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Orthotropic shell structures are ubiquitous in biology and engineering, from bacterial cell walls to
reinforced domes. We present a rescaling transformation that maps an orthotropic shallow shell to
an isotropic one with a different local geometry. The mapping is applicable to any shell section for
which the material orthotropy directions match the principal curvature directions, assuming a com-
monly used form for the orthotropic shear modulus. Using the rescaling transformation, we derive
exact expressions for the buckling pressure as well as the linear indentation response of orthotropic
cylinders and general ellipsoids of revolution, which we verify against numerical simulations. Our
analysis disentangles the separate contributions of geometric and material anisotropy to shell rigidity.
In particular, we identify the geometric mean of orthotropic elastic constants as the key quantifier
of material stiffness, playing a role akin to the Gaussian curvature which captures the geometric
stiffness contribution. Besides providing insights into the mechanical response of orthotropic shells,
our work rigorously establishes the validity of isotropic approximations to orthotropic shells and
also identifies situations in which these approximations might fail.

I. INTRODUCTION

Isotropic elasticity, which assumes material properties
that are independent of direction, provides a tractable
and convenient description of many everyday mechani-
cal phenomena. However, direction-dependent mechani-
cal properties are the rule rather than the exception in
natural materials, from muscle tissue [1] and wood [2]
to the cell walls of bacteria [3] and plants [4]. The me-
chanical anisotropy is typically a result of high-strength
filaments or fibers within these materials that are ori-
ented in a particular direction, strengthening the direc-
tion and hence breaking the material rotational symme-
try (i.e., isotropy) [5]. In the technological realm, com-
posite materials with directional reinforcements such as
plywood [6] and corrugated materials [7] are used to build
structures that are mechanically strong and resilient in
desired directions; the elastic description of these struc-
tures at length scales larger than the reinforcement fea-
tures also requires anisotropic material parameters.

Thin-walled elastic structures, or shells, provide a rich
setting for interesting elastic phenomena that arise from
the interplay of material anisotropy and geometry. For
example, a thin cylindrical shell whose inner wall is
wrapped helically by polymer fibers can develop into a
spiral shape upon expansion, which has been proposed
as a model for bacterial growth [8]. In engineered shell
structures, closely spaced ribs provide strength in high-
stress directions with minimal addition of material in e.g.,
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masonry domes [9] and pressure vessels [10]; these direc-
tional reinforcements strongly influence the failure modes
of the shells [11] and can generate multistability in shell
conformations [12–15]. Besides its fundamental interest
to mechanics, the interplay of anisotropic elasticity, shell
geometry and external loading is crucial to our under-
standing of cell biophysics as well as to structural engi-
neering.

One obstacle to building a fundamental understand-
ing of shells with anisotropic elasticity is that the reduc-
tion in material symmetries makes the governing differ-
ential equations more challenging to solve. For instance,
twenty-one independent elastic constants are needed to
fully characterize a three-dimensional anisotropic mate-
rial (while only two are needed in the isotropic case) [7,
16]. Here, we study a particular type of material
anisotropy—two-dimensional orthotropic materials (or
equivalently thin three-dimensional transversely isotropic
materials). Such materials have different elastic prop-
erties along two orthogonal in-plane directions, one of
which has the same material composition as the material
thickness direction [6], see Fig. 1. This form of anisotropy
provides a good approximation to engineered thin-walled
structures such as fiber-reinforced shells [7, 17] and shells
with linear corrugations [18]. Orthotropic elasticity also
arises as a natural consequence of the growth mechanism
of rod-shaped bacterial cell walls, in which stiff carbohy-
drate chains are laid down by molecular complexes along
the circumferential direction [19–21] breaking local ma-
terial symmetry [22, 23]. Orthotropy therefore serves as
a tractable yet relevant model for assessing the influence
of material anisotropy on shell mechanics. Nevertheless,
the lowered symmetry of the governing shell equations
has typically favored numerical analyses of orthotropic
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(a) An orthotropic plate (b) An orthotropic cylinder (c) An orthotropic spheroid

