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Tissue patterning during embryonic development is re-
markably precise. We numerically determine the im-
pact of the cell diameter, gradient length, and the mor-
phogen source on the variability of morphogen gradi-
ents and show that the positional error increases with
the gradient length relative to the size of the mor-
phogen source, and with the square root of the cell
diameter and the readout position. We provide theo-
retical explanations for these relationships, and show
that they enable high patterning precision over devel-
opmental time for readouts that scale with expanding
tissue domains, as observed in the Drosophila wing disc.
Our analysis suggests that epithelial tissues generally
achieve higher patterning precision with small cross-
sectional cell areas. An extensive survey of measured
apical cell areas shows that they are indeed small in de-
veloping tissues that are patterned by morphogen gra-
dients. Enhanced precision may thus have led to the
emergence of pseudostratification in epithelia, a phe-
nomenon for which the evolutionary benefit had so far
remained elusive.
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Introduction

During embryogenesis, cells must coordinate complex differ-
entiation programs within expanding tissues. According to
the French flag model [1], morphogen gradients define pat-
tern boundaries in the developing tissue based on concentration
thresholds. Exponential functions of the form

C(x) = C0e
−x/λ (1)

approximate the shape of measured morphogen gradients very
well [2–9]. For such gradients, the mean readout position

µx = mean [xθ]

and the positional error

σx = stddev [xθ]

of the domain boundary positions

xθ = λ ln C0

Cθ

in different embryos depend on the variation in the decay length
λ and in the amplitude C0 relative to the concentration thresh-
old Cθ. Strikingly, the positional error of measured morphogen
gradients has been reported to exceed that of their readouts
[10, 3, 11]. Several theories have been proposed to explain the
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Figure 1: Patterning in epithelial tissues with variabil-
ity in the morphogen kinetics and cell size. A Schematic
of an epithelial layer of cells (index i) with cross-sectional area
A and diameter δ along the patterning axis x. B Schematic of
positional variability resulting from the readout of noisy gra-
dients in a cellular domain, split into a morphogen-secreting
source of length Ls and a patterning domain of length Lp.

high readout precision despite inevitable noise and variation
in morphogen gradients and their readout processes. They in-
clude temporal and spatial averaging, self-enhanced morphogen
turnover, the use of opposing gradients, dynamic readouts, and
cell-cell signalling [10, 3, 12–15, 11, 16–20]. In zebrafish, where
cells are rather motile, cell sorting and competition can further
enhance boundary precision [21–23]. Here, we study pattern-
ing precision conveyed by morphogen gradients in epithelia and
leave the effect of precision-enhancing processes in the mor-
phogen readout for future work.

A recently developed numerical framework estimates how
much variability in and between morphogen gradients can be
accounted for by cell-to-cell variability reported for morphogen
production, decay, and diffusion [24]. In this article, we extend
the model to take a different perspective on the precision of
gradient-based patterning in cellular tissues. We analyse the
impact of various length scales present in the epithelium, such as
the cell diameter and source size, as well as spatial averaging, on
morphogen gradient variability, finding that positional accuracy
is higher, the narrower the cells and the larger the morphogen
source.

We approximate the patterning axis by a discrete line con-
sisting of two subdomains, a source domain on the interval
−Ls ≤ x ≤ 0 and a patterning domain on the interval
0 ≤ x ≤ Lp, each divided into sub-intervals i representing indi-
vidual epithelial cells with diameter δi in 1D, or cross-sectional
areas Ai in 2D (Fig. 1A). Noisy exponential gradients were gen-
erated by numerically solving the one-dimensional steady-state
reaction-diffusion boundary value problem [24]

piH(−x)− diC(x) = −Di
∂2C(x)
∂x2 (2)
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Figure 2: Impact of cell size, source length and gradient length on morphogen gradient variability. A,B Scaling
of gradient variability with the cell diameter at fixed kinetic variability CVp,d,D and fixed cell area variability CVA. Fitted
power-law exponents are indicated. C,D Gradient variability is largely unaffected by cell area variability as long as CVA < 1
and increases only for greater values. E, G Variability in the gradient decay length is unaffected by the morphogen source size
and the mean gradient decay length. F Except when only the diffusion coefficient varies (green), greater source lengths reduce
morphogen amplitude variability. H Gradients with greater decay length contain less amplitude variability. Each data point
in A–H corresponds to the mean ± SEM of n = 103 independent simulations, with kinetic variability only in the parameters
indicated by different symbols: CVk = 0.3, CV¬k = 0. Cell area variability: CVA = 0.5 except in C,D. Domain sizes: Ls = 25
µm except in E, F, Lp = 250 µm except in G, F. The effect of CVp on CVλ is minuscule, O(10−8), and therefore not plotted in
the top row. See supplementary Table S1 for fit parameters.

with zero-flux boundary conditions

∂C

∂x

∣∣∣
x=−Ls,Lp

= 0.

Eq. 2 contains a source with production rates pi, a linear sink
with degradation rates di, and models morphogen transport by
Fickian diffusion with effective coefficients Di; subscripts i indi-
cate that they vary from cell to cell. The Heaviside step function
H(−x) ensures that morphogen production only occurs in the
source, whereas degradation is assumed to take place over the
whole domain. The kinetic parameters k = p, d,D were drawn
for each cell independently from log-normal distributions. This
assumes statistical independence of neighbouring cells; we will
later relax this assumption by introducing spatial correlation.
The distributions had prescribed mean values µk and respective
coefficients of variation CVk = σk/µk analogous to [24]. We
fixed molecular variability at the physiological value CVk = 0.3
[24] here.

As a new source of noise, we introduced cell size variability.
Since the cell area distributions in the Drosophila larval and
prepupal wing discs, and in the mouse neural tube resemble log-
normal distributions [25, 26], we drew individual cell areas Ai
independently from a log-normal distribution with prescribed
mean µA and coefficient of variation CVA. This allowed us to
evaluate the impact of cell-to-cell variability in the production,
degradation and diffusion rates pi, di, Di, as well as in the cell
cross-sectional areas Ai, on gradient variability (Fig. 1B).

Results

Gradient variability increases with cell size, but
not with physiological levels of cell area variability
We quantify relative variability or uncertainty of a positive quan-
tity X by its coefficient of variation CVX = σX/µX , where µX
and σX denote the mean and standard deviation of X, respec-
tively. For the local morphogen concentration, this is CVC .
Alternatively, one can fit Eq. 1 to each generated morphogen
gradient (see Methods) and quantify CVλ and CV0 of the two
free parameters λ and C0 individually.

