PolyHoop: Soft particle and tissue dynamics with topological transitions

Roman Vetter!:2 *, Steve V. M. Runser’ 2, and Dagmar Iber!-?2

! Department of Biosystems Science and Engineering, ETH Ziirich, Schanzenstrasse 44, 4056 Basel, Switzerland
2Swiss Institute of Bioinformatics, Schanzenstrasse 44, 4056 Basel, Switzerland

January 31, 2024

We present PolyHoop, a lightweight standalone C++
implementation of a mechanical model to simulate the
dynamics of soft particles and cellular tissues in two
dimensions. With only few geometrical and physical
parameters, PolyHoop is capable of simulating a wide
range of particulate soft matter systems: from biolog-
ical cells and tissues to vesicles, bubbles, foams, emul-
sions, and other amorphous materials. The soft par-
ticles or cells are represented by continuously remod-
eling, non-convex, high-resolution polygons that can
undergo growth, division, fusion, aggregation, and sep-
aration. With PolyHoop, a tissue or foam consisting
of a million cells with high spatial resolution can be
simulated on conventional laptop computers.

PROGRAM SUMMARY
Program Title: PolyHoop

CPC Library link to program files: (to be added by Technical
Editor)

Developer’s repository link: —

Code Ocean capsule: (to be added by Technical Editor)
Licensing provisions: BSD 3-clause

Programming language: C++11

Supplementary material: Figures S1 and S2, Movies 1-7

Nature of problem: Various two-dimensional mechanical
systems can be represented by elastic, tensile hoops marking
the boundaries of fluidic domains. Examples include cellular
tissues, vesicles, foams, emulsions, etc. PolyHoop efficiently
solves the Newtonian dynamics of such systems, enabling the
simulation of large ensembles with O(10°) deformable particles
on a single ordinary CPU. The simulated hoops can undergo a
variety of topological transitions such as division and fusion.

Solution method: The soft particles are represented by their
boundary contours, discretized into high-resolution polygons.
The polygon vertices are then propagated in time by solving
Newtons’s equation of motion with the semi-implicit Euler
method, using conservative and dissipative nodal forces. To
maintain high quality of the discretization even during large
particle deformations, the particles automatically remodel
their boundaries. For efficient collision detection, a spatial
partitioning grid is used.

Additional comments including restrictions and unusual fea-
tures: The source code of PolyHoop is exceptionally compact,
consisting of only about 720 commented lines in a single file.
With no dependencies, it is highly portable and easy to handle,
making it also suited for educational purposes.

Keywords: soft particle, foam, bubble, cell, tissue, polygon
*Correspondence: vetterroQethz.ch

Contents
1 Introduction 1
2 Physical model 3
2.1 Continuum description 3
2.2 Discretization as polygons 4
2.3 Vertex forces, 5
3 Numerical implementation 5
3.1 Remodeling 5
3.2 Polygon growth, removal and division 6
3.3 Polygon fusion 6
3.4 Contact detection 7
3.5 Time integration 7
4 Applications 7
4.1 Biological tissues 7
4.2 Amorphous materials 9
4.3 Elasticbands 9
4.4 Foams and emulsions 9
4.5 Complex geometries 9
4.6 Large-scale simulation 10
5 Parallelization and computational efficiency 10
6 Usage instructions 11
7 Discussion and outlook 11

1 Introduction

A number of two-dimensional mechanical systems occurring in
Nature and our daily life can be described by the dynamics
of elastic, tensile hoops marking the boundaries of domains
consisting of fluidic materials. The most prominent example,
perhaps, is the packing of biological cells in monolayer tissues, in
which cell membranes surrounding the cytoplasm can effectively
be modeled as constrained adhesive polygons under tension [27—
33]. Major progress in the physical understanding of epithelial
dynamics has been made in recent years with 2D computer
simulations [24, 34]. Foams and froths, which consist of gas
bubbles enclosed by a liquid phase, are another prime example.
Depending on the degree of wetness, the gas chambers in foams
can exhibit a wealth of shapes and arrangements, which has
made them a field of intense study at the interface of geometry
and physics over decades [35-37], also computationally.
Computer simulations of such systems started mainly in the
1980s with vertex models [27, 28, 38], followed by a program
named 2D-FROTH representing dry froths and foams with
curved bubble boundaries [1]—a feature also particularly im-
portant in tissue biology [39-41]. These early implementations
used shared polygonal boundaries between neighboring cells.

Table 1: Overview of related computer programs.

Only models in two spatial dimensions and with geometrically

represented, curved cell/bubble boundaries are included. Line numbers, runtimes and cell counts are approximate (rounded).
Numbers in parentheses indicate the number of lines excluding blanks and comments. OS: Open source. CC: Creative Commons.
CPC: Computer Physics Communications. GPL: GNU General Public License. MIT: Massachusetts Institute of Technology.
LBM: Lattice Boltzmann Method.

Year Name Model description Implementation Performance OS License Ref.
1990 2D-FROTH dry foams in mechanical equilib- 8200 (4500) lines of Fortran 77 demonstrated simulations yes CPC [1]
rium, shared polygonal boundaries code, three library dependencies with a few dozen bubbles
1992—- PLAT wet foams in mechanical equilib- 9800 (5100) lines of C code, re- demonstrated simulations yes public [2, 3]

1996 rium, free polygonal boundaries quires X /Motif libraries for GUI with a few dozen bubbles domain
2005 — tumor growth, free cell boundaries Fortran demonstrated tumor tissue no — [4]
coupled to a Navier—Stokes solver growth to about 900 cells
2008 — meshed elastic cell walls immersed — demonstrated growth to no — [5]

in a Navier—Stokes fluid about 800 cells
2010 — viscoelastic polygonal cells with — demonstrated simulations no — [6]
cytoskeletal elements with a few hundred cells
2011 — gastrulation with elastic polygonal in C using CUDA for paralleliza- demonstrated simulations no — 8]
cell boundaries tion on the GPU; reimplemented with a few dozen cells
in Python using Numba [7]
2011 VirtualLeaf framework for plant growth with 22,000 (14,000) lines of C++ demonstrated simulations yes GPL [9]
shared polygonal cell walls code, GUI based on Qt 4.6, de- with a few hundred cells v2
pends on libiconv, libxml2, libz
2014 DySMaL deformable bubble model for wet Fortran program parallelized with 50 million timesteps with no — [10]
foams MPI and OpenMP 1700 bubbles took 5 hours
on 16 cores
2014 EpiCell2D mechanical model for tissue Fortran program, parallelized dynamic simulations witha no — [11]
growth with free cell boundaries ~ with MPI few hundred cells [11, 12]
2015 LBIBCell polygonal cell boundaries im- 25,000 (13,000) lines of C++ can grow a tissue to 10,000 yes MIT [13]
mersed in a LBM fluid with chem- code, parallelized with OpenMP, cells in a day
ical signaling dependencies on Boost, VTK &
CMake; no longer maintained
2017 — polygonal cell boundaries im- built on Chaste/cell_based [14] 2000 timesteps with 20 cells yes GPL [15]
mersed in viscous Newtonian fluid which depends on many third- in a few minutes on 6 cores v3
party packages, 130,000 (63,000)
lines of C++ code in total
2018 DP model packing of elastic particles with — demonstrated simulations no — [16]
free polygonal boundaries with up to 1000 particles
2016— NCC model cell migration, polygonal bound- 19,000 (12,000) lines in Python single-threaded runtime of yes MIT or [19]
2022 aries with protrusions, coupled to using Numba [17]; reimplemented 6 hours for 49 cells simu- Apache
reaction-diffusion solver with 9600 (7600) lines in Rust [18] lated over 10 hours
2021 LBfoam dry and wet foams based on the 350,000 (250,000) lines of C++ demonstrated HPC simula- yes AGPL [22]
LBM, similar to earlier unnamed code, including Palabos [21] tions with up to 300 gas v3
closed-source program [20] cells, parallelized with MPI
2021 PalaCell2D polygonal cell boundaries im- 11,000 (8600) lines of C++ code demonstrated simulations no — [23]
mersed in a LBM fluid with chem- building on Palabos, dependen- with up to 400 cells
ical signaling cies on TinyXML-2 and CMake
2021 — shared fluctuating polygonal cell 2900 (2300) lines of Matlab code demonstrated simulations yes public —[24]
boundaries, intercellular spaces with a few dozen cells domain
2021 EdgeBased suite of cell-based tissue models, 14,000 (6800) lines of Matlab tissue growth to 600 cells yes GPL [25]
one with polygonal cell boundaries code with 10 vertices each in 10 h v3
2023 Epimech epithelial monolayer tissues me- 25,000 (13,000) lines of Matlab growth to 1600 cells in 20 yes GPL [26]
chanically coupled to a substrate code, with a GUI hours without substrate v3

More topological freedom in the form of individual, free bound-
aries was introduced with a C program named PLAT shortly
after [2, 3]. In the 2000s and 2010s, several new two-dimensional
mechanical models were developed to simulate a variety of phe-
nomena including tissue growth and morphogenesis, cell migra-
tion and aggregation, soft particle packing, and many more.
We review the history of developed computer programs that
continued along the path of polygonal representations of fluidic
domains in Table 1. About half of these computational models
were made open-source, published under various licenses, with
a tendency in the last decade toward more openness, but also
more copyleft.

While most of these computer programs were developed for a
specific biological or physical application, quantifications of their
computational performance and scalability are rare. Where it
can be estimated from communicated cell counts, the used paral-
lelization strategy or approximate runtimes, typical simulations
with some dozens to a few thousand cells or bubbles require in
the order of minutes to days of wallclock time. One notable ex-
ception appears to be DySMal with a large number of timesteps
performed in comparably short time, although the paper did
not show simulations with more than 1700 bubbles [10].

There are also a number of phase-field models to simulate the
fluid dynamics of cell monolayers and foams [42-48]. The nu-

merical burden of these grid-based approaches is large, though.
Reports of the computational performance of these programs,
where disclosed, range from displayed simulations of 12 cells on
36 processors [43] to simulations with 100 cells that require a
month of runtime on 16 cores [47, 48]. Larger systems appear to
be out of reach for these programs, possibly with the exception
of the first phase-field model of biological cells [42], which was
implemented in Fortran, but is not publicly available.

An additional challenge faced with most of the published
programs is their level of code complexity. While the leanest
implementations comprise a few thousand lines of code [1, 3, 24],
the majority are found in the tens to hundreds of thousand
lines [9, 13, 15, 22, 26]. This is sometimes resulting from larger
frameworks they are built on or into [15, 22, 23], and can form
an obstacle for their usability to other researchers, and make it
harder to maintain the code.

Aside from these technical aspects, there are also methodolog-
ical improvements needed to enhance the range of phenomena
that can be simulated with such models. Emulsions, but also
wet foams and a variety of developing biological tissues can un-
dergo a wide range of structural changes that alter the topology
at the level of bubbles or cells: they can merge or split up, ag-
gregate or segregate, engulf or expel each other, and emerge or
disintegrate. In a biological context, cells vanish from a tissue
for example through apoptosis or extrusion, and they divide
through mitosis. Cell fusion, on the other hand, occurs in failed
cytokinesis [49], tumor progression [50], myoblasts [51], and
transport vesicles [52]. With the existing computer programs,
such fusion processes cannot readily be simulated.

