. For visual clarity, the process is shown in 2D. a, The simulation
space is discretized with uniformly sized cubic voxels. All voxels that intersect with the cell surfaces are marked as boundary
voxels (green). b, All remaining voxels are clustered with the Hoshen–Kopelman algorithm. c, Voxel clusters are tagged as
lumen (turquoise), cytoplasm (pink) or exterior (gray). d, A ray is cast from the center of each face in outward normal direction.
The first voxel (other than a boundary) that it intersects with indicates with which region the face is in contact. e, Facial types
(red, gray, blue) are assigned based on the regions with which they are in contact. f, Cross-sectional light-sheet microscopy image
of a mouse prostate organoid. Cell polarity is visualized by Ezrin staining (apical side, blue). g, 3D cell segmentation of the
organoid. h, Simulated organoid with automatically polarized epithelial surfaces (blue, red). The different membrane regions
can possess different surface tensions, bending rigidities, adhesion strengths and repulsion strengths. Scale bars represent 15 µm.

adhesion belt were considered in these simulations. The cells
were grown at a uniform volumetric rate without division until
they had doubled in size, while the luminal target volume was
preserved. Despite cellular rearrangements caused by growth,
we observed the maintenance of the monolayer structure in
simulations with low surface tension (Fig. 3b). Strong cortical
tension, on the other hand, leads to stratification (Fig. 3c).
We quantified the resulting number of cell layers by convert-
ing the tissue into a graph representing cell connectivity and
computing the shortest path percolating from the lumen to the
ECM (Fig. 3d). Parameter values were non-dimensionalized

with l = 〈V (t=0)〉1/3 as a characteristic length scale, and the
cytoplasmic bulk modulus K as a characteristic energy density.
Our exploration of the parameter space revealed that, under
the prescribed conditions, the layering of the tissue is essentially
regulated by the tension of the actomyosin cortex alone (Fig. 3e).
An increase in the normalized surface tension γ̃ = γ/Kl, from
0.02 to 0.10 was sufficient to break the monolayer arrangement
and force the tissue into a stratified structure. Conversely, an
increase by two orders of magnitude in the normalized adhe-
sion strength ω̃ = ωl/K, between the cells did not disrupt the

monolayer integrity. As the cells lose their apico-basal connec-
tivity at stronger surface tension, they adopt a more spherical
shape that minimizes their surface area, as measured by their
sphericity Ψ = π1/3(6V )2/3/A (Fig. 3f). These simulations
highlight the potential of SimuCell3D to quantitatively address
open questions in tissue development and cancer progression,
the latter being linked to a loss of structural tissue integrity on
the cellular level [76].

Application 2: Formation and maintenance of
pseudostratification in epithelia

Pseudostratified epithelia are single-layered epithelia that are
easily mistaken as stratified when analysed in 2D sections be-
cause of the dispersion of their nuclei along the apical-basal axis
[61]. Their ubiquity across different species during development
[77] suggests that the pseudostratified structure can confer an
advantage over simpler cellular arrangements, possibly linked
to patterning precision [78]. How this structure is acquired and
maintained under growth and morphogenetic deformation is
still largely unknown. In this second case study, we demon-
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Figure 3: Impact of biomechanical cell properties on tissue structure. a, Initial tissue geometry, a hollow spherical
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On its basal side, the tissue was encased by a surface representing the ECM (red). b, Final monolayer conformation after
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discriminants. Each data point corresponds to the final state of one numerical simulation. Simulations in which the whole tissue
remained a monolayer (N ≡ 1) are shown as squares. f, Effect of cortical tension on cell shape, as measured by their sphericity,
and on the number of layers (colors). The dashed black curve is a fitted logistic function.