Our simulations reveal that an increase in the average cell
diameter µδ leads to greater variability in λ and C0 (Fig. 2A,B),
according to power laws

CVλ ∼ µαδ and CV0 ∼ µβδ (3)

with exponents α = 0.510 ± 0.004 (SE, Fig. 2A, blue curve)
and β = 0.472 ± 0.005 (Fig. 2B, blue curve). The amplitude
variability CV0 plateaus when µδ ≥ Ls, because the source
defaults back to a single cell in this case. Square-root scaling
for the decay length variability (α = 1/2) follows theoretically
from the law of large numbers and is consistent with the inverse-
square-root scaling reported for the dependency of CVλ on the
patterning domain length Lp at fixed cell size [24]. Together,
this suggests that

CVλ ∼
√
µδ
Lp
∼
√

1
Ncells

, (4)

where Ncells is the (mean) number of cells along the patterning
axis. Similarly, morphogen sources composed of more, smaller
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Figure 3: Readout position of exponential gradients is
barely shifted by spatial averaging. A Cell-based readout
of a morphogen gradient. A concentration threshold Cθ (yellow)
defines a readout position xθ (blue). If cells read out cell-area-
averaged concentrations, the effectively sensed concentration
profile is a step function (grey). Pattern boundaries form at cell
edges (red). For illustrative purposes, the cell size is exaggerated
compared to the gradient decay length. B Cell-area-averaged
readout of exponential gradients results in a small shift ∆x
compared to readout at the cell centroid.

cells buffer cell-to-cell variability in morphogen kinetics more
effectively, leading to the observed reduction in amplitude vari-
ability CV0. Smaller cell diameters thus lead to smaller effective
morphogen gradient variability.

Cell-to-cell variability in the cross-sectional cell area A
does not affect the gradient variability as long as CVA < 1
(Fig. 2C,D). Only for extreme cell area variability exceeding 1,
the variability in λ grows (Fig. 2C). However, we are not aware
of any reported CVA > 1 [26–29]. Consequently, cell size has a
considerable impact on gradient variability, while physiological
levels of variability in the cell area do not contribute to gradient
imprecision.

A larger source or gradient length reduces only the ampli-
tude variability, but does not affect the decay length variability
(Fig. 2E–H). Amplitude and gradient decay length variability is
reduced in a source that is composed of many cells with a small
mean diameter (see Supplementary Material, Fig. S5). The pa-
rameter values in the simulations correspond to those reported
for the mouse neural tube (µλ = 20 µm, µδ = 5 µm, Ls = 5µδ,
Lp = 50µδ). At these values, source sizes above 25 µm and
gradient decay lengths above 20 µm barely reduce amplitude
variability. Sonic hedgehog (SHH) in the neural tube is secreted
from both the notochord and the floor plate, while Bone mor-
phogenetic protein (BMP) is secreted from both the ectoderm
and the roof plate. Intriguingly, while the SHH-secreting noto-
chord shrinks over time, it still measures about 30 µm in width
by the 5 somite stage [30], and the SHH-secreting floor plate
then emerges in the ventral part of the neural tube and widens
over time [31]. The gradient length remains constant at about
µλ = 20 µm [8, 11], the largest value for which the positional
error remains small at a large distance (12µλ = 240 µm) from
the source. The source size thus assumes the smallest and the
gradient decay length the largest value for which morphogen
gradient variability remains small.

Readout position is barely shifted by spatial
averaging

Since cells can assume only a single fate, domain boundaries
must follow cell boundaries (Fig. 3A). We sought to quantify
the impact on the readout position if epithelial cells average
the signal over their entire apical cell surface. Assuming that
cells have no orientational bias, we can approximate cell sur-

faces as disks with radius r = µδ/2 about a centre point x0.
If threshold-based readout operates on the averaged concentra-
tion, the effective readout domain boundary is shifted along
the exponential concentration gradient to x0 = xθ + ∆x by the
distance

∆x = λ ln

[
∞∑
k=0

(r/2λ)2k

k!(k + 1)!

]

= λ

[
1
8

(
r

λ

)2
− 1

384

(
r

λ

)4
+O

((
r

λ

)6
)] (5)

in absence of morphogen gradient variability and cell size vari-
ability (see Supplementary Material). For r = 2.45 µm and
λ = 19.3 µm as found for SHH in the mouse neural tube [8], the
shift is ∆x = 0.039 µm, or 0.8% of the cell diameter.

In the case of rectangular rather than circular cell areas, cells
are confined to the interval [x0 − r, x0 + r]. The theoretically
predicted shift is then approximately 0.052 µm in the mouse
neural tube (see Supplementary Material) or 1% of the cell
diameter. This agrees with the shift we measured in our simu-
lations, ∆x = 0.0523± 0.0001 µm (mean ± SEM), confirming
that spatial averaging of an exponential gradient results in a
higher average concentration than centroid readout. Kinetic
and area variability both increase ∆x (Fig. 3B), but it remains
small enough (small fractions of a cell diameter) to be neglected
in the analysis of tissue patterning under biological conditions
where r/λ � 1. Linear gradients [1] would not result in any
shift at all.

Spatial averaging barely reduces variability
between gradients.

Spatial and temporal averaging can reduce the positional error
of morphogen gradients [32]. Previously, these mechanisms have
been mainly analysed on the level of the morphogen readouts—
typically transcription factors (TFs)—which are averaged by
diffusion between nuclei [10, 33, 3, 16–19]. This is easily possi-
ble in a syncytium, as present in the early Drosophila embryo,
but the role of TF diffusion in increasing patterning precision
has remained controversial [34]. In an epithelium, nuclei are sep-
arated by cell membranes such that the averaging of morphogen-
induced factors would require transport between cells, a com-
plex and slow process with many additional sources of molecular
noise [35, 36]. Epithelial cells potentially can, however, reap
the benefits of spatial averaging by averaging the morphogen
signal over their surface (Fig. 4A, green). Receptors may either
be dispersed on the apical cell surface, or along the baso-lateral
surface, or, in case of hormones, be limited to nuclei [37, 38].
In the latter case, morphogen receptors would be limited to a
small patch, which could either be randomly positioned (Fig. 4A,
blue), or located at the centroid of the cell (Fig. 4A, red). In the
mouse neural tube, the SHH receptor PTCH1 is restricted to a
cilium located on the apical surface [39]. The range of spatial av-
eraging then depends on the cilium length and flexibility rather
than the cross-sectional cell area (Fig. 4A, purple). We sought
to analyse how the different spatial averaging strategies without
cross-talk between neighbouring cells affect the variability of
gradients, and thus the positional error.