With this paper, we introduce PolyHoop, a portable, compact
and lightweight C++ program that overcomes these limitations.
PolyHoop is a portmanteau of polygon and hoop, with inten-
tional ambiguity in the meaning of “poly”, hinting at the fact
that our program is designed to represent large systems consist-
ing of many hoops or polygons. Compared to similar programs,
PolyHoop offers a reduction in code volume by an order of mag-
nitude or more, and a speedup of several orders of magnitude in
cases where no explicit fluid coupling is needed, all while provid-
ing an extended feature set including the above-mentioned topo-
logical changes, in a standalone program. Comprising about
720 lines of commented code, PolyHoop is designed to be as
compact and simple as possible, allowing also novices to follow
the implementation, modify it, and run simulations. PolyHoop
is devoid of magical numbers, error tolerances, and iterative
solvers. With only 24 geometrical and physical parameters, a
large variety of different dynamical systems can be simulated.

Drawing inspiration from previous models [10, 13, 16, 23],
PolyHoop represents curved hoops with high spatial resolution,
and allows for interstitial volume through separate representa-
tion of adjacent cell boundaries, unlike vertex models [24, 27, 30—
32]. It offers the topological freedom to simulate spontaneous
engulfment, splitting, fusion etc., controlled by a minimal set
of parameters. System sizes in the order of a million hoops
can be simulated on conventional computers, and we report
the serial and parallel computational performance in easy-to-
reproduce benchmarks. Combining computational performance
with spontaneous topological changes, we expect PolyHoop to
bridge the gap between microscopic events such as cell fusion,
and macroscopic tissue structure or function, in future compu-
tational research.

2 Physical model

2.1 Continuum description

PolyHoop simulates the Newtonian dynamics of ensembles of NV
closed hoops representing the boundaries of interacting fluidic

particles (biological cells, gas bubbles, fluid droplets etc.). The
interior €2, of particle p is not explicitly modeled; instead, we
parameterize the position of its boundary with the vector field
7(1) = [z(1),y(D)] " € 89, (Fig. 1A), and describe the ensemble
by the potential energy

N
v=> Ko a) — Apo)? 4 4Ly + o B Fo2) g
= 2 P p,0 YLp ; B 2“
p=1

N
ydl+Y Uni(p, Q)> :

q=1

+ pgdpSzp + PR j{

Ie
(1)

The first of the six terms in U is a linearized form of elastic
compression with a 2D bulk modulus of the enclosed medium
of kaAp,0, penalizing deviations of the current particle area A,
from a target area Ap0. The second term represents line tension
with strength v and hoop length L,. In the third summand, we
account for linearly elastic tension, compression and bending
of each hoop by integrating over their reference contours with
length Lpo. In the integrand, e = ||di/dl|| — 1 is the local
Cauchy strain, xk = Hdzf'/deH the local curvature, [€ [0, Ly o]
the arclength parameter running along the hoop’s contour, ki
and kp the elastic dilatation and bending moduli.

To model floppy elastic particles, we couple their target areas
and perimeters through the circularity index
47];‘3”’0 €[0,1]

»,0

C =

(2)

which equals 1 for an unstrained circle. This coupling is uni-
directional, defining the hoop length L, o from a given area
Apo-

With the fourth energy term in Eq. 1, we model hydrostatic
pressure, relevant primarily for the simulation of vertical bubbly
liquids and emulsions. ¢ is the gravitational acceleration, p the
2D mass density difference between the inner and outer media,
and ¢, = 1 a binary flag indicating the “phase” enclosed by
hoop p. In a biological context where the particles represent
cells, ¢, may for example be used to discriminate the cell cytosol
from intra- or extracellular components, such as organelles, the
extracellular matrix, etc. In simulations of a binary immiscible
fluid, it discriminates between bubbles and the medium. The
sign convention is such that a submerged particle p containing
phase ¢, = —1 is buoyant, if p,g > 0. S;, is the particle’s
first moment of area (defined in Eq. 14). With the fifth energy
term, we allow for a complementary representation of gravity,
acting on the particle boundary 909, instead of its bulk ©,. g
is the gravitational acceleration for the hoop contour, and p;
its line mass density (mass per unit contour length). The sixth
and final energy term in Eq. 1 is a double sum running over all
particle pairs (p, ¢q), accounting for bilateral interactions with
an interaction potential

Uit (b,) = 27 f f (slgly) digdly, (3)
09, J o9,

where s(lq,lp) = ||7(lp) — 7(lg)|| — h is the spatial separation
between the hoops p and g at their arclength positions I, and [,
and h > 0 is the (virtual or physical) hoop thickness (Fig. 1A).
The interaction density u(s) implemented in PolyHoop models
steric repulsion and adhesion in the perhaps simplest possible
way, such that a piece-wise linear traction-separation law results
from it, divided into three zones (Fig. 1B). Upon volumetric
overlap (negative separation s), hoop segments repel each other
with repulsion strength k.. If the separation is positive, hoop
segments attract each other with adhesion strength ki up to

— e -
A N\ edge /;’ B kysp F---------5 ;
‘\\ elasticity 4 i
\ - o : \
) \ - =S | Sh
bending » Ihesion £ ki ! ks = khf
! =z B | Ss
. ¢ = e . ! .
Isi / 0917 ISIRZ) fadhesion ! adhesion
repulsive / 56 g hardeni i ftenine
ardening! softe
comtact ¥ g8 iardening! softening
zone | zome
-h Sh Sh+Ss
separation s
. h
tension repulsion -«
i+1 1ok
Ky zone s
thickness h il

Figure 1: Two-dimensional soft polygon model. A,
Model overview. Particles or cells are represented by inter-
acting polygons (colored) with edge thickness h. B, Trilinear
normal contact force model, governed by four material parame-
ters ky, kn, Sh, Ss. Positive forces represent attraction, modeled
by a classical bilinear traction-separation law (slopes kn and
—ks). s = 0 corresponds to two segments just touching. C, Cell
division model. Cells whose area exceeds a division threshold
are cut in half in direction of the minor axis (d@, orange) of their
inertia ellipse (blue), removing too close vertices (white). The
two new edges (red) are then refined to restore the desired mesh
resolution. D, Fusion model. Polygon pairs whose (negative)
separation s subceeds a fusion threshold Oh — h are merged
by breaking up and rejoining their edges. White vertices are
removed. Two fusion types are modeled: I: merger of two touch-
ing polygons (top); II: split of a self-touching polygon into two
(bottom). Both types can involve external or internal (enclosed)
polygons. Internalized or externalized polygons are reoriented
into anti-clockwise (blue arrows).

a maximum separation sp, beyond which the adhesion softens
all the way to zero again at s = s, + ss to ensure a continuous
force transmission. Formally, this can be expressed by

kps? s<0
1 kns? 0<s<sp
us) =3 Enst 4 ko(s — 1) (285 + sn — 8) sn < 5 < sh + 56
khsﬁ—i—kssg Sh+8s <s

(4)
where ks = knsn/ss is the adhesion softening strength. The
resulting normal force density is then given by the derivative
w.r.t. the separation,

ks s<0

u'(s)z kns 0<s<sp ’ (5)
ks(sh+ss—s) sn < s<sp+ss
0 Sh+8s < s

Note that this model allows for self-interactions (p = ¢), which
are relevant especially for floppy particles (small C or small ka).
To exclude false detection of steric repulsion between nearby
segments of the same hoop, we set u(s(lq7 lp)) =0if bothp =g¢q

and the arclength distance between the contacting points is too
short, i.e., ||l — lg|| < h. Moreover, we let adhesion act only
between pairs of different hoops by setting u(s > 0) = 0if p = q.

2.2 Discretization as polygons

We discretize the particle boundaries as polygons that automati-
cally remodel if needed to maintain a uniform spatial resolution.
Each polygon consists of a list of vertex positions 7; = [z;, yi]T,
i=1,..., Mp. The particle area is calculated with the shoelace
formula, a special case of Green’s theorem:

// dwdy:%% rdy —ydzx
Qp a0,

Ti ATj = ZiYj — T;Yi

M,

1 R
5 Z T N\ Tit1 (6)

=1

~
~

Ap =

(7)

is the 2D exterior vector product. The vertex list is cyclic,
i.e., FM;,H = 7. For vertices arranged in counter-clockwise
orientation, as implemented here, the absolute value bars can
be dropped. From the polygon edges €; = 7iy1 — 75 (Fig. 1A),
the hoop length can be approximated as

MP
Ly :7{ dr ~ >l
oQp i—1

(8)

where

L= @l = V(@1 —)2 + (i1 — v:)°- (9)

For the elastic line integral in Eq. 1, we sum up the squared
edge strains €; = l;/l;,0 — 1, weighted by the reference edge

lengths ; o:
Lpo Mp
/ {:‘2 dl%ZE? li,o
0 i=1

For the bending energy, we follow the discretization proposed

(10)

in [53]:
Lpo Mp
/ K2 dl = Z lif li,o (11)
0 i=1
with nodal curvature
fy = - 2€;i_1 N\ €; (12)

li,o(li—1,0l5,0 + €i—1 - &)
and an average reference length of the edges incident on node i,

li—i0+ Lo

, (13)

lip =

To discretize the gravitational potential acting on the particle

area, we require the first moment of area of each polygon, Sz .
It can be computed as [54]

My

1 I
Sup = //Q ydudy ~ & Z(m ATir1) (Wi + Yir1). (14)

P =1

To discretize the boundary gravitational potential, we introduce
the nodal mass m; = pil;. As we will later dynamically adapt
the polygonal discretization to keep edge lengths in a predefined
range, these nodal masses do not vary greatly. Depending on the
use case, and in particular with fluidic interfaces in mind, where
the polygon vertices represent the interfacial shape but carry
no mass, small differences in nodal inertia may be irrelevant or
even undesired. We therefore harmonize the vertex masses to a
constant value m, and will later remove this mass scale entirely
by expressing all massive parameters relative to it. With this

simplification, the contour mass density p; is eliminated from
the model and the boundary gravitational potential becomes

My,

MP
pLG1 j{ ydl = pg Z yili = gim Z Yi
0Qp i=1 i=1

such that the effect of it on all polygon vertices is a constant
uniform downward acceleration g;.