strate how SimuCell3D may be used to gain mechanistic insight
into the elusive pseudostratification process. We initialized
simulations with a patch of 70 cells segmented from light-sheet
microscopy images of the developing pseudostratified mouse
lung epithelium [61] (Fig. 4a). Among these 70 cells, the 21
interior cells were allowed to move freely while the rest on
the periphery of the patch acted as static boundaries. The
simulated cells all contained a nucleus (Fig. 4b, blue) and did
neither grow nor divide during the simulations, but deformed
to minimize their potential energy, until static equilibrium was
reached. We again examined the interplay between cell surface
tension (γ̃c = γc/lcKc, subscript “c” for cell) and adhesion
strength (ω̃c = ωclc/Kc) (Fig. 4c,d). The normalized surface
tension of the nuclei (γ̃n = γn/lnKn, subscript “n” for nucleus)
was kept constant at 0.24 in these simulations, and they were
non-adhesive (ωn = 0). In the explored region of the parame-
ter space, we observed two morphological cell regimes (I and
II) with a continuous transition in between, along which an
intermediate physiological range can be identified (Fig. 4c). In
regime I, the cell shape is dominated by the effect of surface
tension. Some of the cells segregated in response to the strong
surface area minimization tendency (Fig. 4c, left), facilitated by
weak lateral adhesion. Cells in this regime reduced their lateral
cell-cell contact area fraction φ (Fig. 4d) and also possessed
fewer neighbors, as measured by their coordination number z
(Fig. 4e). In regime II, the effect of adhesion dominates over

surface tension, allowing neighboring cells to maximize their
mutual contact areas (Fig. 4c, right; Fig. 4d) as well as their
coordination number (Fig. 4e). In between these extremes, a
balance between adhesion strength and cortical tension yields
physiological cell shapes corresponding to those imaged (Fig. 4c,
middle). This morphological similarity can be exploited to in-
fer the mechanical properties of in vivo pseudo-stratified cells
(Fig. 4d,e). Moreover, besides informing on the mechanical
state of cells, SimuCell3D unveiled in this second case study the
possibility that pseudostratified tissues could be formed from
cells with identical mechanical properties.

Subsequently, we used SimuCell3D to investigate the effect of
mechanical properties of the nuclei on the pseudostratified cell
organization (Fig. 4f,g). In these simulations, the cell surface
tension γ̃c = 0.01, and adhesion strength ω̃c = 0.97, were
fixed. By varying the nuclear surface tension γ̃n, we were able
to create nuclei rigid enough to deform the cell membranes
(Fig. 4f). Cell deformation was measured by comparing the
equilibrium cell shape in the presence of a nucleus versus in
its absence, quantified by the intersection over union: χ =
1 − IoU(Ω with nucleus, Ω without nucleus). We observe an
increase of the average cell deformation 〈χ〉 with the nucleus
surface tension γ̃n until the nuclei obtain spherical shapes at
γ̃n ≈ 0.35. It then saturates at 〈χ〉 ≈ 0.13, as nuclear tension
increases further. The average sphericity of the nuclei has been
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Figure 4: Simulation of 3D cell organization pseudostratified epithelia. a, Initial geometry imported into SimuCell3D,
a patch of 70 cells from the developing pseudostratified mouse lung epithelium, segmented and triangulated from light-sheet
imaging [61]. 49 gray cells act as rigid boundaries for the 21 simulated pink cells. b, All cells contain a nucleus (blue). c, Based
on the cell surface tension and adhesion strength, the cells adopt different shapes (regimes I and II). d, Mean fraction of cell
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Mean cell coordination number in the same parameter space. f, Cell deformation as a function of the nuclear surface tension.
Error bars represent the standard error. g, Average nuclear sphericity as a function of the nucleus area elasticity modulus
and target isoperimetric ratio. Isolines in d,e,g represent support vector machine discriminants. Dashed curves in d,e,f, and g
represent the physiological values measured from the segmented geometries. Each data point corresponds to the equilibrium
state obtained from one numerical simulation.

measured in the segmented geometries at 0.89, suggesting a
low cortical stiffness of the nuclear envelopes relative to the
cytoplasmic membranes.

SimuCell3D also allows one to directly modulate the shapes of
nuclei or cells by concurrently varying their target isoperimetric
ratiosQ0,n = A3

0,n/V
2
0,n, and area elasticity moduli ka,n (Fig. 4g).