Colours in panel 4A correspond to the colours in panels 4B–
G). While the mean cell diameter µδ greatly affects the gradient
variability CVC , the readout strategy has only a moderate im-
pact (Fig. 4B). The difference is most pronounced for large cells
(µδ = µλ), where the sensed morphogen variability is largest if
the cellular readout point is randomly placed (Fig. 4B, blue).
Readout at the centroid or averaged over the entire cell yield
similar sensed gradient variabilities. This can be understood
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Figure 4: Impact of spatial averaging, gradient length, source size, cell diameter, and readout position on the
positional error of morphogen gradients. A Four different methods how cells may read out morphogens. Colours in
panels B–G correspond to these readout mechanisms. B The readout methods yield almost identical relative variability in the
concentration over the patterning domain for small and medium sized cells. C Spatial averaging over a larger readout region
(radius r) does not substantially decrease relative morphogen concentration variability. D Close to the source, the positional
error scales linearly with the gradient decay length µλ. Far in the domain, the scaling transitions to quadratic. E Asymptotically
for short source length Ls, the positional error is inversely proportional to 1/Ls. F The positional error increases with the square
root of the mean cell diameter µδ. Dotted lines show the relationship σx = γ

√
µδ for γ = 2.2, 4.5 (lengths in units of µm).

G Asymptotically, the positional error scales with the square root of the mean readout position µx. Each data point in B–G
corresponds to the mean ± SEM of n = 103 independent simulations. Simulation parameters: Lp = 65µδ, except in G; µλ = 20
µm, except in D; Ls = 5µδ, except in E; µδ = 5 µm, CVp,d,D = 0.3, CVA = 0.5. See supplementary Table S1 for fit parameters.

since the theoretical considerations above predict only a small
shift. Also, a cilium that averages the gradient concentration
over larger regions than a single cell area barely reduces the
sensed variability (Fig. 4C).

In summary, larger cross-sectional cell diameters increase the
variability of the morphogen concentration profiles, while spatial
averaging over the cell surface barely reduces the gradient vari-
ability. Spatial averaging may, however, counteract detection
noise at low morphogen concentrations far away from the source.
It is currently unknown over which distance morphogen gradi-
ents operate. At distance 12λ from the source, for instance,
exponential concentrations will have declined by e12 ≈ 160-
thousand-fold. At such low levels, detection noise may dominate
readout variability unless removed by spatial averaging.

Scaling of the positional error with gradient
length, source size, cell diameter and readout
position

From dimensional analysis, the positional error of the gradient,
σx, being a measure of distance, must scale with a multiplica-
tive combination of the length scales occurring in the patterning
process. These can either originate from geometrical features of
the tissue, or from the reaction-diffusion kinetics. We varied all
relevant length scales in simulations and found that σx is asymp-
totically proportional to the mean characteristic gradient decay
length µλ close to the source, but transitions to µ2

λ at larger
distances (Fig. 4D). Additionally, it is inversely proportional
to the source length Ls, asymptotically for small Ls (Fig. 4E),
but saturates for large sources. Moreover, the positional error

increases with the square root of the mean cell diameter µδ
(Fig. 4F) and, up to an offset, with the square root of the mean
position along the patterning axis µx (Fig. 4G). Together, this
can be expressed by the asymptotic scaling relationship

σx ∼
µλ
Ls

√
µδ µx. (6)

The linear dependency on the gradient length µλ is due to the
effect of gradient steepness on the positional error, and out-
weighs the reduction in gradient amplitude variability (Fig. 2H).
It intuitively follows from σx ≈ |∂C/∂x|−1σC ≈ µλCVC , which
is a valid approximation when the average gradient has an expo-
nential shape [24]. As before (Fig. 2F), at constant µδ, a longer
source reduces the gradient amplitude variability because noise
is buffered by a larger number of source cells (Supplementary
Material, Fig. S5). Narrower cells (smaller µδ) reduce the posi-
tional error of the morphogen gradients according to the law of
large numbers, σx ∼

√
µδ. Cell width in the patterning domain

is more influential than in the source, however, and the benefit
of reducing cell width in the source alone is limited (Supple-
mentary Material, Fig. S6). The deterministic limit (CVC → 0,
σx → 0) is recovered in the continuum limit µδ → 0. Domain
boundaries can thus be defined more accurately at a certain tar-
get location µx within the tissue with narrow cells. Depending
on the other lengths, the positional error can well be less than
a cell diameter close enough to the source (Fig. 4F). We note
that the previously reported linear scaling σx ∼ µx [24] is valid
only for idealized gradients that vary only through noise in λ,
but not in their amplitude or from cell to cell. For the noisy,
more physiological gradients simulated here, the positional error
increases according to σx ∼

√
µx (asymptotically, Fig. 4G) and

4



thus remains lower with increasing distance from the source
than previously anticipated. This further challenges previous
reports of excessive inaccuracy of the SHH and BMP gradients
in the mouse neural tube [11].

High precision of scaled patterns by parallel
changes of gradient length, source size, and cell
diameter in the Drosophila wing disc
The Decapentaplegic (Dpp) morphogen gradient in the
Drosophila wing imaginal disc defines the position of several
veins in the adult wing (Fig. 5A). Thus, the anterior-most limits
of the Dpp source and the Dpp target gene spalt (sal) define the
positions of the third (L3) and second (L2) longitudinal veins in
the anterior compartment, respectively [40, 41], while the fifth
longitudinal (L5) wing vein forms at the border between the
expression domains of optomotor-blind (omb) and brinker (brk)
in the posterior compartment [42]. The Dpp readout positions
scale with the total length of the uniformly expanding pattern-
ing domain, such that the anterior position of the Sal-domain
boundary remains roughly at 40–45% of the anterior domain
length La, while the posterior Omb domain boundary remains
roughly at 50% of the posterior domain length Lp [41, 6, 43].
The gradient readout positions scale with the length of the pat-
terning domain, because both the gradient length, λ, and the
gradient amplitude C0 increase dynamically with the expanding
tissue [6, 43–45] (Fig. 5B). On their own, the increases in µλ
and in µx would lower the precision of the readout substantially
over time (Eq. 6). However, the Dpp source widens in parallel,
keeping the µλ/Ls ratio at about 0.69 (Fig. 5B). Moreover, the
apical cell diameter µδ shrinks 3-fold close to the source from
4.5 to 1.5 µm [46–49, 27], which somewhat balances the increase
in µx over time. Plugging these dynamics into our model, the
simulations showed that the positional error at µx = 0.4La in-
creases from 2.9 µm to 4.3 µm over developmental time (Fig. 5C,
orange diamonds). If no compensation were taking place, the
positional error would increase to about 6.5 µm in the same
time period (Fig. 5C, blue circles).