(15)

Finally we also discretize the interaction potential. Eq. 3
becomes a double sum over all pairs of vertices,
M, M,
Uini(p, q) ~ m? Z Z u(sij) (16)
i=1 j=1

subject to the condition that the interacting vertex pair i, j is
either on different polygons (p # ¢), or else, further than h
apart along the polygon and the contact is repulsive (s;; < 0).
si; denotes the separation between vertex ¢ on polygon p and
its closest point of approach on the two edges incident on vertex
j on polygon q. Note that this definition is asymmetric, hence
the full symmetric double sum in Eq. 16. Formally, this can be
expressed as

8ij = 56@31] [75(€) = 7ill = h (17)
where
) P4 € —) €20
m@)-{J (i1 =75) (18)
7+ &(F—1—75) £€<0

is the closest point on the two edges next to vertex j. The
barycentric edge coordinate of the closest point of approach, &,
allows the resulting interaction forces to be distributed to the
involved vertices in proportion.

2.3 Vertex forces

From the discretized potential, the conservative nodal forces
can be derived. The gradient w.r.t. the degrees of freedom of
vertex i of polygon p reads

V.U = {aU /ayi]
k n g ng nd —
~— ?a(Ap — Apo)iti +y (tifl - ti) + Kk (Eiiltiil _ Eiti)

ok (o é’f_%* ;i—1€5—2 Ca i + aigé',- —@1)

lic1bi—1 1,b;
@it + aip1 @i
+ ait1 MH)

litv1bit1

_ P9%p

6 ((yi—l + yi + Yit1)7 — [i]) + |:?7391:|

N N Mp M,
D)3 B WAL
p=1 g=1 i=1 j=1
(19)
Here, we used the following notation:
(@1 +&)" (20)

M =
is the unnormalized inward normal vector at vertex ¢ (Fig. 1A),
€i

i-d

i

(21)

the unit tangent vector (director) of the edge following vertex
i, and

N N N
ai = —, di =€;—1 N €, bi =li—1li + €-1 - €;.

d;
. (22)

With the + symbol we denote the perpendicular vector:

-6

Notice that in Eq. 19, we assume inextensibility of the polygon
edges in the bending forces for simplicity, as proposed in [53].
Moreover, to avoid the discontinuity in the coordinate of the
closest point of approach between interacting hoop edges [55],
we set 61{ = 0, such that the contact forces are applied in
normal direction, which considerably simplifies the interaction
expression:

(23)

() = 7
175 (&) — 73l
Finally, we note that the quadruple sum in the interaction
term in Eq. 19 is sparse and need not actually be evaluated
as such, because the interaction forces are local (u'(s;;) = 0 for
Sij > sn + Ss). Instead, spatial partitioning can be used to find
non-zero contributions efficiently (see Sec. 3.4).

With the gradient of the potential defined, we can express
the vertex forces. The total force vector acting on vertex ¢ is
the sum of conservative and dissipative forces:

= —
—Visij = =

(24)

—

fi= —ﬁiU—Cvﬁ'—%

= —

T3 Mg F’L_Z, ccVL + MHJ?LH%
i Hv” H

(25)
Here, the first force term combines all conservative forces derived
from the potential, including steric repulsion and adhesion. The
second term models viscous damping with a global coefficient
cy. As a second mode of energy dissipation, we include drag
(third force term), which is proportional to the squared vertex
velocity, as well as to the edge length, via Eq. 20. cq is the
dimensionless drag coefficient, and p the mass density difference
between the inner and outer phases as used in Eq. 1. In the
fourth term, we sum over all global pairs of interacting vertices
(7,7) and add, for each interaction, a collision damping term
in normal direction with coefficient c., and a frictional force in
tangential direction with dynamic Coulomb friction coefficient
1, proportional to the modulus of the normal interaction force

fiL= mQUI(Si]')’r_iij — CcUy. (26)
To arrive at this decomposition, we split the relative velocity
Ui = 75(€) — 7

(with £ from Eq. 17) into a perpendicular and a parallel part:

(27)

UL = (Ui - i) ij, U = Uiy — UL (28)
Friction is only added if ||17” H > 0. Finally, using the total
forces, Newton’s second law is solved for each polygon vertex:

mi; = f; (29)

3 Numerical implementation

3.1 Remodeling

PolyHoop is designed to enable arbitrarily large deformations.
For applications in fluid dynamics or tissue biology, where the
hoops represent fluidic interfaces, lipid bilayers, etc., dynamic
remodeling of the particle/cell boundaries is essential to main-
tain good quality in the polygonal discretization. The polygons
are automatically remodeled in each timestep to maintain an ap-
proximately uniform spatial discretization. Edges whose length
exceeds a maximum value, l; > Imax, are bisected, introducing a
new vertex in the middle. Edges whose length subceeds a mini-
mum value, l; < lmin, are removed by merging their two vertices

into one, positioned at the edge midpoint. Edge lengths thus
remain in a predefined range, l; € [lmin,lmax|. These refining
and coarsening steps intentionally break mass and momentum
conservation of the particle boundaries 0€2, to enable massive
growth, as vertices with mass m are added or removed. They
do, however, conserve the masses of the enclosed particles €2,
themselves, as their target areas A, o are unaffected.

3.2 Polygon growth, removal and division

PolyHoop can grow or shrink polygons over time by changing
their target area according to

dApo
dt

where « is a constant area growth rate. For example for tissue
simulations with biological variability, o can be drawn from
a random distribution for each cell individually. Polygons are
grown only if A,/A, 0 exceeds a threshold 8. Setting 8 > 0 can
be useful to avoid excessive pressure buildup in the interior of
dense systems (for example due to fast growth or strong viscous
forces), whereas 3 = 0 effectively disables this restriction.
Polygons whose area drops below a specified minimal value,
Ap < Amin, are removed. This feature is useful in particular
for the simulation of cell extrusion from epithelial monolayers,
through apoptosis, active contraction, or overcrowding.
Primarily for biological applications of proliferative tissues,
polygons (cells) are divided into two when their area exceeds
a threshold value, A, > Amax (Fig. 1C). Like the growth rate,
the maximum cell area Apax can be cell-specific and drawn
from a random distribution to introduce cell-to-cell variability.
Division is set to occur always through the centroid [54]

Mp
c 1 T 1
=% = — drdy = — 7 AT FitTit1)-
Cp [cy] A, //Qp LJ] T dy 6A, ;(T i) (FitTig1)

(31)
The long axis rule is implemented, according to which cells di-
vide in direction of their longest extent. To find the division axis
@ perpendicular to it (Fig. 1C, orange), we use the eigensystem
of the cell’s inertia tensor, which is an intuitive way to define a
cell’s orientation in space by approximating it by its own inertia
ellipse (Fig. 1C, blue). For a polygon with uniform unit mass
density, the inertia tensor reads [54]

=a (30)

Mp
_1 - vz iy
Jp = 1 Z;(n A Tit1) {iw iyy] (32)
i—
where

. 2 2

lez = Y; + YilYi+1 + Yit1

lyy = T3 4 Timigr + LE?+1 (33)

loy = TiYi + Tiv1Yit1 + (TiYir1 + Tit19:)/2

The inertia tensor about the polygon centroid can be computed
by applying the parallel axis theorem, resulting in

Ioow I c? —CzC
= [I Iy] :JP_AP{ Y 2'@ (34)
Ty vy

—CzCy ca
I, is symmetric positive semi-definite, its eigenvalues are the
principal moments of inertia, and its eigenvectors are the prin-
cipal axes. The shortest axis is the eigenvector with the largest
eigenvalue A. An efficient and robust way to find this (unnor-
malized) axis @ numerically is [56]

I .
{A B 12] if Lw < Iyy

|:)\ - Iyy:| else

Loy

a=

(35)

with

Iyy.

A=Al + I, + /A% + I2,, Al = I”%

(36)

Note that for a perfectly rotationally symmetric polygon, I, =
Iy and I, = 0, resulting in @ = 0. In this special case, a
random division axis is drawn instead.

With the line of division defined, the polygon is cut into two
at its points of intersection with the division line, and vertices
are iteratively removed if necessary to prevent overlaps between
the two newborn daughters (Fig. 1C, white dots). The polygons
are then resealed with straight lines (strained equally to the re-
mainder of the polygon), and the edge remodeling algorithm
outlined above restores the desired spatial resolution (Fig. 1C,
bottom row). The mother cell’s target area is distributed to its
children in proportion to their actual area, and both children
finally draw new (random) area growth rates « and division
areas Amax. Note that just like the remodeling operations, cell
divisions do not conserve the total cell perimeter. This im-
plementation is based on the assumption that cells synthesize
or degrade the necessary membrane material at short enough
timescales during growth and mitosis, and would need to be
altered if a different behavior is desired.

3.3 Polygon fusion

Topological changes are the most computationally demanding
and programmatically complex part of PolyHoop, making up
more than a third of the code and accounting for about half of
the total runtime in a typical simulation when enabled. Aside
from division and removal described above, two further types of
topological changes (I and II) are implemented, which increment
or decrement the number of polygons in the system, subsumed
under “polygon fusion” here (Fig. 1D). Type I refers to the
merger of two touching distinct polygons into one, which decre-
ments the polygon count. Type II refers to “self-fusion”, i.e.,
the splitting of a polygon into two due to two distant segments
of the same polygon touching, which increments the polygon
count. Both fusion types can occur in two variants each: For
Type I, the two touching polygons may either be external to
each other (as shown in Fig. 1D, top row) or one inside the
other. Conversely, for Type II, the newly spawned polygon may
either be outside the existing one or inside (as shown in Fig. 1D,
bottom row). When polygons internalize or externalize in this
process, they are reoriented into anti-clockwise vertex order, as
PolyHoop requires all polygons to be anti-clockwise for simplic-
ity. Whether a polygon is enclosing the other is tested with an
efficient ray casting algorithm [57] during the fusion event.

Fusion events are triggered based on the local degree of mu-
tual interpenetration of pairs of polygon segments, which is
equivalent to contact stress criteria that depend on the mutual
contact depth, such as in Hertzian models. We opted for a min-
imal, generic model with a single, intuitive and easy-to-control
parameter, the fusion threshold 6 € [0,1]. If § = 0, the fusion
feature is disabled. If § = 1, polygons fuse immediately when
they come in physical contact. In general, a value in between
lets polygons fuse when they press against one another suffi-
ciently to let s + h < 6h, with a negative separation s between
polygon segments (Fig. 1B). When this overlap criterion is met,
the polygons are broken up and their vertices are iteratively re-
moved in the vicinity of the closest point of contact, until they
lie sufficiently (i.e., a minimal distance of h) apart such that the
two gaps can be rejoined without residual overlaps (Fig. 1D).
Like remodeling and division, the fusion process is designed not
to conserve the total polygon perimeter precisely.

Table 2: Model parameters. In the parameter dimension, M represents mass, L length, T time. Masses are normalized in

our implementation (M = 1). Default values produce an exponentially growing epithelial tissue.