1FIG. 1. Plates and shells with local rectilinear orthotropy. The two material orthotropic directions are marked by different
colors, the x1-direction by red and x2-direction by blue. For all the three structures, these two directions are also the principal
directions of curvature. In this paper, we only consider rectilinear orthotropy—shell sections that locally look like (a); shell
regions that are curvilinearly orthotropic, e.g., the poles of the orthotropic spheroid, are beyond the scope of this study. For
curved shells, (b) and (c), we take the x2-direction to be the azimuthal direction, so R2 denotes the equatorial radius of the
spheroid.

shell response [11, 24–28], although a few analytical re-
sults exist for buckling thresholds [29] and multistability
criteria [12–15] of orthotropic shells.

In this work, we establish an exact mapping between
orthotropic and isotropic shells, and apply this mapping
to generate analytical results for the local mechanical re-
sponse of orthotropic shells. Specifically, we will demon-
strate that although the orthotropic materials still have a
reduced symmetry compared to isotropic materials, they
become effectively isotropic under an appropriately cho-
sen coordinate transformation. A specific version of this
isotropy-orthotropy equivalence have been recognized for
linear orthotropic plate equations [30, 31]; here, we rig-
orously establish the equivalence using the tensor for-
mulation of elasticity, and generalize it to nonlinear de-
flections of curved shell sections described by shallow-
shell theory [7]. Under the aforementioned coordinate
transformation, the orthotropic shallow-shell equations
are mapped to a system of equations describing a shal-
low shell made of an isotropic material, but with differ-
ent geometric parameters. We apply the transformation
to study local mechanical properties—linear response to
an indentation force [32–35] and buckling load—of thin-
walled structures that are made of orthotropic materi-
als. These local mechanical properties have recently been
established rigorously for isotropic shells with arbitrary
curvatures and pressures [33, 34, 36]; however, to our
knowledge, our mapping enables the first analytical re-
sults for the local response of orthotropic shells.

II. BACKGROUND

We start with the elastic description for a two-
dimensional1 orthotropic material, which relates local
strains to local stresses via a stiffness tensor. Let uαβ
be the covariant components of the strain tensor, and let
σαβ denote the contravariant components of the stress
tensor; (α, β ∈ {1, 2}). The generalized Hooke’s law for
an orthotropic material is: uαβ = Cαβγδ σ

γδ, where C is
the rank-four stiffness tensor [16]. (The Einstein conven-
tion of summation over repeated upper and lower indices
is implied throughout the paper.) In Voigt notation, this
reads [6]

u11

u22

u12

 =



1

E1
−υ21

E2
0

−υ12

E1

1

E2
0

0 0
1

2G12


σ11

σ22

σ12

 , (2.1)

where Eα and υαβ (α 6= β) denote Young’s moduli and
Poisson’s ratios along the two orthogonal directions, re-
spectively. In this paper, we consider the common case
where these elastic constants are all positive. By Betti’s
reciprocal theorem [7],

υ21

E2
=
υ12

E1
. (2.2)

1 Realistically, every material has a finite thickness and is hence
three-dimensional. The materials considered here are effectively
two-dimensional, i.e., so thin that the Kirchhoff-Love hypothe-
sis [7] applies.
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We can accordingly define a parameter which character-
izes the degree of material anisotropy:

λ :=
E1

E2
=
υ12

υ21
> 0. (2.3)

The positive definiteness of the stiffness matrix in Voigt
notation, det

(
C[αβ][γδ]

)
> 0, imposes an upper bound for

the anisotropy parameter: λ < 1
υ2
12

. The Poisson’s ratio

υ12 can in principle be zero [37]; as a result, λ ∈ (0,∞)
(recall that we assume υ12, υ21 > 0). The inverse of λ,
1
λ

:= E2

E1
, also has the same range of values. In practice,

given a general two-dimensional orthotropic material, one
is free to call the first direction either of the two principal
directions of the stiffness tensor C and hence use either
λ or 1

λ to characterize the degree of material anisotropy.