The relative patterning precision, as quantified by the coef-
ficient of variation CVx = σx/µx, has even been reported to
increase during development, as the CV of the distance between
the L2 and L3 veins in the adult fly is only half (CVx = 0.08)
of that of the anterior-most Sal domain boundary (CVx = 0.16)
[41]. How this increase in precision is achieved has remained
elusive. In light of Eq. 6, CVx = σx/µx ∼ 1/√µx (Fig. 5D),
such that the decreasing CVx in adult stages could at least
partly be a consequence of the increase in µx = 0.4La between
the stage when the precision of the Sal domain boundary was
measured and the termination of Dpp-dependent patterning.
The asymptotic relationship σx ∼

√
µx may thus provide an

explanation of how the relative precision of patterning increases
during Drosophila wing disc development.

The effect of spatial correlation
Our theoretical considerations and simulations above are based
on statistical independence between adjacent cells. To examine
the effect of spatial correlations, we performed additional sim-
ulations in which this assumption was relaxed. We introduced
a maximal degree of spatial correlation between neighbouring
cells, given a certain degree of inter-cellular variability CVk, by
sorting the kinetic parameters pi, di and Di in ascending or
descending order along the patterning axis after they had been
drawn from their respective probability distributions, and then
solved the reaction-diffusion problem (Eq. 2). The square-root
increase of the positional error with the mean cell diameter re-
mains intact in the presence of such spatial correlations between
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Figure 5: High precision of scaled patterns by parallel
changes of gradient length, source size, and cell diam-
eter in the Drosophila wing disc. A Schematic of Dpp-
dependent patterning in the Drosophila wing disc. B The re-
ported Dpp gradient length and source size increase in parallel
with the expanding length, Lp, of the posterior compartment.
Data from Fig. S20 in [6]. C The predicted positional error at
the relative readout position µx/La = 40% is smallest when µλ
and Ls evolve according to the linear fits in B, and µδ declines
linearly from 4.5 to 1.5 µm (orange diamonds). For comparison,
the positional error if µδ is fixed and µλ, Ls evolve (blue cir-
cles), or if the source length is fixed and µλ, µδ evolve (salmon
triangles). D The predicted positional coefficient of variation
CVx = σx/0.4La declines as the domain expands. See supple-
mentary Table S1 for fit parameters.

cells (see Supplementary Material, Fig. S3), with a slightly
smaller prefactor. Since any physiological level of cell-to-cell
correlation that preserves CVk will lie somewhere between the
uncorrelated and the maximally correlated extremes, the impact
of such a form of spatial correlation on patterning precision can
be expected to be minimal, and our findings remain valid also
in presence of spatial correlations.

An additional form of inter-cellular correlation may occur
if nearby cells stem from the same lineage, and as such, may
have correlated kinetic properties. In its most extreme form,
neighbouring cells may share all their molecular parameters p,
d, D, effectively becoming one wider joint cell in our model.
We can use our results for cell autonomous noise to predict the
dependency of patterning precision on the number of adjacent
cells sharing their kinetic properties, N . Since the effective cell
diameter simply becomes Nµδ, the positional error will scale
as σx ∼

√
N . In this sense, the mean cell diameter µδ in our

formulas may be interpreted as an effective spatial distance over
which morphogen kinetics are shared, proportional to a spatial
correlation length in the tissue, if any.

Cell-specific morphogen production and decay rates, and lo-
cal variability in morphogen transport rates have not yet been
quantified in epithelial tissues. A spatial coupling of molecu-
lar noise in dividing cells would require a perfectly symmetric
division of cell contents upon cell division and the absence of
cell-intrinsic noise. Dpp-containing endosomes are indeed dis-
tributed equally upon cell division in the Drosophila wing disc
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[50]. However, no cellular system without intrinsic noise has
so far been reported. Differences between genetically identical
sister cells were first shown for bacterial cells [51], but have
since been demonstrated also for mammalian cells, and pose a
key challenge in synthetic biology [52–54]. The coefficients of
variation that we used are based on the reported variabilities of
production and decay rates in single, genetically identical cells
in cell culture [24].

There are further reasons why low spatial correlation of the
kinetic parameters is to be expected. In pseudostratified ep-
ithelia, interkinetic nuclear migration (IKNM) introduces dif-
ferences between cells as the cell cross-sectional areas change
along the entire apical-basal axis over time [28]. As the tight
junctions constitute a diffusion barrier between the apical and
the baso-lateral domains, the apical receptor density between
cells will change dynamically between cells if the apical receptor
number is equal and fixed for all cells. To maintain the same
receptor density, even though IKNM proceeds at different rates
between neighboring cells, as reflected in the different nuclear
positions along the apical-basal axis [28], the processes that bal-
ance receptor production and internalisation would need to be
identical between neighboring cells, though differences in cell
and nuclear volumes may also need to be compensated for. The
same holds for the glyocalyx and extracellular matrix, which
define the speed of morphogen diffusion, or fillipodia, in case
of cytoneme-based transport. In summary, the combination of
an unequal distribution of cell components in cell division, dif-
ferences in the relative surface area to cell and nuclear volume,
and intrinsic noise in gene expression must be expected to lead
to individual differences between neighboring cells, even if they
stem from the same lineage.

Epithelial tissues patterned by morphogen
gradients have small mean apical cell areas
After finding that patterning precision is greater with narrower
cells in our model, we collected mean apical cell areas for a
wide range of tissues from the literature to check whether cell
diameters are small in tissues that rely on gradient-based pat-
terning (Fig. 6). In the chick (cNT) and mouse neural tube
(mNT) where SHH, BMP, and WNT gradients define the pro-
genitor domain boundaries [55], the mean apical cell areas are
largely around 7 µm2 and remain below 12 µm2 [48, 26, 29].
The chick embryonic ectoderm (cEE) appears to be patterned
by BMP gradients [56], with mean apical cell area just below
12 µm2 [48]. In the Drosophila larval eye disc (dEYE), notum
(dNP), and wing disc (dWL), Hedgehog (Hh), Decapentaplegic
(Dpp), and Wg gradients pattern the epithelium [57, 58, 55],
with mean apical cell areas smaller than 7 µm2 [47, 48, 46, 27].
The mean apical cell areas of the wing disc increase through
the pre-pupal stages (dWP, dPW), to approximately 18 µm2 in
the pupal stages [48, 27], other measurements in the Drosophila
wing disc (dWD) report mean apical cell areas from 0 to 16
µm2 [46]. In the Drosophila eye antennal disc no gradient-based
patterning was described (dEA folded; mean apical cell areas
of approximately 33 µm2, dEA non-folded; with mean apical
cell areas of approximately 39 µm2) [59]. For the peripodal
membrane (dPE10–24) of the Drosophila eye disc, no gradient-
based patterning has been described and mean apical cell areas
range from 85 µm2 to more than 300 m2 [27]. In the Drosophila
egg chamber (dEC), the mean apical cell areas decline from
around 30 µm2 at stage 2/3 to around 10 µm2 by stage 6/7 [60],
consistent with reported gradient-based patterning at stage 6
[61]; we did not find reports of earlier gradient-based patterning.
While gradients pattern the Drosophila blastoderm syncytium
[55], we are not aware of morphogen gradient readout during
cellularisation. In the Drosophila embryo anterior pole (dEAP),
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Figure 6: Epithelial tissues that use gradient-based pat-
terning have small mean apical cell areas. For tissue
abbreviations see main text.