Symbol Default value Constraints Dimension Description
Geometric parameters
h 0.01 >0 L Edge thickness
lmin 0.02 >0 L Minimum edge length
lmax 0.2 > 2lmin L Maximum edge length
C 1 0<C<1 — Target circularity index
@ 1 — L%/T Area growth rate
B8 0.9 >0 — Minimum area fraction for growth
Amin 0 >0 L? Minimum polygon area (for cell removal)
Amax T > Anin L? Maximum polygon area (for cell division)
Sh 0.01 >0 L Adhesion hardening zone size
Ss 0.01 >0 L Adhesion softening zone size
0 0 0<6<1 — Fusion threshold
Material parameters
ka 10° >0 M/L2T2 Area stiffness
vy 10° — ML/T? Boundary line tension
ki 104 >0 ML/T? Tensile rigidity
ky 0 >0 ML3/T? Bending rigidity
ky 107 >0 1/ MT? Repulsion stiffness
kn 10° >0 1/MT? Adhesion stiffness
I 0 >0 — Dynamic Coulomb friction coefficient
p 0 — M/12 Fluid mass density
Other parameters
g 0 — L/T? Gravitational acceleration
q1 0 — L/T? Edge gravitational acceleration
Cy 10 >0 M/T Viscous damping coefficient
Ce 30 >0 1/T Contact damping coefficient
ca 0 >0 — Drag coefficient
At 1074 >0 T Time increment
m 1 fixed M Vertex mass (not in the code)

3.4 Contact detection

Hoop interactions, if enabled, can make up a large fraction of
the overall computational cost, because generally, any pair of
vertices can be in contact. To reduce the quadruple sum in
Eq. 19 to effectively a double sum running over all polygons
and their vertices, we employ spatial partitioning [58] using
linked lists. Within the global bounding box of all polygons, the
simulation space is divided into square boxes with side length
max;{l; } +h+sn+ss, which ensures that interacting vertex pairs
are no more than one box apart. Instead of the current largest
edge length max;{l;}, the upper bound lmax could also be used
for simplicity, but we observed generally better performance
with the former. A global array then stores a pointer to the
first vertex in each box, and each vertex holds a pointer to the
next vertex in the same box. Checking for polygon interactions
then reduces to a loop over all vertices i and a loop over all
vertices contained in the local group of 3 x 3 boxes around 1.
This procedure reduces the time complexity of contact detection
from squared to linear in the number of vertices. The boxes are
recomputed in each timestep for simplicity.

3.5 Time integration

For the discontinuous evolution of a particle system with in-
stantaneous topological changes as implemented in PolyHoop,
multi-step or implicit time integration methods are difficult to
formulate. We therefore propagate the vertex positions 7; and

velocities ¥; with the semi-implicit Euler method:

Ty « T + At fi/m

oA G7)
7 < T + At T;

where At is the timestep size. Since we eliminated all masses

from the program code (m = 1), the vertex forces f; are effec-

tively accelerations.

4 Applications

PolyHoop can be applied to a broad range of 2D elastic or free
surface problems governed by effectively 24 physical parameters—
eleven geometrical, eight material, and five others (not counting
the numerical time increment). Table 2 lists them all, including
constraints that need to be respected, and a set of simple default
values that quickly produce usable simulation output and may
serve as a starting point to find working parameters for specific
applications. We now showcase a selection of scenarios that can
be represented with these 24 model parameters.

4.1 Biological tissues

We start with a series of biological examples. The classical
application is a growing epithelial monolayer tissue. Fig. 2A
and Movie 1 show a simulation with about 1000 cells with
thin membranes (h = 0.01) whose equilibrium shape is a cir-
cle (C =1). The cells are adhesive, mildly compressible, and
their membranes are governed by cortical tension and relatively

A Growing biological tissues | |B Cell migration/ aggregation| | C Vesicles, layered epithelia | | D Floppy particle packing |

SRAERS IO 10
"3§¥:;‘ *%,._
0

Figure 2: Scope of representable systems. Example simulations ranging from the growth of biological monolayer tissues
(A), active matter such as migrating and aggregating cells (B), vesicles and layered epithelia (C), highly amorphous materials
composed of floppy particles with excess perimeter (D), packing of elastic rubber bands (E), foams with various degrees of fluid
content and bubble dispersity (F), emulsions with arbitrarily nested, fusing and separating drops (G), to arbitrarily complex and
curved domain shapes (H). Model parameters are specified in Table 3.

Table 3: Model parameters for the simulations shown
Table 2 for an explanation of the parameters.

in Figs. 2—4. All simulations use a timestep of At = 107%. See

Flg h lmin lmax C « ,B Amin Amax k‘a '7 kl kb kr kh Sh Ss 8 /.L g gl p Cv Cc C4
2A 0.01 0.02 0.2 1 varf 0 01 x 10° 10* 10* 0 107 10° 0.01 001 0 00 O 0 20 30 O
2B 0.01 0.02 0.1 1 0 0 0 oo 10° 10* 10° 0 0° 0 0 0O 0 00 O 0 20 30 0
2C 0.01 0.02 02 7w/4 — — 0 oo 10° 10° 10* 0 10° 10° 001 001 0 00 O O 5 30 0
2D 0.02 0.02 0.04 1/3 — — 0 o0 10° 010° 1 10° 1 02 02 0 00 0 0 10 30 O
2E 0.05 0.01 0.04 1 0 0 0 o 0 0 10° 102 07 0 0 O 0 0010 0O 2100 O
2F 0.01 0.01 0.04 — 0 0 0 oo 107 10° 0 O 107 25002002 0 00 2 001 30 0
2G 0.01 0.01 0.03 — 0 0 0 o0 107102 0 0 10° 0 0 008 01 010° 1 30 1
2H 0.04 0.05 0.2 1 0 0 0 oo 10° 10* 10* 0 5x107 10* 002 002 005010 0 1 30 O
3 0.01 0.02 0.1 1 109 0 wvart 10° 10° 10* o0 107 10° 001 001 0 00 O O 2 30 O
4AB 0.01 0.02 0.2 1 1 0 0 ~ 10* 10° 10* 0 107 10° 0.01 001 0 00 O O 2 30 0
4CD 0.01 0.02 02 +3/24 0 0 0 oo 10* 10° 10* 0 107 10° 001 001 0 00 0 O 2 30 O

fRandomly drawn from a normal distribution with a mean and standard deviation of 1 (including negative values).
fRandomly drawn from a lognormal distribution with mean 7 and coefficient of variation 0.3.

weak line elasticity (Table 3). Bending, fusion, friction, gravity,
and drag are disabled by setting their respective coefficients
to zero. The simulation starts with a single cell with unit ra-
dius. Cells divide upon reaching an area of Amax = m, and
grow at a rate drawn from a normal distribution for each cell
independently. For demonstration purposes, negative growth
rates are allowed here, and cells undergo apoptosis (i.e., they
are removed) when they become small. As shown in the closeup
in Fig. 2A, the cells end up being non-convex, with curved mem-
branes. Simulations like these are widespread in computational
biology and in essence reproducible with existing software [4—
6, 9, 11, 13, 15, 23, 25, 26]; with PolyHoop, they now run in a

few minutes. To demonstrate the quantitative agreement with
similar programs, we reproduced PalaCell2D simulations [23]
that previously predicted the distribution of cell shapes in a
viscous tissue growth scenario (Fig. S2A), as well as LBIBCell
simulations [13] that helped explain Lewis’ law [59] (Fig. S2B)
and the Aboav-Weaire law [33] (Fig. S2C), two empirical re-
lationships between cell size, shape and organization in planar
epithelia.

PolyHoop is also suited to study active motion (motility),
migration, collective behavior, or aggregation/segregation. Al-
though this is not implemented in the supplied default code, a
localized attractor, for example, can be added with a single line

1 cell .
10 cells }

 J
g,
100 1 ," ,""

cells “og v
v

‘.ﬁ&‘

2,

1000 L
cells Nsi;% %
%

e

100,000 cell

1 million cells

young

Figure 3: Organ-scale biological tissue simulation. The color represents the relative cell age in the entire tissue; upon
division, one daughter cell starts at age 0, while the other inherits its mother’s age. The snapshots are not to scale; each uses its

own color scale. Model parameters are specified in Table 3.

of additional code, to model chemotaxis, durotaxis, or similar
phenomena. In Fig. 2B and Movie 2, we picked 20 cells at
random (red) and let them migrate toward a single point with
a radial attractive potential. With such simulations, open 2D
problems in cell motility [60] may be addressable efficiently.

Also non-confluent, structured tissues can be represented.
Fig. 2C shows an example simulation with epithelial vesicles
(brown cells) arranged in monolayer rings surrounding a lumi-
nar region (light blue). The parametric setup is similar to the
previous examples (Table 3), with the notable exception that
we set the circularity index to that of squares, C' = 7/4, such
that in absence of bending and cortical tension, the cells are
mechanically satisfied with a rectangular shape.

4.2 Amorphous materials

A further field of application is the study of amorphous mate-
rials and their dense packing, jamming, rheology, etc., in the
spirit of recent numerical work [16, 41, 61]. To illustrate an ex-
treme case, we close-packed an ensemble of polydisperse floppy
particles with excess circumference (C = 1/3) (Fig. 2D). For
this simulation, the particles were set to be mildly compressible,
weakly adhesive, with a slightly thicker boundary (h = 0.02)
driven by line elasticity and weak bending rigidity (Table 3).
Line tension, gravity, friction etc. were disabled. The resulting
configuration exhibits interlocked particles with tight local folds
to accommodate the long boundaries. Although their genesis
may be different (i.e., without internal joints), these particle
shapes resemble those of the the puzzle-shaped epidermal cells
of Arabidopsis thaliana leaves [62].

4.3 Elastic bands

To showcase an application dominated by bending and gravi-
tational forces, we simulated the downfall and packing of 50
thick elastic bands. Boundary gravity (p1 = 10) compresses
the initially vertically piled-up circular rings to the point where
they partially align into parallel bundles (Fig. 2E). For an an-
imated version, see Movie 3. For this simulation, we set the
area stiffness, line tension, and adhesion parameter values to
zero, but increased the thickness and bending rigidity (Table 3).
PolyHoop thus enables simulations of the packing of elastic

rods (previously performed on linear rods [55, 63]) with circular
hoops.

4.4 Foams and emulsions

Also belonging to the class or amorphous solids, but worth
mentioning separately here for their historical significance (cf.
Table 1), are foams and emulsions. A relatively wet foam is
shown in Fig. 2F, produced by letting a polydisperse collection
of nearly incompressible bubbles, initially circular in shape and
randomly placed in the plane, drop under the action of gravity.
Governed by surface tension and weak cohesion (Table 3), the
bubbles deform and coalesce into a foamy structure with a free
upper surface (Movie 4). In equilibrium and for sufficiently dry
foams driven by surface tension alone (ka,~, k: > 0, ki, kb, kn =
0), PolyHoop satisfies Plateau’s rules [64], of which there are
three in 2D: i) the bubble surfaces are smooth closed loops, ii)
bubbles always meet in groups of three at vertices called Plateau
borders, and iii) they do so at angles of 120 degrees (Fig. S1).