Simultaneously increasing Q0,n and ka,n drives the equilibrium
shapes of nuclei away from a sphere. Conversely, nuclei with
small values of Q0,n and ka,n possess more spherical shapes.
The ability to thus change the stiffness or shape of the nuclei
opens up opportunities to study the dynamics of interkinetic
nuclear migration [79].

Discussion

In this study, we presented SimuCell3D, a three-dimensional
cell-based model that permits the simulation of very large,
growing, and deforming tissues at high cellular and subcellular
resolution with apical-basal polarity, ECM, and luminal spaces.
SimuCell3D achieves this through an extensive level of param-
eterization and a built-in polarization algorithm. Moreover,
due to its efficient implementation, SimuCell3D permits the

simulation of phenomena involving tens of thousands of cells at
a high resolution for the first time.

This now permits the in-depth in silico investigation of the
mechanical properties and behavior of cells to understand the
mechanisms that regulate tissue homeostasis and morphogenesis.
While the current simulations were carried out with linear me-
chanical models, non-linear material behavior (visco-elasticity,
hyperelasticity) could readily be implemented to study their
effect on morphogenesis. Moreover, besides nuclei, organelles
and endocytosis could be easily represented. As such, processes
such as interkinetic nuclear migration in pseudostratified epithe-
lia could be simulated at unprecedented resolution to address
open questions regarding the driving forces.

As we showed, SimuCell3D can be used to predict the global
tissue morphologies that emerge from individual mechanical cell
properties. Specifically, when the morphological features of the
tissues are known, SimuCell3D can be used to infer the region
of the mechanical parameter space in which the cells are located.
Our exploration of the cellular parameter space in this study
was mainly limited to the subspace spanned by cell cortical
tension and adhesion strength. This subspace is insufficient to
reproduce the wealth of morphogenetic events observed in vivo.
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In other contexts, exploration of higher dimensional parameter
spaces will undoubtedly be necessary. In these circumstances,
SimuCell3D can be coupled with gradient-free parameter esti-
mation techniques to accurately infer the cell properties that
lead to the measured morphological tissue features.

SimuCell3D is readily extendable to accommodate more features
in the future. Relevant possible extensions include subcellu-
lar components such as adhesion belts, frictional forces which
play an important role in the morphogenesis of some tissues
[80], as implemented in pre-existing models [33, 35], tension
fluctuations [81], and reaction-diffusion models to couple the
biomechanical tissue model with chemical signalling. In this
way, chemical and mechanical symmetry-breaking mechanisms
could be combined and their effects could be simulated at cel-
lular resolution. Finally, the cell-based simulations could be
combined with continuum models to simulate the behaviour
of larger tissues at varying resolution, and to derive adequate
material models for the continuum description from cell-based
simulations.

Methods

Mesh operations

Local mesh adaptation. SimuCell3D geometrically repre-
sents cells by closed triangulated surfaces whose edge lengths l
are maintained within the range [lmin, lmax] with a local mesh
adaptation method. The minimum edge length lmin is a model
parameter, whereas lmax = 3lmin, a value that works well in
most practical applications, is automatically set. When the
length of an edge exceeds lmax, the local mesh adaptation
method splits it in two (Fig. S2a), adding one node and two
faces to the mesh. The two nodes constituting the divided edge
transfer a third of their momentum to the newly created middle
node to ensure momentum continuity. When an edge shrinks
to a length below lmin, it is collapsed into a node whose new
momentum is the sum of the merged nodes (Fig. S2b). This
merging process eliminates one node and two faces from the cell
mesh. To prevent triangles with vanishing area, this operation
is allowed only when the two nodes to be merged share exactly
two other nodes among those connected to them through edges.