Because of Eq. (2.2), one only needs four independent
parameters to fully characterize a two-dimensional or-
thotropic material. We choose the four to be Eeff :=√
E1E2, υeff :=

√
υ12υ21, λ and G12. (We will see the

reason for this choice in Eq. (2.4) and IIIA.) The elas-
tic constant G12 is the material’s in-plane shear modulus
and is, in general, an independent quantity. However,
in practice it is closely related to the Young’s moduli in
the orthotropic directions. To eliminate this degree of
freedom, M. T. Huber proposed the following form for
G12 [38],

G12
!
= GH :=

Eeff

2(1 + υeff)
=

√
E1E2

2(1 +
√
υ12υ21)

, (2.4)

substituting the geometric means of the anisotropic elas-
tic constants as effective constants into the expression of
the shear modulus of an isotropic material. The Huber
form for the orthotropic shear modulus has been accepted
and widely employed in both analytical and numerical
calculations [7, 11, 30, 39, 40]. Panc demonstrated, based
on theoretical arguments, that for orthotropic materials,
the Huber form may be used as an approximation [31].
Cheng and He further argued that although the Huber
form is itself inaccurate for fiber-reinforced composite
materials, it can still yield accurate analytical results
when substituted in governing differential equations of
shell theory (at least for cylinders) [39].

The following result section is structured as follows.
In IIIA, we introduce the main result of this paper–
the rescaling transformation which shows that an or-
thotropic two-dimensional material becomes effectively
isotropic if we use a rescaled Cartesian coordinate sys-
tem. In III B, we exploit the use of the transformation
in shallow-shell systems. We demonstrate that the gen-
eral Donnell-Mushtari-Vlasov (DMV) equations, the gov-
erning equations in the shallow-shell theory, are covari-
ant under the transformation and use the transformation
to derive the DMV equations for orthotropic shells in a
physically transparent manner. In IIID and III E, by
solving these equations, we obtain the indentation stiff-

ness and buckling pressure of orthotropic ellipsoids and
cylinders.

III. RESULTS

A. A Rescaling Transformation

a. Transformation Step 1. We first notice that with
the Huber form (Eq. (2.4)), Eq. (2.1) can be rewritten, in
terms of the effective elastic constants and the anisotropy
parameter λ, as


4
√
λu11

1
4
√
λ
u22

u12

 =



1

Eeff
− υeff

Eeff
0

− υeff

Eeff

1

Eeff
0

0 0
1 + υeff

Eeff




1
4
√
λ
σ11

4
√
λσ22

σ12

 .

(3.1)
The stiffness matrix now takes the form of that for an
isotropic material with elastic constants {Eeff , υeff} [6].
Equation (3.1) in fact implies that an orthotropic ma-
terial can be treated as isotropic if we rescale physical
quantities in a systematic way. This can be seen more
clearly using tensors. In tensor notation, Eq. (3.1) can

be written as uα′β′ = Cα′β′γ′δ′ σ
γ′δ′ . Primed indices are

used here to denote the transformed tensor components:

uα′β′ = Λαα′ Λββ′ uαβ , (3.2, a)

σα
′β′

= Λα
′

α Λβ
′

β σ
αβ (3.2, b)

and

Cα′β′γ′δ′ = Λαα′ Λββ′ Λγγ′ Λδδ′ Cαβγδ, (3.2, c)

where
(
Λii′

)
:= diag

{
8
√
λ, 1

8√
λ
, 1
}

, and Λii′ Λi
′
j = δij

with δij the Kronecker delta. (Latin indices run from 1
to 3, while Greek indices only take on values 1 and 2.)
That is, when written in terms of the rescaled tensor com-
ponents, the anisotropic Hooke’s law takes the isotropic
form. This shows that the orthotropic material becomes
effectively isotropic if we hide the material anisotropy by
rescaling the strain and the stress components. We note
that this rescaling transformation preserves the elastic
energy density: uαβ σ