Perhaps technically the most challenging application in this
exhibition is the simulation of a binary emulsion in which oil
drops in an aqueous medium freely fuse and split (Fig. 2G). In
this simulation, we use a mass density difference of p = 103
between the two phases to let the oil drops float upward in
response to hydrostatic pressure, slowed down by drag (cq = 1)
(Table 3). With a fusion threshold of 8 = 0.85, oil drops press-
ing against each other merge, broken bubble boundaries retract
driven by interfacial tension, and a free water-oil interface forms
naturally, separating the two phases (Movie 5). Note that Poly-
Hoop poses no limit to the recursion depth in the drop-in-drop
cascade. For demonstration purposes, we placed water droplets
in the oil drops here, which are then joined by further droplets
that spontaneously form from the interfaces breaking up when
drops fuse. The entire simulation completes in about 10 minutes.
Simulations of this kind may for instance be used to advance
earlier 2D foaming studies [20, 22] to a regime involving larger
topological rearrangements.

4.5 Complex geometries

PolyHoop offers native support for arbitrarily shaped geometri-
cal domains and obstacles. We demonstrate this with a simula-

tion of about 1000 soft sticky particles dropping in an hourglass-
like geometry with four additional curved objects in the way
(Fig. 2H, Movie 6). For this simulation, we also turned on fric-
tion (u = 0.5, Table 3). Rigid objects, which can serve both as
confining bounds and obstacles, are implemented in PolyHoop
with a simple, flexible approach requiring minimal coding: They
are treated as normal particles, with two exceptions: They are
not coarsened to maintain a preset resolution of curved regions
(but refined to ensure I; < lmax, enabling efficient local contact
detection), and their vertex positions are not updated to make
them immobile. This delegates the geometric definition of rigid
domain boundaries to the input file (see Sec. 6), and renders
specialized collision handling with primitive shapes unnecessary.

4.6 Large-scale simulation

Finally, we return to a biophysical application to demonstrate
the scale PolyHoop can reach. A strongly proliferative, cancer-
like tissue is grown from a single cell to a million cells (Fig. 3).
To our knowledge, this is the first published report of a com-
parable simulation exceeding 10,000 cells with high bound-
ary resolution. Cell boundaries have a mean resolution of
M = (1/N) Y7 M, ~ 72 vertices, totaling in about 72 million
simulated vertices in the final tissue. At around N ~ 10* cells
(Fig. 3, bottom left), we observe a transition from spatially uni-
form cell proliferation to a radial gradient in the relative cell age,
with a central region where the compressed cells (blue) are able
to grow to their division area only sporadically, and a rugged
rim consisting mainly of very young, proliferative cells (red).
Closeups reveal regions exhibiting sharp cell age boundaries
within the tissue. This example demonstrates how organ-scale
emergent features can be studied with PolyHoop without relin-
quishing cellular fidelity. See Movie 7 for an animated version.

5 Parallelization and computational efficiency

Up to caching effects, the total serial time complexity for simu-
lations with PolyHoop is O(NM D), where N is the number of
polygons, M is the mean number of vertices per polygon, and
D = N¢Ns is the simulated time duration in units of steps. The
number of output frames, N¢, and the number of time steps per
frame, Ns, are simulation output parameters that can be set in
the code. The runtime of the program thus scales linearly with
the total number of vertices, NM. Higher spatial resolution,
temporal resolution, or number of simulated polygons affect the
runtime proportionally.

PolyHoop is parallelized for shared-memory computers, us-
ing OpenMP. With just six omp parallel for directives, the
main loops for bounding box computation, force computation,
polygon interactions, fusion testing, remodeling, and time prop-
agation are parallelized without explicit use of threading ex-
pressions, leaving the serial flow of the source code untouched.
Three relevant code segments are not parallelized: I/0, the con-
struction of neighbor lists (because of speedup limitations [65]),
and the execution of topological changes. The latter is due to
changes in polygon count and the involvement of polygons in
multiple topological changes in a single timestep, which makes
it challenging to apply simple parallelization strategies.

To assess the computational efficiency in absolute terms, we
measured the wallclock time in a typical biological tissue simu-
lation with exponential growth on an ordinary modern laptop
computer using 8 threads. Starting from a single proliferative
cell, a tissue was produced by successive cell growth and division,
similar to Figs. 2A and 3, and the elapsed time was recorded
for each doubling of the cell count (Fig. 4A). For a few hundred
cells, we observe square-root time complexity in the number of

A. 1d T T T T . T C 4 T T T T T T
10h Absolute runtime - " Vertex updates
) s ’)
2 m S 3¢ 1
§ 10min 4 ?g) \‘\\‘\'
T <
% 1min . E A |
—_— i <
m 10s '8‘
j=}
1s 0
B 10GB T T T T T D 8 T T T T T L
Memory usage . Strong scaling .-
g —e— Measurement,
@ 1GB E wn 6 | === Amdahl’s law, P=93%
T Y Ideal case, P=100% >
n = 5 - B
+ 100MB E Al |
- :
‘R v 3t i
R 10MB E
2 L .
L L L L 1 Il

1 2 3 45 6 7 8
Number of threads T'

MB Lo -
10° 10" 102 10% 10* 105 106
Number of cells N

Figure 4: Computational performance. A, B Runtime
and memory usage for a biological tissue simulation (depicted,
cells colored by neighbor number) with exponential growth start-
ing from a single cell. Number of threads 7' = 8, mean number
of vertices per cell M ~ 50. Asymptotic time and memory com-
plexity exponents are indicated (dashed lines). C, D Parallel
scaling in a hexagonal dense packing simulation without growth
or cell division (inset). N = 10° cells with M = 48 vertices
each. Amdahl’s law: S = 1/(1 — P + P/T), where P is the
parallel fraction. Runtime and scaling tests were performed
on a MacBook Pro with an Intel Core i9-9830H CPU (8 cores,
2.30 GHz). I/O was excluded from the measurement. Model
parameters are specified in Table 3.

grown cells N, presumably due to cache locality. In an inter-
mediate range with some thousand cells, the runtime increases
linearly with the number of cells, until about N = 10*, which is
reached in about 12 minutes at a resolution of M = 50 vertices
per cell. Beyond that, the runtime is superlinear with power-
law exponent 4/3 due to a slow-down of proliferation caused by
pressure building up in the interior of the tissue, which can in
principle be avoided with lower growth rates. A time complexity
of O(N*/?) is also observed in similar simulations in 3D [66].
A tissue consisting of N = 2'7 = 131,074 cells is grown in less
than six hours. For this performance benchmark, we excluded
I/0 and cell fusion testing.

In an analogous simulation, we measured the memory usage
under Red Hat Enterprise 7.9 and found the expected asymp-
totically linear scaling (Fig. 4B). The total memory complexity
is thus O(NM). Each vertex uses 72 bytes of memory in IEEE
double precision on a 64bit architecture: 7 floating-point num-
bers for the vertex position, velocity, acceleration, and target
length of the adjacent edge, and 2 indices or pointers for the
polygon affiliation and forward vertex linkage in the space par-
titioning grid. Including per-polygon data of 64 bytes each, the
spatial grid, temporaries, and bookkeeping overhead, we mea-
sured an overall memory requirement of about 120 bytes per
vertex in a typical tissue growth scenario. A simulation with
N = 10* polygons, consisting of M = 50 vertices each, therefore
requires approximately 60 MB of main memory in total. A large
high-fidelity simulation with N = 10° polygons, consisting of
M = 100 vertices each, will consume about 12 GB, and will thus
still easily fit into the main memory of most ordinary modern
computers.

10

PolyHoop scales well on multi-core CPUs. The number of
vertex updates that are performed per second and per thread
in a large hexagonal close-packing setting (Fig. 4C, inset), in
which all interior edges are in active contact with neighboring
polygons, drops by only a third from almost 3 million in serial
mode to about 2 million with 8 threads (Fig. 4C). We observe
the strong-scaling behavior to follow Amdahl’s law very closely,
with a speedup of S =1/(1 — P+ P/T), where P = 93% is the
parallel portion and T the number of threads (Fig. 4D). The
remaining 7% are largely due to the serial placement of vertices
into the spatial partitioning grid.

6 Usage instructions

PolyHoop was developed to be highly portable, but it requires
a compiler compatible with the C++11 standard. For multi-
threading support, the OpenMP 3.1 specification or newer is
additionally required. We tested it using GCC v4.8.2-12.2.0,
Clang/LLVM v3.6.0-15.0.7, and ICC v14.0.1-19.1.0. Compiling
PolyHoop is as simple as running

g++ —fopenmp -03 -o polyhoop polyhoop.cpp

or an equivalent command. PolyHoop can be compiled for serial
execution by omitting the OpenMP compile option.

To run a simulation, set the desired parameters in
polyhoop.cpp (lines 13-43), compile it, and execute the binary

by typing
OMP_NUM_THREADS=8 ./polyhoop

or similar. If PolyHoop is compiled with OpenMP support and
the number of threads is not specified, the selection of a suitable
number of threads is delegated to OpenMP.

PolyHoop reads in a mandatory input file named
ensemble.off from the current working directory, specifying
the initial configuration in GeomView’s Object File Format
(OFF) [67]. Since OFF specifies vertex coordinates in three
dimensions z,y,z, but PolyHoop uses only two (z and y), the
z coordinate is used to indicate the phase of the polygon con-
taining the vertex. z is expected to be an integer that, if odd,
denotes phase ¢, = 1, and if even, ¢, = —1. The input file only
specifies vertex positions; velocities are initialized to zero. The
first Ny polygons in the input file are treated as rigid obstacles
(see Sec. 4.5). N; can be set in the source file.

The creation of such input files representing suitable initial
starting conditions for different applications is left to the user.
The supplied default input file ensemble.off contains a single
40-node circular hoop with unit radius, as used in the tissue
growth simulations showcased in Figs. 2A, 3 and 4A,B. The
default parameter setup (Table 2) grows a 128-cell tissue out
of this single initial cell in about 20 seconds on an Intel Core
i9-9880H CPU using four threads.

PolyHoop writes the simulated configurations at specified
time intervals (every Ns timesteps) to the current working di-
rectory, naming them frame’,06d.vtp. With each output frame,
a single-line status report is printed to the command line. The
output files are in the VITK ASCII polygon format [68]. For
each polygon in the ensemble, they store the area, perimeter and
coordination number (the number of other polygons each poly-
gon is separated from by a distance shorter than sp + ss). The
simulation output can be visualized and animated by opening
the VTK file series in ParaView (https://paraview.org). For
non-convex polygons, the Extract Surface and Triangulate
filters need to be applied to ensure correct visual representation.
Similar to the input file, the phase ¢, of each polygon is stored
in the unused z coordinate of the output VTK files, as a binary
flag 2 = (6 + 1)/2.

11

7 Discussion and outlook

PolyHoop is an exceptionally lightweight standalone program
that enables the simulation of a wide variety of dynamic phe-
nomena governed by constrained visco-elastic hoops in 2D, such
as monolayer tissues, emulsions, or other ensembles of soft de-
formable particles. PolyHoop stands out of the crowd of related
model implementations [13, 16, 23] in mainly three aspects:

e Topological flexibility. Hoops/polygons can be broken up
and rejoined, tissues can grow together or detach, new cells
can emerge through cell division or disappear by death or
extrusion, bubbles can merge or split up.