Triangular faces with high isoperimetric ratios can be a source
of numerical instability. An edge swap operation prevents their
formation. First, the quality score Sf = 36Af/

√
3P 2

f of each
face f is computed, where Pf is its perimeter and Af its area.
Undesirable faces with high isoperimetric ratios have scores
tending to zero, whereas Sf = 1 for equilateral triangles. Faces
with a score Sf < 0.3 are eliminated by an edge swap operation
(Fig. S2c) that locally reconnects mesh nodes, but leaves them
otherwise unaffected.

Initial triangulation. A flexible triangulation algorithm en-
sures that simulations are initialized with meshes that respect
the edge length bounds (Fig. S1a). The procedure takes an
initial geometry of the tissue as input, with cell meshes that are
not necessarily triangular yet, in the widely used VTK format
[82]. The cell surfaces are then individually sampled with the
Poisson Disk Sampling algorithm [83] (Fig. S1b) with a minimal
point separation of lmin. The Ball Pivoting Algorithm [84, 85]
then separately re-triangulates the surface of each cell based
on its Poisson point cloud (Fig. S1c). The resulting meshes
have edge lengths l ≥ lmin, rarely exceeding lmax. Edges with
lengths l > lmax are removed before the simulation starts with
the edge division operation described above.

Cell division. Cells are divided based on a volume threshold,
i.e., if V > Vmax. They are bisected by a plane running through
their centroid, whose orientation can depend on the cell type.
The orientation is either random or perpendicular to the cell’s
longest axis, as given by the eigenvector belonging to the small-
est eigenvalue of its covariance matrix. During division, the
cutting planes are re-triangulated in a manner respecting the
edge length bounds. On the untriangulated region of the daugh-
ter cells, points are first sampled with the Poisson Point Cloud
algorithm [83], which are then connected with the 2D Delaunay
triangulation algorithm. This method avoids a retriangulation
of the parts of the cell surface inherited from the mother cell.

Cell volume and area calculation

The cell volume is calculated with a three-dimensional variant
of the shoelace formula:

V =
1

6

∣∣∣∣∣∣
∑
f∈M

det

 | | |
~ri ~rj ~rk
| | |

∣∣∣∣∣∣,
where ~ri, ~rj , and ~rk are the nodal positions of face f (Fig. 1c).
The summation runs over all the triangular faces of the cell
mesh M. The cell surface area is obtained by summing the
areas of its faces:

A =
∑
f∈M

Af =
∑
f∈M

1

2
‖~nf‖,

where ~nf = (~rj − ~ri)× (~rk − ~ri), is the unnormalized outward
normal of face f .

Time integration

SimuCell3D offers two modes of time propagation, solving either
the dynamic or overdamped equations of motion for the nodal
positions ~ri,

m~̈ri + ζ~̇ri = ~fi.

The nodal mass m is obtained from the cell volume V and
mass density ρ as m = ρV/Nn, where Nn is the total number

of nodes in the cell mesh. ~fi is the nodal force vector (specified
below) and ζ the viscous damping coefficient. The first mode
resolves elastic oscillations, making it suited for phenomena on
short timescales. The nodal positions ~ri and linear momenta
~pi = m~̇ri are integrated with the semi-implicit Euler scheme:

~pi ← ~pi + ∆t
(
~fi − ζ~pi/m

)
,

~ri ← ~ri + ∆t ~pi/m,

where ∆t is a fixed time increment. The second mode neglects
inertial effects (m~̈ri = 0) and is therefore suitable for systems
dominated by viscous relaxation toward a quasi-static equilib-
rium. The overdamped equations of motion are solved with the
forward Euler scheme:

~ri ← ~ri + ∆t ~fi/ζ.

The simulations presented in Figs. 1, 3 and 4 were solved
with the dynamic model. Simulation snapshots are written at
regular time intervals in VTK format for post-processing and
visualization in ParaView (Kitware, Inc.).
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Nodal forces

The total conservative nodal forces ~fi derive from the cell
potential energy (Eq. 1) and the intercellular interaction model.