αβ = uα′β′ σα
′β′

.
In fact, the total elastic energy is also invariant under

the transformation. Equations (3.2) hint at the following
coordinate transformation:

xi
′

= Λi
′

j x
j . (3.3)

Let gij denote the unscaled components of the metric
tensor; its rescaled components can then be computed:
gi′j′ = Λii′ Λjj′ gij . Note that det(gi′j′) = det(gij), since
det(Λii′) = 1. This further implies that
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U =
1

2

∫
M

√
det(gij) d2xuαβ σ

αβ =
1

2

∫
M′

√
det(gi′j′) d2x′ uα′β′ σα

′β′
, (3.4)

i.e., the total energy is preserved.
b. Transformation Step 2. The strain tensor is re-

lated to deformation displacement fields via the so-called
strain-displacement relations. We are now going to
demonstrate that the rescaling transformation is com-
patible with these relations. Since all materials are three-
dimensional, we will use the relations for a thin curved
material (i.e., a shallow shell) that satisfies the Kirchhoff-
Love hypothesis [7], which basically assumes that no de-
formation occurs along the thickness direction.

For such a shell, the Green-Lagrange strain tensor is
given, in terms of two in-plane phonon fields uα(x) and
one out-of-plane deformation field u3(x), by [7, 41]

uαβ =
1

2
(∂αuβ + ∂βuα + ∂αu3 · ∂βu3)−K0

αβ u3−

− x3 ∂α∂βu3,

(3.5)

where ∂α ≡ ∂
∂xα , and (K0

αβ) = diag {κ1, κ2} is the ex-
trinsic curvature tensor that encodes the two local princi-
pal curvatures of the material’s undeformed middle sur-
face. For a sphere with radius R, K0

αβ = 1
R δ

α
β , while

a cylinder of the same radius has K0
αβ = 1

R δ
1
α δ

1
β (or

K0
αβ = 1

R δ
2
α δ

2
β). The last term in Eq. (3.5) is the bend-

ing strain [7], where x3 denotes the distance away from
the middle surface.

The rescaled components can then be written, using
Eq. (3.2, a), as

uα′β′ =
1

2

[
(Λαα′ ∂α)

(
Λββ′ uβ

)
+
(
Λββ′ ∂β

)
(Λαα′ uα) + (Λαα′ ∂α)u3 ·

(
Λββ′ ∂β

)
u3

]
−
(
Λαα′ Λββ′ K0

αβ

)
u3−

− x3 (Λαα′ ∂α)
(
Λββ′ ∂β

)
u3

=
1

2
(∂α′uβ′ + ∂β′uα′ + ∂α′u3′ · ∂β′u3′)−K0

α′β′ u3′ − x3′ ∂α′∂β′u3′ .

(3.6)

For the sake of consistency, we have written in the above
equation x3′ = Λi3′ xi = x3 and u3′ = Λi3′ ui = u3. Note
that both the coordinate and the displacement along the
thickness direction remain unrescaled.

Equations (3.5) and (3.6) take exactly the same form.
This means that rescaling the underlying deformation
displacement fields can indeed lead to the rescaled strain-
tensor field, indicating the compatibility between the
rescaling transformation and the strain-displacement re-
lations. The only difference between the two equations
is that the extrinsic curvature tensor, in the rescaled co-
ordinate system, now becomes

(K0
α′β′) = diag {κ1′ , κ2′} := diag

{
4
√
λκ1,

1
4
√
λ
κ2

}
.

(3.7)
This shows that the material’s middle surface has a dif-
ferent local geometry in the rescaled coordinate system.
For example, a sphere with radius R becomes locally an
ellipsoid with principle radii of curvature 1

4√
λ
R and 4

√
λR.