the mean apical cell area is approximately 46 µm2 and in the
embryo trunk (dET) roughly 35 µm2 [62], much larger than in
the neural tube or wing disc. Before cellularisation, the situa-
tion is different from that in an epithelium in that free diffusion
in the inter-nuclear space of the syncytium likely counteracts
any sharp transition in the kinetic parameters as represented
in our epithelial model, where cell membranes compartmen-
talise space. In the Drosophila L2 trachea (dL2T), no gradients
have been reported and the mean apical cell areas are greater
than 200 µm2 [63]. In the mouse embryonic lung (mLUNG),
no morphogen gradients have been reported, despite chemical
patterning [64]. The mean apical cell area is approximately
19 µm2 [65]. mean apical cell areas in the postnatal (P1–P21)
cochlea are between 15 and 55 µm2 [66]. In adult mouse reti-
nal pigment epithelial (mRPE) cells, the mean apical cell areas
exceed 200 µm2 in young mice (P30) and increase to over 400
µm2 in old mice (P720) [67]. No gradient-based patterning was
reported in mouse outer hair cells (mOHC1–3 P1,3,5,7.5); mean
apical cell areas decrease from 35 µm2 (P1) to 16 µm2 (P7.5).
No gradient-based patterning takes place in the inner hair cells
(mIHC1 P1,3,6,7.5); mean apical cell areas decrease from 54
µm2 (P1) to 29 µm2 (P7.5) [66]. No gradient-based patterning
was reported in the mouse ear epidermis (mEE), with mean
apical cell areas of 1044 µm2 [68]. The data thus confirms that
apical cell areas are small in tissues that employ gradient-based
patterning. Our theory makes no prediction about the apical
areas in tissues that do not employ gradient-based patterning,
but in all cases that we have checked, apical areas are larger and
appear to further increase in later developmental stages and in
adult animals.

Discussion

We have shown that gradient precision decreases with increasing
cross-sectional area of the patterned cells. Consistent with our
prediction, apical surface areas are small in epithelia that employ
gradient-based patterning. In curved domains, spatial precision
will be higher on the inside, where the average cell diameter is
smaller. In the mouse neural tube, the SHH-sensing cilium is
indeed located on the inner, apical surface [39], while in the flat
Drosophila imaginal discs, cells sense Hedgehog along the entire
apical-basal axis [69]. In the Drosophila wing disc, the apical
cell diameters shrink in the center of the domain, such that the
apical areas are almost twofold smaller close to the source, and
increase roughly linearly [47, 70, 49, 71]. In the eye disc, the
size gradient is even more pronounced, with tiny apical areas
in the Dpp secreting morphogenetic furrow [47]. The declining
apical cell diameters have previously been accounted to a me-
chanical pressure feedback caused by growth [72, 46]. However,
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signalling by Dpp, the fly homolog of mammalian BMP2/4, has
been shown to result in taller cells with smaller cross-sectional
area in its patterning domain compared to other parts of the
Drosophila wing and eye disc [47, 70, 49, 71]. Similarly, the
morphogens SHH and WNT have been observed to increase cell
height and reduce the cell cross-sectional area via their impact
on actin polymerisation, myosin localisation and activity in the
embryonic mouse neural tube and lung [65, 70, 73–75]. In light
of our study, it is possible that the morphogen-dependent re-
duction in the cross-sectional cell area via positive modulation
of cell height serves to enhance patterning precision. The pre-
cision advantage of small cell diameters may then have led to
the emergence of pseudostratification in epithelial monolayers, a
phenomenon that has so far remained unexplained. Our finding
that wide cells and very large cell area variability are both detri-
mental to patterning precision indicate that there is potentially
a window for epithelial pseudostratification in which patterning
precision is optimal: High cell density benefits precision because
cell diameters are small, but with nuclei much wider than the
average cell diameter [28], precision would decline due to large
area variability. It is remarkable that all tissues that we anal-
ysed seem to lie in the optimal range of this trade-off [27]. This
aspect deserves further research and needs to be tested with
additional experiments.

We have revealed scaling relationships between the positional
error, cell diameter, gradient decay length and source length
(Eq. 6). In follow-up work, we found that they also hold for
non-exponential gradients arising from non-linear morphogen
degradation [76], as far as they were studied. These relation-
ships predict that morphogen gradients remain highly accurate
over very long distances, providing precise positional informa-
tion even far away from the morphogen source. Our results
are system-agnostic, and could thus apply widely in develop-
ment. The compensation between cell diameter, gradient length,
source size and readout location, which we have found here, al-
lows a patterning system to tune its length scales to achieve
a particular level of spatial precision. Our theoretical work
suggests a potential evolutionary benefit for a developmental
mechanism that regulates features such as the cell diameter or
the λ/Ls ratio to maintain high patterning precision. A loss in
precision due to a shift in readout position away from the mor-
phogen source, for instance, can be compensated for by narrower
cells in the source or in the patterning domain. This allows de-
velopmental systems to maintain high patterning precision at
readout positions that scale with a growing tissue domain.

Whether pre-steady-state gradients, as likely play a role in
the patterning of the Drosophila wing disc [44], follow the same
behavior as discovered here for the steady state, remains an
open question for future research. Assuming that they do, our
results offer a potential explanation for the observed increase
in relative patterning precision during wing disc development.

Methods

Generation of variable morphogen gradients
The patterning axis was constructed as follows: A random cell
area Ai was drawn for cell i = 1, and then converted to a
diameter δi = 2

√
Ai/π, which assumes that cell surfaces are

roughly isotropic. This process was repeated for the next cells
i = 2, 3, ... until their cumulated diameters matched the domain
length Ls or Lp. To control the mean cell diameter µδ, cell areas
were drawn with a mean value of µA = π(µδ/2)2(1 + CV2

A)1/4

for given µδ and CVA, as follows from the transformation
properties of log-normal random variables, such that indeed
µδ = E[δi] = 2E[

√
Ai]/
√
π. The patterning axis was then dis-

cretized into subintervals of length δi, the source and patterning

domains were pasted together such that x = 0 marked the source
boundary, and random kinetic parameters pi, di, Di were drawn
independently for each cell from log-normal distributions. Note
that the results reported in this work are largely independent of
the specific choice of probability distribution, given that they do
not allow for very small (or even negative) kinetic parameters,
which would not be compatible with a successful morphogen
transport and patterning process. A gamma distribution with
the same mean and variance, for example, yields largely un-
changed behavior (see Supplementary Material, Fig. S4).