They are given by the sum of the surface tension forces, ~fs,i, the

membrane area elasticity forces, ~fm,i, pressure forces exerted

by the cytoplasm, ~fp,i, the bending forces, ~fb,i, and contact

forces due to adhesion and steric repulsion, ~fc,i:

~fi = ~fs,i + ~fm,i + ~fp,i + ~fb,i + ~fc,i.

Each of these contributions is detailed in the following para-
graphs.

Surface tension. The surface tension force is given by the
negative gradient of the surface tension energy with respect to
the nodal position. Since the position of node i only affects the
areas of the set of faces Fi sharing this node, it is given by

~fs,i = −
∑
f∈Fi

γf∇iAf ,

where γf and Af are the surface tension and area of face f . For
triangles with nodes i, j, k oriented clockwise (Fig. 1c), the area
gradient reads

∇iAf =
1

2
n̂f × (~rk − ~rj),

where n̂f = ~nf/‖~nf‖, is the normalized face normal vector.

Membrane area elasticity. Similarly, the membrane force
is obtained by taking the gradient of the cell membrane area
energy with respect to ~ri:

~fm,i = − ka

A0

(
A

A0
− 1

) ∑
f∈Fi

∇iAf .

The target area A0 is coupled to the target volume V0 via
A0 = 3

√
Q0V 2

0 , where Q0 is the target isoperimetric ratio of the
cell, which can be set by the user. For a sphere, Q0 = 36π ≈ 113.

Pressure. The cell-internal net pressure generated by the
cytoplasm reads

p =
dW

dV
= −K ln

V

V0
,

where W = −KV (ln[V/V0] − 1), is the work associated with
a deviation of the cell volume V from its reference value V0.
To model cell growth, V0 can evolve over time according to
prescribed growth laws, such as the linear form dV0/dt = g,
where g is a constant volumetric growth rate that can vary
from cell to cell. If desired, the pressure difference between
the cell cytoplasm and the external medium can be capped
at a predefined threshold pmax, i.e., p ← min{p, pmax}. The
pressure force exerted on a subset of the cell surface S ⊂ ∂Ω
(where Ω is the cell domain) is given by

~fp,S = p

∫
S
n̂ dS.

If the subset S of the cell surface is planar, like the triangular
faces f used to discretize the cell geometry, this simplifies to

~fp,f = pAf n̂f .

The pressure force applied on each node of the cell mesh there-
fore follows as

~fp,i =
1

3

∑
f∈Fi

~fp,f .

Membrane bending. The contribution of bending to the
cell potential energy can be approximated with the discrete
bending energy [86]

Ub ≈
∑
(i,j)

kb
‖~eij‖2

Aij

(
2 cos

θij
2

)2

.

in which the sum runs over all pairs of nodes (i, j) of the surface
mesh connected by an edge. Each edge connects two faces a,
b that form a diamond region composed of four nodes i, j, k, l
(Fig. 1c). kb = (kb,a + kb,b)/2 is the average bending stiffness
of the faces a and b, ~eij = ~rj −~ri the vector pointing from node
i to j, Aij = Aa + Ab the sum of the two face areas, and θij
the dihedral angle between the two faces:

θij = − sgn (n̂a · ~eil) arccos (−n̂a · n̂b) .

The sign of the dot product between the normal of face a (n̂a)
and the vector ~eil is used to distinguish between concave and
convex hinges. The bending forces resulting from this discrete
bending energy can be calculated independently for each of the
four nodes, q ∈ {i, j, k, l}, as

~fb,q = 2kb

[
‖~eij‖2

Aij
sin θij ∇qθij − (1 + cos θij)∇q

(
‖~eij‖2

Aij

)]
.

For the gradients ∇qθij and ∇q(‖~eij‖2/Aij) we refer the inter-

ested reader to [86]. The total bending force at node i, ~fb,i,
then follows as the sum of bending forces over all diamond
regions involving that node.

Intercellular contacts. SimuCell3D offers two different
contact models that vary in their ways of exchanging contact
forces between adjacent cells, but in the current version, it does
not take friction into account. (For possible ways to include
frictional effects, see e.g. [35, 51].) The first model connects
adjacent pairs of faces {fa, fb} with elastic springs, while
the second tightly couples pairs of adjacent nodes {na, nb}.