Nonetheless, note that the local Gaussian curvature re-
mains unchanged:

K ≡ det(K0
αβ) = κ1κ2 = det(K0

α′β′) ≡ K ′; (3.8)

while the other invariant of the extrinsic curvature tensor,
the local mean curvature H ≡ 1

2 tr(K0
αβ) does not remain

invariant under the rescaling:

H =
1

2
(κ1 + κ2) 6= 1

2
(κ1′ + κ2′) =

1

2
tr(K0

α′β′) ≡ H ′.
(3.9)

To sum up, we have established a curious rescaling
transformation (Eqs. (3.3) and (3.2)), assuming the Hu-
ber form for the orthotropic in-plane shear modulus. The
transformation implies that under certain circumstances,
such as cases where shear deformations are negligible, an
orthotropic material can exhibit similar elastic behaviors
as an isotropic one with different local geometrical prop-
erties.

It should be pointed out that we have made a couple of
assumptions when establishing the above equivalence re-
lationship. The first one is that the material-orthotropy
pattern must be rectilinear (i.e., can be characterized lo-
cally by a Cartesian coordinate system), not curvilinear,
and the two orthogonal directions have to coincide with
directions of local principal curvatures (see Fig. 1). Also,
the form of the strain tensor, Eq. (3.5), implicitly re-
quires that the deformation displacements vary rapidly,
on the scale of curvature radii, along the principal direc-
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tions, i.e.,
∣∣∣ 1
uβ
∂αuβ

∣∣∣ � 1
min{R1,R2} , where Rα ≡ 1

κα
[7].

Given that λ is of order one, which implies that 8
√
λ is ap-

proximately unity, the same requirement in the rescaled

coordinate system,
∣∣∣ 1
uβ′

∂α′uβ′

∣∣∣ � 1
min{R1′ ,R2′} , can ac-

cordingly still be satisfied. In the context of thin shells,
this means that a shallow shell remains shallow after get-
ting rescaled.

We now move on to discuss several implications of the
established equivalence relationship. The first and fore-
most perhaps is that we can effortlessly obtain, without
performing any functional analysis, the equation of equi-
librium and the compatibility equation for an orthotropic
doubly-curved shallow shell. The equations will be pre-
sented in a covariant way, in tensor notation, to illustrate
that they are form-invariant under the rescaling transfor-
mation.

B. Equations of the Shallow-Shell Theory

Recall that we have demonstrated that an
orthotropic shallow shell with the set of pa-
rameters {E1, υ21, λ;R1, R2} shares the same
total-energy functional with an isotropic one
whose corresponding parameters are given by{
Eeff ≡

√
E1E2, υeff ≡

√
υ12υ21;R1′ ≡ R1

4√
λ
, R2′ ≡ 4

√
λR2

}
.

Since minimizing the total-energy functional gives the
equation of equilibrium (EOE), we conclude that the
EOE for the orthotropic shell will be the same as the
corresponding isotropic EOE when written in terms of
rescaled quantities:

D′ L̂
′
u3′ + σα

′β′
t′
(
K0
α′β′ −∂α′∂β′u3′

)
= p′

(
xα

′
)
,

(3.10, a)

where D′ := Eeff t
3

12(1−υ2
eff )

is the effective bending modulus;

t = t′ the shell thickness; and p′ describes the load ap-

plied to the shell. The operator L̂
′

denotes the linear

differential operator ∂4

∂x′4 + 2 ∂2

∂x′2
∂2

∂y′2
+ ∂4

∂y′4
.2 Note that

2 The fully covariant way of writing the operator is
Dαβγδ ∂α∂β∂γ∂δ, where D denotes the bending-stiffness
tensor: In Voigt notation,

(
D[αβ][γδ]