We then solved Eq. 2 numerically on the discretized domain
using Matlab’s built-in fourth-order boundary value problem
solver bvp4c (version R2020b). Continuity of the morphogen
concentration and its flux was imposed at each cell boundary.
Further technical details can be found in [24]. Each simulation
was repeated n = 103 times with independent random parame-
ters and cell areas.

Gradient parameter extraction

We determined the amplitude C0 and decay length λ for each
numerically generated noisy morphogen gradient by fitting the
deterministic solution to it. With no-flux boundaries, the gra-
dient shapes are hyperbolic cosines that slightly deviate from a
pure exponential in the far end [24]. We fitted these inside the
patterning domain to obtain C0 and λ after logarithmisation of
the morphogen concentration as detailed in [24].

Since the fitted characteristic gradient length λ drifts away
from the prescribed value for noisy gradients depending on
which of the kinetic parameters is varied and by how much
[24], we corrected for this drift in our numerical implementation
to be able to use the true observed value of µλ in our results:

µλ = λ(1 + 0.435CV2
d)−0.080

µλ = λ(1− 0.003CVD + 1.045CV2
D − 0.113CV3

D

+ 0.0043CV4
D)0.471

µλ = λ(1− 0.011CVp,d,D + 1.355CV2
p,d,D − 0.179CV3

p,d,D

+ 0.0077CV4
p,d,D)0.357

where λ is the deterministic (prescribed) value. When only
the production rate p was varied, µλ = λ. These empirical
relationships approximate the data shown in Fig. 8G in [24].
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2Swiss Institute of Bioinformatics, Mattenstrasse 26, 4058 Basel, Switzerland

January 26, 2023

In this supplementary document, we theoretically show that
averaging morphogen concentrations over a spatial region (such
as cell areas) can shift the effective readout position compared
to point-like readout, and we derive the corresponding shift ∆x
analytically for isotropic and for rectangular cell shapes. We
focus on exponential morphogen gradients here as they arise in
systems with diffusion-driven morphogen transport and uniform
linear degradation, but note that the developed formalism can
be applied directly also to other gradient shapes. Moreover, the
impact of spatial correlation of the kinetic cell parameters on the
positional error, the choice of the kinetic parameter distribution
and the effect of cell number in the source domain are discussed.

Readout in a continuous domain

Consider an exponential morphogen concentration gradient

C(x) = C0 exp
[
−x
λ

]
with concentration C0 at the source at x = 0, and decay length
λ. Assuming a continuous readout based on a threshold con-
centration Cθ = C(xθ), a positional identity boundary forms at
position

xθ = λ ln

[
C0

Cθ

]
. (S1)

This mechanism allows for gradient-based tissue patterning,
where individual patterning domains are delineated by different
boundary positions xθ resulting from different readout thresholds
Cθ.

Readout in a tissue of isotropic cells

For morphogen readout in a cellular tissue, we consider several
different cases in a unified description. Cells can either sense
the morphogen concentration at a singular point, averaged over
a spatial region with radius r about that point (which may or
may not be smaller than a cell), or as an average concentration
over the entire cell area. We denote this readout region by Ω
(Fig. S1). The average concentration in Ω is

〈C〉 =

∫
Ω
C(x) dΩ∫
Ω
dΩ

.

Assuming that the averaging domain is circular (i.e., the cell
areas have no orientational bias) in a two-dimensional tissue
cross section or surface, we can approximate Ω as a disk with
radius r about a center point (x0, 0):

Ω =
{

(x, y) | (x− x0)2 + y2 < r2} .

readout region Ω

∆x

C(x) = C0 exp
[
−x
λ

]

x0−r x0xθ x0+r

Cθ
〈C〉

Distance from source x

M
o
rp

h
o
g
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n
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n
tr

a
ti

o
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Figure S1: Averaging an exponential morphogen concentration
(blue) over a local region such as the cell area leads to a larger
readout concentration (green) than taking the concentration at
the middle of the region (red). To compensate for this effect,
the readout position shifts downhill (away from the source) by
a distance ∆x from xθ to x0.

In the case where the concentration is averaged over the entire
cell area, r is the effective cell radius. The average concentration
thus becomes

〈C〉 =
C0

πr2

∫
Ω

exp
[
−x
λ

]
dΩ

=
C0

πr2
2πrλ exp

[
−x0

λ

]
I1
( r
λ

)
where

In(z) =

∞∑
k=0

(z/2)2k+n

k!(k + n)!

is the modified Bessel function of the first kind for integer n.
The series converges very quickly if r � λ, such that higher
order terms in r/λ can be dropped. Substitution and expansion
of the Bessel function yields

〈C〉 = C(x0)
2λ

r
I1
( r
λ

)
= C(x0)

∞∑
k=0

(r/2λ)2k

k!(k + 1)!

= C(x0)

[
1 +

1

8

( r
λ

)2

+
1

192

( r
λ

)4

+O
(( r

λ

)6
)]

.

Thus, the mean concentration 〈C〉 is larger than the one in
the middle of the readout domain, C(x0), and this deviation
increases with larger readout regions and shorter gradient decay
lengths.
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Figure S2: Readout boundary shift due to spatial averaging as
a function of the size over which the morphogen concentration
is averaged. The purple line shows the isotropic case with a
circular averaging region (Eq. S2); the orange line represents
the case with rectangular cells (Eq. S4).

If threshold-based readout operates on the averaged concen-
tration, we must have Cθ = 〈C〉. Therefore,

C(xθ)

C(x0)
= exp

[
−xθ − x0

λ

]
=

∞∑
k=0

(r/2λ)2k

k!(k + 1)!
.

The location of domain boundaries is shifted down the concen-
tration gradient by the distance

∆x = x0 − xθ = λ ln

[
∞∑
k=0

(r/2λ)2k

k!(k + 1)!

]
(S2)

as shown in Fig. S1. Notably, the shift is independent of both
the gradient amplitude C0 and the concentration threshold Cθ
for an exponential gradient. Therefore, it is the same for all
readout positions in the pattern if the averaging radius r and
the decay length λ are spatially invariant, such that all domain
boundaries are shifted equally by this averaging effect. Eq. S2
is plotted in Fig. S2.

Using the power series expansion of the natural logarithm,

ln[1 + x] =

∞∑
k=1

(−1)k+1 x
k

k
= x− x2

2
+O

(
x3) ,

the boundary shift can be expanded to

∆x = λ

[
1

8

( r
λ

)2

− 1

384

( r
λ

)4

+O
(( r

λ

)6
)]

.