Computational performance. PolyHoop is designed to be par-
ticularly lean and efficient, making it the first of its kind (to
our knowledge) to enable large-scale simulations with hun-
dreds of thousands or even millions of polygons with high
spatial resolution. Biological tissue simulations of the size
of entire organs can be simulated on customary computers,
without requiring access to the brute force of cluster comput-
ing infrastructure or GPUs.

Accessibility. PolyHoop is completely free and open-source.
Comprising only just above 700 lines of compact, simple, com-
mented C++ code, it is easy to handle, extend and embed in
other programs. Importantly, it has no dependencies, mak-
ing it exceptionally independent and portable. Thanks to
the 3-clause BSD license under which PolyHoop is published,
both commercial and non-commercial uses are permitted.

With PolyHoop, computer simulations of 2D tissue morpo-
genesis enter a regime in which open questions at macroscopic
length scales can be addressed numerically with high spatial res-
olution of individual cells. Complex intertwined cell shapes have
recently been discovered in pseudostratified epithelia [69, 70],
and their role in organogenesis and patterning is a subject of
ongoing research [71]. Interkinetic nuclear migration, a process
in which migrating nuclei can strongly deform the cells, remains
largely mysterious [72]. Studying these phenomena in silico
requires models that offer a degree of geometrical flexibility
that allows to link cell shape to tissue function and morphology.
PolyHoop is a high-throughput tool that enables such simula-
tions not only with some dozens of cells, but with hundreds of
thousands.

A particular strength of PolyHoop, which also happens to be
a core application it was developed for, is the growth of pro-
liferative tissue to developmentally or medically relevant sizes,
and other morphogenetic events on that scale. The cell count
of the Drosophila wing disc (50,000 [73]), for example, one of
the most-studied organs in developmental biology, is reached in
about 1.5 hours on a typical modern 8-core CPU, with each cell
discretized by 50 vertices, starting from a single cell (Fig. 4A).
Another natural application is macroscopic growth of malignant
tumors (Fig. 3), which are linked to aberrant cell shape and
impairment of structural tissue integrity [74].

With polygon fusion, PolyHoop adds a feature to the pool
of 2D free-boundary evolvers that enables the simulation of
topological transitions occurring in a variety of bubbly systems
in the Stokes limit, from emulsions to biological tissues. Cell
fusion is crucial in tissue development [75], but not commonly
included in cell-based simulations of tissue development. Our
program is well suited to simulate such processes. The current
implementation uses a simple geometrical indentation criterion
with parameter 6 to trigger fusion, which is equivalent to a com-
pressive stress threshold. With minimal changes to the source
code, cells could be made to fuse based on other conditions such
as time, position, cell size and shape, cell type, and potentially
biochemical signals.

Several further extensions and generalizations of the present

https://paraview.org

model are easy to recognize. For simplicity, all polygons in
PolyHoop share the same constitutive relationships and mate-
rial parameters (apart from the area growth rate and division
area threshold, which are drawn from random distributions in
the supplied code). It is straightforward to make these prop-
erties members of the individual polygons, or even vertices or
edges if needed, with only a few lines of code to be changed.
This will allow to simulate different types of particles in the
ensemble, or non-uniform or inhomogeneous material behavior
such as differential cell adhesion and cell polarity. For appli-
cations in which the hoops represent actual physical entities
(such as elastic threads or cell membranes) rather than just
marking the boundaries between immiscible fluid phases, it
could be useful to extend PolyHoop to allow for the rupture
of hoops without immediate resealing. That is to say, allowing
the polygons to have holes; to be open lines with endpoints
rather than closed hoops. Other conceivable extensions include
active or Brownian motion, tension fluctuations [24, 76], and
the coupling to reaction-diffusion solvers, as offered by other
frameworks for applications in biology (Table 1). Our model
does not include hydrodynamics, so it is not intended to be used
for regimes in which turbulent and inertial hydrodynamic effects
contribute substantially to the dynamics of the represented par-
ticle boundaries (i.e., away from the Stokes limit). For these,
other open-source implementations exist [13, 15, 22, 23].

Another limitation of PolyHoop is that in the current imple-
mentation, the areas (and the corresponding masses, if p > 0)
of polygons enclosed by others are counted multiple times, once
on each level. This facilitates the control of area growth in
biological cells with organelles, for which gravitational effects
are typically irrelevant (p = 0). In the gravitational simulation
of nested particles or bubbles, however, it may lead to spurious
gravitational pull, because the fourth potential energy term in
Eq. 1 ignores what is inside the polygon. To remedy this, a
hierarchy of polygon encapsulation would be need to be built
and maintained, the first moment of area (Eq. 14) would need
to exclude the contribution of enclosed polygons, and the nodal
forces would need to be adjusted accordingly, introducing new
coupling terms between nested polygons. To keep the model
simple, we have refrained from implementing this degree of com-
plexity, and leave it to future extensions. For the simulation
of realistic emulsions with deeply nested phases, it may also be
desirable to make the hydrostatic pressure dependent on the
vertical immersion depth in the surrounding phase rather than
on the global position, as currently implemented.

On the numerical side, certain room may exists for further
performance improvements. The computational performance
of the present implementation is largely memory access-limited,
implying that it could potentially benefit from parallelization for
distributed memory systems, for instance with MPI. Moreover,
a more elaborate bookkeeping of nearby vertex pairs, for exam-
ple with Verlet lists [77], could speed up simulations further,
considering that about 60-90% of the runtime is spent in con-
tact detection in typical tissue growth scenarios. For PolyHoop,
we have deliberately resorted to a simple and compact solution
using repeatedly computed linked cell lists and parallelization
with OpenMP precompiler directives.

A 2D model can only be an approximation of real 3D sys-
tems, such as biological tissues or foams, but it may be used
to represent cross sections through 3D systems, especially in
mechanical equilibrium. For epithelial monolayers, a section in
the plane of the apical adhesion belt [31] has become the de-
facto standard 2D modeling domain, and PolyHoop follows the
same spirit. In truly three-dimensional systems, however, out-
of-plane effects can affect the mechanics and geometry of the
ensemble, especially at the ensemble boundaries. For such cases,
3D models are needed. There are indeed model developments

12

that strive to offer functionality similar to that of PolyHoop in
3D [66, 78-83], albeit mostly without some of the topological
transitions implemented here, and naturally at substantially
greater computational cost and geometrical complexity.

Acknowledgement

We thank Marius Almanstotter and Lucas Merlicek for help
with testing, as well as Marco Meer and the group of Bastien
Chopard for valuable discussions. Financial support from the
Swiss National Science Foundation by Sinergia grant no. 170930
is gratefully acknowledged.

Competing Interests

The authors declare that they have no competing interests.

References

[1] J. P. Kermode and D. Weaire. 2D-FROTH: a program for
the investigation of 2-dimensional froths. Comput. Phys.
Commun., 60:75-109, 1990. doi: 10.1016/0010-4655(90)
90080-K.

F. Bolton and D. Weaire. The effects of Plateau borders
in the two-dimensional soap froth. II. General simulation
and analysis of rigidity loss transition. Phil. Mag. B, 65:
473-487, 1992. doi: 10.1080/13642819208207644.

F. Bolton and F. F. Dunne. Software PLAT: A computer
code for simulating two-dimensional liquid foams, 1996.
https://github.com/fbolton/plat.

K. A. Rejniak. A Single-Cell Approach in Modeling the
Dynamics of Tumor Microregions. Math. Biosci. Eng., 2:
643-655, 2005. doi: 10.3934/mbe.2005.2.643.

Dillon R., Owen M., and Painter K. A single-cell based
model of multicellular growth using the immersed boundary
method, pages 1-16. Contemporary Mathematics. Ameri-
can Mathematical Society, 2008. ISBN 9780821842676.

Y. Jamali, M. Azimi, and M. R. K. Mofrad. A Sub-Cellular
Viscoelastic Model for Cell Population Mechanics. PLOS
ONE, 5:1-20, 2010. doi: 10.1371/journal.pone.0012097.
M. van der Sande, Y. Kraus, E. Houliston, and J. Kaandorp.
A cell-based boundary model of gastrulation by unipolar
ingression in the hydrozoan cnidarian Clytia hemisphaerica.
Dev. Biol., 460:176-186, 2020. doi: 10.1016/j.ydbio.2019.
12.012.

C. Tamulonis, M. Postma, H. Q. Marlow, C. R. Magie,
J. de Jong, and J. Kaandorp. A cell-based model of Ne-
matostella vectensis gastrulation including bottle cell forma-
tion, invagination and zippering. Dev. Biol., 351:217-228,
2011. doi: 10.1016/.ydbi0.2010.10.017.

R. M. H. Merks, M. Guravage, D. Inzé, and G. T. S. Beem-
ster. VirtualLeaf: An Open-Source Framework for Cell-
Based Modeling of Plant Tissue Growth and Development.
Plant Physiol., 155:656-666, 2011. doi: 10.1104/pp.110.
167619.

T. Kéhéra, T. Tallinen, and J. Timonen. Numerical model
for the shear rheology of two-dimensional wet foams with
deformable bubbles. Phys. Rev. E, 90:032307, 2014. doi:
10.1103/PhysRevE.90.032307.

A. Mkrtchyan, J. Astrom, and M. Karttunen. A new model
for cell division and migration with spontaneous topology
changes. Soft Matter, 10:4332-4339, 2014. doi: 10.1039/
C4SM00489B.

P. Madhikar, J. Astréom, B. Baumeier, and M. Kart-
tunen. Jamming and force distribution in growing ep-

2]

6

[7]

8]

[9]

(10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

ithelial tissue. Phys. Rev. Res., 3:023129, 2021. doi:
10.1103/PhysRevResearch.3.023129.
S. Tanaka, D. Sichau, and D. Iber. LBIBCell: a cell-

based simulation environment for morphogenetic prob-
lems. Bioinformatics, 31:2340-2347, 2015. doi: 10.1093/
bioinformatics/btv147.

J. Pitt-Francis, P. Pathmanathan, M. O. Bernabeu, R. Bor-
das, J. Cooper, A. G. Fletcher, G. R. Mirams, P. Mur-
ray, J. M. Osborne, A. Walter, S. J. Chapman, A. Garny,
I. M. M. van Leeuwen, P. K. Maini, B. Rodriguez, S. L.
Waters, J. P. Whiteley, H. M. Byrne, and D. J. Gavaghan.
Chaste: A test-driven approach to software development
for biological modelling. Comput. Phys. Commun., 180:
2452-2471, 2009. doi: 10.1016/j.cpc.2009.07.019.

F. R. Cooper, R. E. Baker, and A. G. Fletcher. Numerical
Analysis of the Immersed Boundary Method for Cell-Based
Simulation. SIAM J. Sci. Comput., 39:B943-B967, 2017.
doi: 10.1137/16M1092246.