)
=


D1111 D1122 D1112 D1121

D2211 D2222 D2212 D2221

D1211 D1222 D1212 D1221

D2111 D2122 D2112 D2121



= D′


√
λ υeff 0 0

υeff
1√
λ

0 0

0 0 1−υeff
2

1−υeff
2

0 0 1−υeff
2

1−υeff
2

 ,

again using the Huber form.

in spite of its appearance, L̂
′

is in fact not the biharmonic
operator in the rescaled coordinate system.3

Recall that the strain-displacement relations
(Eq. (3.5)) also take the same form in both coordi-
nate systems. By the same reasoning, the fact that the
compatibility equation stems from strain-displacement
relations [42] implies that for the orthotropic shell, the
compatibility equation is given by

1

Y ′
L̂
′
Φ′ = εα

′γ′
εβ

′δ′∂γ′∂δ′u3′

(
K0
α′β′ −1

2
∂α′∂β′u3′

)
,

(3.10, b)
where Y ′ := Eefft is the effective two-dimensional
Young’s modulus. The Airy stress function Φ′ is a scalar

field and hence unrescaled, i.e., Φ′
(
xα

′
)

= Φ(xα). It is

related to the rescaled stress components in the following
way:

σα
′β′
t′ = εα

′γ′
εβ

′δ′∂γ′∂δ′Φ
′, (3.11)

where εα
′β′

is the rescaled components of the two-
dimensional alternating tensor.

Equations (3.10) are the nonlinear shallow-shell equa-
tions for the orthotropic shell. The linearized version
can be obtained via the procedure outlined in Ref. 7; the
results are shown below:

D′ L̂
′
u3′ + σα

′β′
t′K0

α′β′ −σα
′β′

0 t′∂α′∂β′u3′ = 0 (3.12, a)

Y ′εα
′γ′
εβ

′δ′ K0
α′β′ ∂γ′∂δ′u3′ = L̂

′
Φ′, (3.12, b)

where σα
′β′

0 denotes the rescaled prestress components.
Equations (3.12) are consistent with known expressions
in the literature [43]. Equations written in terms of un-
rescaled quantities without tensor notation can be found
in Appendix A.

The linearized equations can be employed to study the
local indentation stiffness of a shell subject to a concen-
trated load and to perform linear buckling analysis [44],
which will be the topics for the following discussions.

C. Re-Deriving Some Established Results Using
the Rescaling Transformation

We first demonstrate the convenience of the rescal-
ing transformation by deriving the buckling load of or-
thotropic cylinders and plates from the corresponding
isotropic expressions. Our results are consistent with the
established expressions in literature.

3 The Laplacian operator, or rather the Laplace-Beltrami operator,
in the rescaled coordinate system, which is non-Euclidean, is

∆′ ≡ 1√
g′
∂α′

(√
g′gα

′β′
∂β′

)
= 1

4√
λ

∂2

∂x′2
+

4
√
λ ∂2

∂y′2
, where g′ ≡

det(gα′β′ ).
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1. Long Cylindrical Shells

a. Edge Load. By “edge load” we mean the load ap-
plied at the ends of an open cylindrical shell; it has units
of pressure. Paschero and Hyer have observed the cu-
rious fact that the critical edge load of an orthotropic
cylinder, when the real in-plane shear modulus is large
enough (so that shear deformations are negligible), is ex-
actly the classical buckling load of an isotropic cylinder
with elastic constants Eeff and υeff [40]. The rescaling
transformation provides an explanation for this fact. The
isotropic critical axial stress is in this case [7]

σ11
c, iso =

E√
3(1− υ2)

t

R
. (3.13)

Since an orthotropic cylinder can be treated effectively
as isotropic with a modified radius, we can use the same
formula to write the rescaled orthotropic critical stress:

σ1′1′

c, ortho =
Eeff√

3(1− υ2
eff)

t

R′
. (3.14)