For a mean cell radius of r = 2.5 µm and a gradient decay
length of λ = 20 µm, the shift is ∆x ≈ 0.039 µm.

By combining Eqs. S1 and S2, we find the mean domain
boundary position at

x0 = xθ + ∆x = λ ln

[
C0

Cθ

∞∑
k=0

(r/2λ)2k

k!(k + 1)!

]
. (S3)

Readout in a tissue of rectangular cells

We now derive the downhill shift ∆x also for rectangular cell
areas, effectively rendering the problem one-dimensional. This
scenario corresponds to a tissue composed of cuboidal cells in

which the morphogen gradient forms in a direction perpendicular
to one of the cells’ axes. In this case,

Ω = {(x, y) | |x− x0| < r} .

Averaging over the cell area thus gives

〈C〉 =
C0

2r

∫
Ω

exp
[
−x
λ

]
dΩ

= C(x0)
λ

r
sinh

[ r
λ

]
Requiring again that the readout threshold be the average
concentration, Cθ = 〈C〉, yields

C(xθ)

C(x0)
= exp

[
−xθ − x0

λ

]
=
λ

r
sinh

[ r
λ

]
.

The shift in the readout position then follows as

∆x = x0 − xθ = λ ln

[
λ

r
sinh

( r
λ

)]
(S4)

which expands to

∆x = λ

[
1

6

( r
λ

)2

− 1

180

( r
λ

)4

+O
(( r

λ

)6
)]

.

Eq. S4 is plotted in Fig. S2. For a mean cell radius of
r = 2.5 µm (which in this case corresponds to the half-width of
the rectangular cells) and a gradient decay length of λ = 20 µm,
the shift is ∆x ≈ 0.052 µm.

In analogy to Eq. S3, the mean domain boundary position is
found at

x0 = xθ + ∆x = λ ln

[
C0

Cθ

λ

r
sinh

( r
λ

)]
.

in tissues composed of rectangular cells.

Impact of spatial correlation on the positional
error

In the main article, we assumed uncorrelated morphogen kinet-
ics. Here, we demonstrate how spatial correlation affects the
positional error. First, we consider total correlation, where all
three kinetic parameters (p, d, D) are the same for all cells, but
are still varied between different simulations (different tissues).
In this limiting case, morphogen gradient variability occurs
only between tissues, not within them. The positional error
is significantly greater than with independent cells, and the
square-root scaling is lost (Fig. S3, green triangles), because
to the morphogen gradient, the tissue effectively appears like a
homogeneous continuum with uniform properties.

Next, we consider, as a second extreme case, a maximal de-
gree of cell-to-cell correlation in the kinetic parameters, while
preserving their probability distributions within the tissue. The
kinetic cell parameters (pi, di, Di) are drawn individually and
independently for each cell, but are then sorted along the pat-
terning axis and assigned to the cells i, prior to solving the
reaction-diffusion equation. Sorting does not affect the pattern-
ing precision appreciably, independent of the ordering (Fig. S3).
In comparison to zero correlation, sorting slightly reduces the
positional error—an effect that is most pronounced for larger
cell diameters. But even with this maximal level of spatial
cell-to-cell correlation, the square-root scaling of the positional
error holds. Intermediate levels of spatial correlation can be
expected to yield positional errors lying in between the curves
for zero and maximal cell-to-cell correlation.
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Figure S3: Impact of correlation on the positional error at different readout positions and cell diameters. Green
triangles represent total correlation (all cells have equal kinetic parameters), yellow triangles represent no correlation (as presented
in the main Fig. 4F). Blue (red) triangles correspond to the case with maximal spatial correlation at given cell-to-cell variability
CVp,d,D, where the cell parameters were drawn from log-normal distributions and then sorted in descending (ascending) order.
All simulations were repeated n = 103 times and the mean positional error ± SEM is plotted.

Choice of the kinetic parameter distribution

In the main article, we assumed log-normally distributed mor-
phogen kinetics. In this section, we show that our results are
largely independent of the probability distribution assumed for
the kinetic parameters, provided that it meets certain physio-
logical criteria:

• The morphogen production rates, degradation rates and
diffusivities must be strictly positive. This rules out a
normal distribution.

• The probability density of near-zero kinetic parameters
must vanish quickly, as otherwise no successful patterning
can occur. For example, a tiny diffusion coefficient would
not enable morphogen transport over biologically useful dis-
tances within useful time periods. This rules out a normal
distribution truncated at zero, because very low diffusivities
would occur rather frequently for such a distribution.

We repeated the simulations shown in Figs. 2A,B and 4F with
a gamma distribution in place of the log-normal distribution.
Among other distributions that are conceivable, a gamma dis-
tribution with appropriate shape parameter α and inverse scale
parameter β fulfills the above criteria. In order to recover the
mean and variance of the kinetic parameters, we set αk = 1/CV2

k

and βk = CV2
k/µk, where CVk is the coefficient of variation and

µk the mean value of a specific kinetic parameter k. As can
be appreciated from Fig. S4, the results are not significantly
altered by the specific choice of probability distribution, and our
conclusions remain valid. The scaling exponents are consistent
within statistical errors.

Effect of cell number in the source domain on
gradient precision

In the main article, we showed that patterning precision increases
with narrower cells and wider sources. These effects are coupled—
wider sources will be composed of more cells if the average cell
diameter remains constant. In this section, we demonstrate that
the positional error is mainly dominated by the cell diameter
rather than the source size, and that the found scaling σx ∼ 1/Ls

(Eq. 6) is largely due to higher cell numbers in wider sources.
Increasing the number of cells in a source of fixed length

improves the precision of the morphogen gradient parameters
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Figure S4: Gradient variability and positional error un-
der gamma-distributed morphogen kinetics. All simu-
lations were repeated n = 103 times and the mean values ±
SEM are plotted. A,B The same scaling laws for the gradient
variability found for the gamma and log-normal distributions
(Fig. 2A,B) are consistent. C Different readout strategies (iden-
tical to Fig. 4A). D Square-root scaling of the positional error
with the cell diameter is found also with gamma-distributed
morphogen kinetics. Symbol colours in D correspond to the
different morphogen sensing strategies in C.