A. Boromand, A. Signoriello, F. Ye, C. S. O’Hern, and
M. D. Shattuck. Jamming of Deformable Polygons. Phys.
Rev. Lett., 121:248003, 2018. doi: 10.1103/PhysRevLett.
121.248003.

B. Merchant. numba-ncc, 2016.
https://github.com/bzm3r/numba-ncc.
B. Merchant. rust-ncc, 2020.

https://github.com/bzm3r /rust-ncc.

B. Merchant, L. Edelstein-Keshet, and J. J. Feng. A Rho-
GTPase based model explains spontaneous collective migra-
tion of neural crest cell clusters. Dev. Biol., 444:5262—-S273,
2018. doi: 10.1016/j.ydbio.2018.01.013.

C. Korner, M. Thies, and R. F. Singer. Modeling of Metal
Foaming with Lattice Boltzmann Automata. Adv. Eng.
Mater., 4:765-769, 2002. doi: 10.1002/1527-2648(20021014)
4:10(765:: AID-ADEM765)3.0.CO;2-M.

J. Latt, O. Malaspinas, D. Kontaxakis, A. Parmigiani,
D. Lagrava, F. Brogi, M. Ben Belgacem, Y. Thorimbert,
S. Leclaire, S. Li, F. Marson, J. Lemus, C. Kotsalos, R. Con-
radin, C. Coreixas, R. Petkantchin, F. Raynaud, J. Beny,
and B. Chopard. Palabos: Parallel Lattice Boltzmann
Solver. Comput. Math. Appl., 81:334-350, 2020. doi:
10.1016/j.camwa.2020.03.022.

M. Ataei, V. Shaayegan, F. Costa, S. Han, C. B. Park, and
M. Bussmann. LBfoam: An open-source software package
for the simulation of foaming using the Lattice Boltzmann
Method. Comput. Phys. Commun., 259:107698, 2021. doi:
10.1016/j.cpc.2020.107698.

R. Conradin, C. Coreixas, J. Latt, and B. Chopard. Pala-
Cell2D: A framework for detailed tissue morphogenesis. J.
Comput. Sci., 53:101353, 2021. doi: 10.1016/j.jocs.2021.
101353.

S. Kim, M. Pochitaloff, G. Stooke-Vaughan,
O. Campas. Embryonic Tissues as Active Foams.
Phys., 2021. doi: 10.1038/s41567-021-01215-1.

P. J. Brown, G. E. F. Green, B. J. Binder, and J. M.
Osborne. A rigid body framework for multi-cellular mod-
elling. Nat. Comput. Sci., 1:754-766, 2021. doi: 10.1038/
s43588-021-00154-4.

A. Tervonen, S. Korpela, S. Nymark, J. Hyttinen, and
T. O. Ihalainen. The Effect of Substrate Stiffness on
Elastic Force Transmission in the Epithelial Monolayers
over Short Timescales. Cell. Mol. Bioeng., 2023. doi:
0.1007/s12195-023-00772-0.

K. Kawasaki, T. Nagai, and K. Nakashima. Vertex models
for two-dimensional grain growth. Phil. Mag. B, 60:399—
421, 1989. doi: 10.1080/13642818908205916.

M. Weliky and G. Oster. The mechanical basis of cell
rearrangement I. Epithelial morphogenesis during Fundulus

and
Nat.

13

29]

(30]

(31]

32]

(33]

34]

[35]

(36]

37]

(38]

(39]

(40]

[41]

42]

(43]

(44]

(45]

epiboly. Development, 109:373-386, 1990. doi: 10.1242/
dev.109.2.373.

F. Graner and Y. Sawada. Can Surface Adhesion Drive Cell
Rearrangement? Part II: A Geometrical Model. J. Theor.
Biol., 164:477-506, 1993. doi: 10.1006/jtbi.1993.1168.

T. Nagai and H. Honda. A dynamic cell model for the
formation of epithelial tissues. Philos. Mag. B, 81:699-719,
2001. doi: 10.1080/13642810108205772.

R. Farhadifar, J.-C. Roper, B. Aigouy, S. Eaton, and
F. Jilicher. The Influence of Cell Mechanics, Cell-Cell In-
teractions, and Proliferation on Epithelial Packing. Curr.
Biol., 17:2095-2104, 2007. doi: 10.1016/j.cub.2007.11.049.
L. Hufnagel, A. A. Teleman, H. Rouault, S. M. Cohen, and
B. I. Shraiman. On the mechanism of wing size determi-
nation in fly development. Proc. Natl. Acad. Sci. U.S.A.,
104:3835-3840, 2007. doi: 10.1073/pnas.0607134104.

R. Vetter, M. Kokic, H. F. Gémez, L. Hodel, B. Gjeta,
A. Tannini, G. Villa-Fombuena, F. Casares, and D. Iber.
Aboav-weaire’s law in epithelia results from an angle con-
straint in contiguous polygonal lattices. BioRxziv, 2019. doi:
10.1101/591461.

D. Bi, J. H. Lopez, J. M. Schwarz, and M. L. Manning. A
density-independent rigidity transition in biological tissues.
Nat. Phys., 11:1074-1079, 2015. doi: 10.1038/nphys3471.
D. Weaire. Some lessons from soap froth for the physics of
soft condensed matter. Phys. Scr., 1992:29-33, 1992. doi:
10.1088/0031-8949/1992/T45/006.

D. Weaire, V. Langlois, M. Saadatfar, and S. Hutzler. Foam
as granular matter, volume 8 of Lecture Notes in Complex
Systems, chapter 1, pages 1-26. World Scientific, 2007. doi:
10.1142/9789812771995_0001.

D. Weaire and S. Hutzler. Foam as a complex system. J.
Phys.: Condens. Matter, 21:474227, 2009. doi: 10.1088/
0953-8984/21/47/474227.

G. M. Odell, G. Oster, P. Alberch, and B. Burnside. The
mechanical basis of morphogenesis: 1. Epithelial folding
and invagination. Dev. Biol., 85:446-462, 1981. doi: 10.
1016/0012-1606(81)90276-1.

Y. Ishimoto and Y. Morishita. Bubbly vertex dynamics:
A dynamical and geometrical model for epithelial tissues
with curved cell shapes. Phys. Rev. E, 90:052711, 2014.
doi: 10.1103/PhysRevE.90.052711.

M. C. Perrone, J. H. Veldhuis, and G. W. Brodland. Non-
straight cell edges are important to invasion and engulf-
ment as demonstrated by cell mechanics model. Biomech.
Model. Mechanobiol., 15:405-418, 2016. doi: 10.1007/
s10237-015-0697-6.

A. Boromand, A. Signoriello, J. Lowensohn, C. S. Orellana,
E. R. Weeks, F. Ye, M. D. Shattuck, and C. S. O’Hern.
The role of deformability in determining the structural
and mechanical properties of bubbles and emulsions. Soft
Matter, 15:5854-5865, 2019. doi: 10.1039/C9SMO00775J].
M. Nonomura. Study on Multicellular Systems Using a
Phase Field Model. PLOS ONE, 7:1-9, 2012. doi: 10.1371/
journal.pone.0033501.

B. Palmieri, Y. Bresler, D. Wirtz, and M. Grant. Multiple
scale model for cell migration in monolayers: Elastic mis-
match between cells enhances motility. Sci. Rep., 5:11745,
2015. doi: 10.1038/srep11745.

J. Lober, F. Ziebert, and I. S. Aranson. Collisions of de-
formable cells lead to collective migration. Sci. Rep., 5:
9172, 2015. doi: 10.1038/srep09172.

S. B. Biner. Programming Phase-Field Modeling.
Springer, 2017. ISBN 978-3-319-41196-5. doi: 10.1007/
978-3-319-41196-5.

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

J. Jiang, K. Garikipati, and S Rudraraju. A Diffuse In-
terface Framework for Modeling the Evolution of Multi-
cell Aggregates as a Soft Packing Problem Driven by the
Growth and Division of Cells. Bull. Math. Biol., 81:3282—
3300, 2019. doi: 10.1007/s11538-019-00577-1.

T. C. Lavoratti, S. Heitkam, U. Hampel, and Lecrivain
G. A computational method to simulate mono- and poly-
disperse two-dimensional foams flowing in obstructed chan-
nel. Rheol. Acta, 60:587—601, 2021. doi: 10.1007/
s00397-021-01288-y.

G. Lecrivain. Data/Software for: Dynamics of mono-
and poly-disperse two-dimensional foams flowing in an ob-
structed channel (Version 1.0), 2021. Rodare.

V. Jantsch-Plunger and M. Glotzer. Depletion of syntaxins
in the early Caenorhabditis elegans embryo reveals a role
for membrane fusion events in cytokinesis. Curr. Biol., 9:
738-745, 1999. doi: 10.1016,/S0960-9822(99)80333-9.

X. Lu and Y. Kang. Cell Fusion as a Hidden Force in
Tumor Progression. Cancer Research, 69:8536-8539, 2009.
doi: 10.1158/0008-5472.CAN-09-2159.

K. Rochlin, S. Yu, S. Roy, and M. K. Baylies. Myoblast
fusion: When it takes more to make one. Dev. Biol., 341:
66-83, 2010. doi: 10.1016/j.ydbio.2009.10.024.

W. Stillwell. Moving Components Through the Cell: Mem-
brane Trafficking, chapter 17, pages 369-379. Elsevier,
2 edition, 2016. ISBN 978-0-444-63772-7. doi: 10.1016/
B978-0-444-63772-7.00017-8.

M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and
E. Grinspun. Discrete elastic rods. In ACM SIGGRAPH
2008 Papers, SIGGRAPH 08, page 63, 2008. doi: 10.1145/
1399504.1360662.

R. Soerjadi. On the Computation of the Moments of a
Polygon, with some Applications. Heron, 16:43-58, 1968.
R. Vetter, F. K. Wittel, N. Stoop, and H. J. Herrmann.
Finite element simulation of dense wire packings. Fur.
J. Mech. A Solids, 37:160-171, 2013. doi: 10.1016/j.
euromechsol.2012.06.007.

O. Knill. Eigenvalues and eigenvectors of 2x2 matrices.
https://people.math.harvard.edu/~knill/teaching/
math21b2004/exhibits/2dmatrices/index.html, 2004.
Harvard University.

W. R. Franklin. PNPOLY - Point Inclusion in Polygon
Test. https://wrfranklin.org/Research/Short_Notes/
pnpoly.html, 2006.

B. Quentrec and C. Brot. New method for searching for
neighbors in molecular dynamics computations. J. Com-
put. Phys., 13:430-432, 1973. doi: 10.1016/0021-9991(73)
90046-6.

M. Kokic, A. Tannini, G. Villa-Fombuena, F. Casares, and
D. Iber. Minimisation of surface energy drives apical ep-
ithelial organisation and gives rise to lewis’ law. BioRziv,
2019. doi: 10.1101/590729.

F. Ziebert and I. Aranson. Computational approaches to
substrate-based cell motility. npj Comput. Mater., 2:16019,
2016. doi: 10.1038/npjcompumats.2016.19.