The spring-based model applies contact forces on pairs
of adjacent faces with a magnitude based on the signed distance
dab = sgn (~z · n̂a) ‖~z‖ between the two mesh elements, where
n̂a is the unit normal of face a and ~z is the shortest vector
between the two mesh elements. A contact stress is then
calculated with the piece-wise expression

σab =


ξdab if dab ∈ [−c, 0)

ωdab if dab ∈ [0, c/2)

ω(c− dab) if dab ∈ [c/2, c]

0 otherwise

. (2)

When two neighboring cells interpenetrate, dab is negative, and
the contact stress is repulsive. ξ is the repulsion coefficient.
On the other hand, when dab is positive, the contact stress is
adhesive. In this regime, the contact model follows a bilinear
traction-separation law (Fig. S1). ω denotes the adhesion coeffi-
cient. The contact stress σab thus obtained is translated into a
force by integrating the contact stress over the contact surface
area Aab:

~fab = sgn (~z · n̂a)Aabσab
~z

‖~z‖ .

Aab = min{Aa, Ab} if the contact forces are computed between
pairs of faces {fa, fb}, whereas Aab = Aa if the contact forces
are calculated between pairs of faces and vertices {fa, vb}. In
the first case, the force is linearly distributed to the nodes of
the face a, {i, j, k}, and the nodes of the face b, {l,m, n}:
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~fc,i = αa ~fab, ~fc,j = βa ~fab, ~fc,k = λa ~fab,

~fc,l = −αb ~fab, ~fc,m = −βb ~fab, ~fc,n = −λb ~fab,

(αa, βa, λa) and (αb, βb, λb) are the barycentric coordinates of
the closest points of approach on the faces a and b, respectively.

The second contact model eliminates the need for a finite ad-
hesion strength parameter ω by establishing a tight coupling
between node pairs {na, nb} whose distance is smaller than the
contact cutoff c. The two nodes are relocated to their aver-
age location (~ra + ~rb) /2, and the forces and momenta acting
on each node are transmitted to their partner such that both
nodes subsequently follow the same dynamics: ~fi ← (~fa + ~fb)/2
and ~pi ← (~pa + ~pb) /2, i = a, b. To allow two adjacent cells to
detach from each other, node pairs are coupled only if the local
mean curvature of both cell surfaces lies below the threshold
Hmax (Table 2). Coupled node pairs are redetermined in each
timestep, and each node is allowed to be coupled to no more
than one other node.
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[45] A. Mkrtchyan, J. Åström, and M. Karttunen, Soft Matter
10, 4332 (2014).

[46] S. Tanaka, D. Sichau, and D. Iber, Bioinformatics 31, 2340
(2015).

[47] A. Boromand, A. Signoriello, F. Ye, C. S. O’Hern, and
M. D. Shattuck, Physical Review Letters 121, 248003
(2018).

[48] S. Kim, M. Pochitaloff, G. Stooke-Vaughan, and
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a b c d

Initial geometry Poisson Disc Sampling
Surface reconstruction with the

Ball Pivoting Algorithm Triangulated geometry

Figure S1: Initial surface triangulation. A, Arbitrary surface meshes can be loaded by the program, here a cube for
illustration. B, Point samples are generated on the surface with the Poisson disc sampling method, with a minimal distance
of lmin between points. C, The Poisson disc point cloud is then used by the Ball Pivoting Algorithm to reconstruct the
surface of the initial geometry with triangles. The Ball Pivoting Algorithm connects triplets of points into triangular faces
if a ball (red sphere) can simultaneously touch them without containing any other point. D, The procedure is terminated
when the reconstructed surface is watertight, and the resulting triangulation(s) are used by SimuCell3D to simulate cellular
components.

a b cEdge splitting Edge merger Edge swap

Figure S2: Local mesh adaptation. A, Edges whose length exceeds lmax (red) are split into two, generating two new
triangles and a new node in the middle. B, Edges whose length subceeds lmin (red) are collapsed into a node at the center,
removing the two triangles sharing it. C, Triangles with high isoperimetric ratio (red) are prevented by swapping the
orientation of their longest edge.