according to the asymptotic relationship

CVλ,0 ∼
√
µδs
Ls
∼
√

1

Ncells
,

where Ncells is the number of cells in the source domain
(Fig. S5A,B). They thus approximately follow the law of large
numbers. The positional error decreases analogously with in-
creased cell number in a source of fixed length (Fig. S5C). If,
on the other hand, the number of source cells is fixed but the
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Figure S5: Effect of source length and number of source
cells on gradients precision. A,B In a source of fixed length
Ls, there is less variability in the gradient parameters λ and C0 as
the number of constituting cells increases. C The positional error
decreases with more cells in a source of fixed length, but saturates
beyond about 5 source cells. D,E The gradient parameters
become more variable in wider sources consisting of a fixed
number of cells. F The positional error mildly increases in
wider morphogen sources with fixed cell count. Colours in C,F
correspond to readout strategies shown in Fig. S4C. All data
points show mean values ± SEM from n = 103 simulations.
Model parameters: µδp = 5 µm, CVp,d,D = 0.3, CVA = 0.5,
µλ = 20 µm.

source size increases, the variability in the gradient parameters
increases according to power laws (Fig. S5D,E),

CVλ,0 ∼ µαδ and CV0 ∼ µβδ (S5)

with exponents α = 0.510 ± 0.005 (Fig. S5D, blue curve) and
β = 0.43±0.02 (Fig. S5E, blue curve), suggesting again CVλ,0 ∼√
µδs/Ls. A source composed of a fixed number of cells yields

only a mildly greater positional error if its constituent cells
have a larger average diameter, however (Fig. S5F). In these
simulations, the mean cell diameter in the patterning domain was
fixed. Thus, in order to achieve high spatial gradient precision,
a morphogen source must have a large number of cells with
small diameters, but the cell count is more decisive than the
source length.

To study the competition of cell sizes between the source and
patterning domain, we then changed the mean cell diameter
separately in both subdomains, retaining the mean diameter in
the other at a constant value. No further appreciable increase in
gradient precision takes place once the mean cell diameter in the
source subceeds the one in the patterning domain (µδs < µδp ,
Fig. S6). The mean cell diameter in the source has a limited
impact on gradient precision (Fig. S6, pink symbols) compared
to the mean diameter in the patterning domain (Fig. S6, yellow
symbols). Overall, this suggests that a large number of narrow
cells in both the source and patterning domain, but mainly in
the latter, is advantageous for patterning precision.

Fit parameters

In Table S1, we list all functional relationships used to fit the
data shown in the main article and this supplementary document,
together with the fit parameters and their standard errors (SE).
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Figure S6: Separate effects of the mean cell diameter in the source and patterning domains on the positional
error. A,B,C Change of positional error at µx = 3µλ = 60 µm, as the mean cell diameter is varied only in the source (µδ = µδs ,
pink), only in the pattern (µδ = µδp , yellow) or in both simultaneously (µδ = µδs = µδp , blue), but is fixed elsewhere (at 2, 5,
10 µm in A, B, C, respectively). All simulations were repeated n = 103 times and the mean values ± SEM are plotted. Model
parameters: Ls = 5µδs , CVp,d,D = 0.3, CVA = 0.5.
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Table S1: Summary of the fit functions and their parameters. All lengths are in micrometres.

Figure Model Legend entry a SE(a) b SE(b)

2A ln CVλ = a lnµδ + b k = D 0.507 0.002 −4.528 0.004
k = p, d,D 0.510 0.004 −4.199 0.008

2B ln CV0 = a lnµδ + b k = p 0.497 0.003 −4.528 0.004
k = d 0.457 0.004 −2.847 0.006
k = D 0.387 0.006 −3.403 0.008
k = p, d,D 0.472 0.005 −2.396 0.007

2E CVλ = b k = D — — 0.0249 0.0001
k = p, d,D — — 0.0343 0.0001

2F CV0 = a/Ls + b k = p 1.087 0.038 0.095 0.002
k = D −0.158 0.010 0.070 0.001
k = p, d,D 0.870 0.025 0.160 0.001

2G CVλ = b k = d — — 0.0238 0.0002
k = D — — 0.0246 0.0001
k = p, d,D — — 0.0338 0.0001

4D σx = aµλ + b µx = 3µλ average 0.097 0.004 3.4 0.1
µx = 3µλ centroid 0.087 0.004 3.4 0.1
µx = 3µλ random 0.096 0.004 3.7 0.1
µx = 6µλ average 0.083 0.003 4.9 0.1
µx = 6µλ centroid 0.083 0.003 4.9 0.1
µx = 6µλ random 0.083 0.003 5.1 0.1

4D σx = aµ2
λ + b µx = 12µλ average 0.0014 0.0001 7.8 0.1

µx = 12µλ centroid 0.0014 0.0001 7.8 0.1
µx = 12µλ random 0.0014 0.0001 7.9 0.1

4E σx = a/Ls + b µx = 3µλ average 12.5 0.9 4.75 0.05
µx = 3µλ centroid 12.6 0.8 4.74 0.05
µx = 3µλ random 12.3 1.0 5.01 0.05
µx = 6µλ average 11.4 0.6 6.01 0.03
µx = 6µλ centroid 11.3 0.6 6.01 0.03
µx = 6µλ random 10.9 0.6 6.20 0.03
µx = 12µλ average 8.9 1.0 8.01 0.06
µx = 12µλ centroid 8.9 1.0 8.01 0.06
µx = 12µλ random 8.5 1.0 8.24 0.05

4G σx = a
√
µx + b average 0.429 0.003 1.86 0.06

centroid 0.429 0.003 1.85 0.06
random 0.421 0.003 2.17 0.07

5D CVx = a/
√
Lp + b 1.28 0.02 −0.039 0.002

S5A CVλ = a/
√
Ncells k = D 0.0778 0.0006 — —

k = p, d,D 0.1082 0.0005 — —

S5B CV0 = a/
√
Ncells + b k = p 0.293 0.009 0.019 0.004

k = d 0.325 0.003 0.011 0.001
k = D 0.171 0.004 0.014 0.002
k = p, d,D 0.490 0.006 0.019 0.003

S5C σx = a/Ncells + b µx = 3µλ average 4.9 0.2 3.48 0.06
µx = 3µλ centroid 4.9 0.2 3.47 0.06
µx = 3µλ random 4.8 0.2 3.73 0.07
µx = 6µλ average 4.2 0.1 4.94 0.06
µx = 6µλ centroid 4.2 0.1 4.95 0.05
µx = 6µλ random 3.9 0.1 5.25 0.05
µx = 12µλ average 3.6 0.2 7.10 0.10
µx = 12µλ centroid 3.6 0.2 7.10 0.10
µx = 12µλ random 3.4 0.2 7.40 0.10

S5D ln CVλ = a lnLs + b k = D 0.520 0.004 −5.38 0.01
k = p, d,D 0.510 0.006 −5.01 0.02

S5E ln CV0 = a lnLs + b k = d 0.42 0.01 −3.48 0.03
k = D 0.53 0.01 −4.52 0.05
k = p, d,D 0.43 0.02 −3.08 0.07
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