J. D. Treado, D. Wang, A. Boromand, M. P. Murrell, M. D.
Shattuck, and C. S. O’Hern. Bridging particle deformability
and collective response in soft solids. Phys. Rev. Mater., 5:
055605, 2021. doi: 10.1103/PhysRevMaterials.5.055605.
A. Sapala, A. Runions, A.-L. Routier-Kierzkowska,
M. Das Gupta, L. Hong, H. Hothuis, S. Verger, G. Mosca,
C.-B. Li, A. Hay, O. Hamant, A. H. K. Roeder, M. Tsiantis,
P. Prusinkiewicz, and R. S. Smith. Why plants make puzzle
cells, and how their shape emerges. eLife, 7:€32794, 2018.
doi: 10.7554/eLife.32794.

14

(63]

(64]

(65]

[66]

[67]

(68]

(69]

[70]

[71]

(72]

(73]

(74]

[75]

[76]

(77]

(78]

[79]

(80]

N. Stoop, F. K. Wittel, and H. J. Herrmann. Morphological
Phases of Crumpled Wire. Phys. Rev. Lett., 101:094101,
2008. doi: 10.1103/PhysRevLett.101.094101.

F. J. Almgren Jr. and J. E. Taylor. The Geometry of Soap
Films and Soap Bubbles. Sci. Am., 235:82-93, 1976. doi:
10.1038 /scientificamerican0776-82.

R. Halver and G. Sutmann. Multi-threaded Construction
of Neighbour Lists for Particle Systems in OpenMP. In
R. Wyrzykowski, E. Deelman, J. Dongarra, K. Karczewski,
J. Kitowski, and K. Wiatr, editors, Parallel Processing
and Applied Mathematics, volume 9574 of Lecture Notes
in Computer Science, pages 153-165, 2016. doi: 10.1007/
978-3-319-32152-3_15.

S. Runser, R. Vetter, and D. Iber. 3D Simulation of Tissue
Mechanics with Cell Polarization. BioRxiv, 2023. doi:
10.1101/2023.03.28.534574.

T. Munzner M. Phillips, S. Levy. GeomView Manual. The
Geometry Center, University of Minnesota, 2007. URL
http://wuw.geomview.org/docs/geomview.pdf. Section
4.2.5.

Kitware Inc. The VTK User’s Guide. Kitware, 11th edi-
tion, 2010. ISBN 978-1-930934-23-8. URL https://wuw.
kitware.com/products/books/VIKUsersGuide.pdf. Sec-
tion 19.3.

H. F. Gémez, Mathilde S. Dumond, L. Hodel, R. Vet-
ter, and D. Iber. 3d cell neighbour dynamics in grow-
ing pseudostratified epithelia. eLife, 10:e68135, 2021. doi:
10.7554 /eLife.68135.

D. Iber and R. Vetter. 3d organisation of cells in pseu-
dostratified epithelia. Front. Phys., 10:898160, 2022. doi:
10.3389/fphy.2022.898160.

D. Iber and R. Vetter. Relationship between epithelial orga-
nization and morphogen interpretation. Curr. Opin. Genet.
Dewv., 75:101916, 2022. doi: 10.1016/j.gde.2022.101916.

P. C. Spear and C. A. Erickson. Interkinetic nuclear
migration: A mysterious process in search of a func-
tion. Develop. Growth Differ., 54:306-316, 2012. doi:
10.1111/j.1440-169X.2012.01342.x.

A. Buchmann, M. Alber, and J. J. Zartman. Sizing it
up: The mechanical feedback hypothesis of organ growth
regulation. Semin. Cell Dev. Biol., 35:73-81, 2014. doi:
10.1016/j.semcdb.2014.06.018.

P.-H. Wu, D. M. Gilkes, J. M. Phillip, A. Narkar, T. W.-
T. Cheng, J. Marchand, M.-H. Lee, R. Li, and D. Wirtz.
Single-cell morphology encodes metastatic potential. Sci.
Adv., 6:eaaw6938, 2020. doi: 10.1126/sciadv.aaw6938.

J. M. Hernandez and B. Podbilewicz. The hallmarks of
cell-cell fusion. Development, 144:4481-4495, 2017. doi:
10.1242/dev.155523.

M. Krajnc, T. Stern, and C. Zankoc. Active instability and
nonlinear dynamics of cell-cell junctions. Phys. Rev. Lett.,
127:198103, 2021. doi: 10.1103/PhysRevLett.127.198103.
L. Verlet. Computer “Experiments” on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules.
Phys. Rev., 159:98-103, 1967. doi: 10.1103/PhysRev.159.
98.

F. Da, C. Barry, and E. Grinspun. Multimaterial mesh-
based surface tracking. ACM Trans. Graph., 33:1-11, 2014.
doi: 10.1145/2601097.2601146.

P. Madhikar, J. Astrém, J. Westerholm, and M. Karttunen.
CellSim3D: GPU accelerated software for simulations of
cellular growth and division in three dimensions. Comput.
Phys. Commun., 232:206-213, 2018. doi: 10.1016/j.cpc.
2018.05.024.

P. Van Liedekerke, J. Neitsch, T. Johann, E. Warmt,
1. Gonzalez-Valverde, S. Hoehme, S. Grosser, J. Kaes,

https://people.math.harvard.edu/~knill/teaching/math21b2004/exhibits/2dmatrices/index.html
https://people.math.harvard.edu/~knill/teaching/math21b2004/exhibits/2dmatrices/index.html
https://wrfranklin.org/Research/Short_Notes/pnpoly.html
https://wrfranklin.org/Research/Short_Notes/pnpoly.html
http://www.geomview.org/docs/geomview.pdf
https://www.kitware.com/products/books/VTKUsersGuide.pdf
https://www.kitware.com/products/books/VTKUsersGuide.pdf

[81]

and D. Drasdo. A quantitative high-resolution computa-
tional mechanics cell model for growing and regenerating
tissues. Biomech. Model. Mechanobiol., 19:189-220, 2020.
doi: 10.1007/s10237-019-01204-7.

D. Wang, J. D. Treado, A. Boromand, B. Norwick, M. P.
Murrell, M. D. Shattuck, and C. S. O’Hern. The structural,
vibrational, and mechanical properties of jammed packings
of deformable particles in three dimensions. Soft Matter,
17:9901-9915, 2021. doi: 10.1039/D1SM01228B.

A. Torres-Sanchez, M. Kerr Winter, and G. Salbreux. In-
teracting active surfaces: A model for three-dimensional
cell aggregates. PLoS Comput. Biol., 18:€1010762, 2022.
doi: 10.1371/journal.pcbi.1010762.

S. Okuda and T. Hiraiwa. Modelling contractile ring for-
mation and division to daughter cells for simulating pro-
liferative multicellular dynamics. Fur. Phys. J. E, 46:56,
2023. doi: 10.1140/epje/s10189-023-00315-5.

15

80 100 120 140
Angle ¢ [degrees]

Figure S1: Validation of PolyHoop against Plateau’s rules. A Near-equilibrium simulation snapshot of a portion of a
dry foam (liquid density 1%) consisting of 409 bubbles in total. Bubbles always meet in groups of three at Plateau borders; a
10x closeup of one is shown in the magnifier. B Wet foam with same parameters as in A except for the higher liquid density
(7.5%). Some Plateau borders are merged. C Histogram of corner angles (bin width: 5 degrees). Angles are narrowly distributed
around approximately 120 degrees for the dry case (magenta, mean 120.4, SD 1.3) and broadly distributed for the wet case
(orange, mean 116.6, SD 12.4). Avg. polygon resolution: M = 276. Relevant model parameters: h = lmin = 0.01, lmax = 0.05,
ka=10% v =10% k, =107, ky = kp = kp, = 0.

A_ 70 T T T T T T B 4 T T T T T T T T T C 70 T T T T T T T T T
W PalaCell2D W LBIBCell » W LBIBCell
60 M PolyHoop i = M PolyHoop 2 60 1 M PolyHoop N
=
50 | _ \>/3'OCVAzO.67 250 ¢ i
& E | aCV4=~0.38 =
sS40 1 = Z 40 -
g g2t 2
230 F { = 30 9 1
= =z 2 s 8 |
ol | 2 i e
10} | Z10f M
O 1 O 1 1 1 1 1 1 1 0 1 1 1 1 64}4 4I.6 lels I5 5;2
& © @ © AMEHOOE OO AMEHOOE®O®OO
Neighbor number n Neighbor number n Neighbor number n

Figure S2: Reproduction of phenomenological relationships between cell size, shape and organization in epithelia.
A Distribution of cell neighbor numbers in a viscous growing tissue with ca. 400 cells, as previously predicted with PalaCell2D [23]
(green), and here with PolyHoop (blue). Error bars are standard deviations over 10 repetitions. The inset shows a representative
end state. Relevant model parameters: h = 0.05, lmin = 0.03, lmax = 0.07, C = 1, a ~ lognormal with mean 70 and coefficient
of variation (CV) 0.2, 8 = 0.95, Amax ~ lognormal with mean 3.8 and CV 0.2, ko = 8x 107, v = 5x10°, k = 2x 10, ky, = 0,
ke = kn = 107, sp = ss = 0.025, ¢, = 10*, ¢c = 100, At = 10~*. B Lewis’ linear law A(n)/(A) =~ (n — 2)/4 (solid line) is
obtained with LBIBCell simulations of a growing epithelium [59] (red) and with PolyHoop (blue) for a CV in the cell areas of
CV 4 = 0.38 (triangles). At larger area variability (circles, CV 4 ~ 0.67), the relationship becomes quadratic, A(n)/(A) ~ (n/6)?
(dashed line). Error bars represent standard errors of the mean from a tissue with ca. 1000 cells. Insets show representative
configurations. C Aboav—Weaire law 2?21 n; &~ an + b, where n; is the neighbor number of the i-th neighbor of a cell with n
neighbors, as found previously with LBIBCell [33] (red) and here with PolyHoop (blue). Inset shows fitted coefficients for 10
repetitions, following 5.4a + b = 34 (dotted line). Model parameters for B,C: h = 0.01, lmin = 0.02, lmax = 0.1, C =1, a = 1,
B = 0.5, Amax ~ lognormal with mean 7 and CV 0.27, ka = 10°, v = 10*, ky = 10*, kv = 0, ky = 107, ki = 10°%, s, = 0.01,
ss = 0.02, ¢y = 10, ¢ = 30, At = 10~%. For the high area variability case in B, CV = 0.5 for Amax, 3 = 0.75. Boundary cells
were excluded in all measurements.

16

	Introduction
	Physical model
	Continuum description
	Discretization as polygons
	Vertex forces

	Numerical implementation
	Remodeling
	Polygon growth, removal and division
	Polygon fusion
	Contact detection
	Time integration

	Applications
	Biological tissues
	Amorphous materials
	Elastic bands
	Foams and emulsions
	Complex geometries
	Large-scale simulation

	Parallelization and computational efficiency
	Usage instructions
	Discussion and outlook