1



a

b

Cell a Cell b Cell a Cell b

d
ab

a
b

d
abd

ab

Figure S3: Spring-based contact model forces. A, Schematic of two interpenetrating cells (negative distance dab,
left) and two adhering cells (positive distance dab, right). B, A bilinear adhesive traction-separation law governs the
contact mechanics between adjacent cells, symmetrically separated into a hardening regime (green) in which adhesion
forces increase linearly with separation, and a softening regime (blue) in which forces decrease linearly, to ensure force
continuity at a separation of dab = c. At negative separations, repulsive forces proportional to the penetration depth are
exchanged (red). The slopes ω and ζ control the rigidity of the intercellular mechanical interactions.
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Figure S4: Validation of the spring-based contact model in mechanical equilibrium. A, Contact angle α
between a pair of cells as a function of the minimum mesh edge length lmin. lmin = 0.6 µm corresponds to a high mesh
resolution with ≈ 3, 500 nodes per cell, while lmin = 1.8 µm corresponds to a low mesh resolution with ≈ 350 nodes per cell.
The apical surface tensions of the cells (γa,1 and γa,2) as well as their lateral surface tensions (γl,1 and γl,2) were set to
2.5× 10−4 N/m in all simulations. The adhesion strength between the cells was kept constant at ω = 2.5× 108 Pa/m in all
simulations. The black dotted line represents the contact angle value α0 obtained in a simulation with high mesh resolution
(lmin = 0.6 µm), while the grey dotted lines correspond to a ±10% variation of this value. B, Difference in contact angle
with respect to a high resolution simulation as a function of the average number of nodes per cell. The dark blue dashed
line shows the relationship α = α0 − a/〈Nn〉 with fitted coefficient a = 3.6× 103 deg.
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Figure S5: Validation of the coupling-based contact model in mechanical equilibrium. A, Contact angle θ
between a pair of cells as a function of their lateral (γl,i) to apical (γa,i) surface tension ratio, and mesh resolution (lmin).
γa,1 = γa,2, and γl,1 = γl,2. The theoretical black curve is given by the Young–Dupré equation as cos θ = γl,2/γa,2. B,
Contact angle θ between a pair of cells as a function of their lateral to apical surface tension ratio. γa,1 = γa,2, but γl,1 6= γl,2.
λ is the deviation factor of each cell lateral surface tension from the mean lateral surface tension i.e. γl,1 = γ(1− λ), and
γl,2 = γ(1 + λ) where γ = (γl,1 + γl,2)/2. The theoretical black curve is given by cos θ = γ/γa,2. C, Contact angle φ at a
tricellular junction as a function of the ratio η = (γl,2 + γl,3)/(γl,1 + γl,2). γa,1 = γa,2 = γa,3, and γl,1 6= γl,2 = γl,3. The
theoretical line is obtained from the Young–Dupré law and follows cos(φ/2) = η/2. D, Proportion of cell 1 surface area
internalized as a function of the apical surface tension ratio δ = γa,1/γa,2. γl,1 = γl,2, and α = γl,2/γa,2. The theoretical
curves were calculated based on the Lagrangian approach presented in [1].
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Figure S6: Parallel computational performance. A, Computation time required to simulate the development of a
tissue from 1 to 500 cells with respect to the number of threads (T ). The computation time was recorded for both contact
models available in SimuCell3D. The average number of nodes per cell in these simulations was approximately 700. B
Speedup S as a function of the number of threads. Amdahl’s law: S = 1/(1− P + P/T ), where P is the parallel fraction.
C, Computation time per iteration per number of nodes as a function of the number of threads (T ) for both contact models
available in SimuCell3D. All simulations were performed on an Intel Xeon W-2125 processor (8 cores, 4.5 GHz).
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