Now recall that σ1′1′
= 1

4√
λ
σ11, and R′ = 4

√
λR. Sub-

stituting these into the above expression will yield the
desired result

σ11
c, ortho =

Eeff√
3(1− υ2

eff)

t

R
. (3.15)

b. Surface Load. In this case, a uniform pressure is
applied at the outer surface of an open cylindrical shell.
The isotropic critical circumferential stress is known to
be [7]

σ22
c, isot =

D

R2

(
n2 − 1

)
≡ D

R2

(
n2 − n2

min

)
, (3.16)

where n is the number of half-waves in the circumferential
direction. To obtain the orthotropic critical stress, we
again substitute into the above expression the effective
elastic constants and the rescaled quantities:

σ2′2′

c, orthot =
D′

R′2

(
n′

2 − n′min
2
)

4
√
λσ22

c, orthot =

√
λDθ√
λR2

(
4
√
λn2 − 4

√
λ
)

;

(3.17)

n′ = R′

R
y
y′n = 8

√
λn is the rescaled half-wave number (see

Eq. (C.13)). That it is not integral and related to the
anisotropy parameter λ arises from the following fact.
Although distances and radii of curvature have the same
dimension, the former are related to the square root of
the metric, while the latter get rescaled in the same way
as the metric since both the extrinsic curvature tensor
and the metric tensor are rank-two. Cancelling all factors
involving λ, we get

σ22
c, orthot =

Dθ

R2

(
n2 − 1

)
, (3.18)

which is consistent with the result by Wang et al. [45].
2. Plates

We consider a rectangular orthotropic plate which is
subject to in-plane compressive forces. Its edges are
aligned with the material orthotropic directions; the di-
mensions along the x1 and x2 directions are a and b re-
spectively. The edges of the plate are simply supported;
in other words, bending moments shall vanish along the
edges which are held fixed but allowed to rotate dur-
ing a deformation event (see Eqs. (3.19)). The plate
is subjected to a uniform compression along the x1 di-
rection via edge loads of size τ per unit length acting
upon the two edges perpendicular to the x1 axis. Force
balance at equilibrium dictates a resulting compressive
prestress σ11 = τ/t. We assume that shear deforma-
tions are negligible. In this case, the rescaling trans-
formation maps the orthotropic plate with parameters{
E1, υ21, λ; a, b;σ11

}
to an isotropic plate with parame-

ters
{
Eeff , υeff ; a′ = a

8√
λ
, b′ = 8

√
λb;σ1′1′

}
. It should be

pointed out that the orthotropic boundary conditions
also become effectively isotropic, i.e.,



u3|x=0,a
y=0,b

= 0,(
∂2u3

∂x2 + υ12
∂2u3

∂y2

)∣∣∣∣
x=0,a

= 0,(
∂2u3

∂y2 + υ21
∂2u3

∂x2

)∣∣∣∣
y=0,b

= 0,

7→



u3|x′=0,a′

y′=0,b′
= 0,(

∂2u3

∂x′2
+ υeff

∂2u3

∂y′2

)∣∣∣∣
x′=0,a′

= 0,(
∂2u3

∂y′2
+ υeff

∂2u3

∂x′2

)∣∣∣∣
y′=0,b′

= 0.

(3.19)



7

Therefore, the transformation only affects the way how
quantities get “measured” but does not change the sys-
tem physically.

The resulting deformations manifest themselves as
elastic waves. These waves are subject to the bound-
ary conditions, Eqs. (3.19), and hence take the form
Amn sin

(
mπx
a

)
sin
(
nπy
b

)
, where Amn is the wave ampli-

tude, and m (n) denotes the number of half-waves propa-
gating along the horizontal (vertical) direction. Because
x and a (y and b) rescale in the same way, m′ = m
(n′ = n), i.e., the half-wave numbers are invariant in this
case (cf. Eqs. (3.17)).

For an isotropic plate, the intensity of the load that
gives rise to waves of a particular (m,n) is given in Ref. 7:

σ11
isot =

π2D

b2

(
mb

a
+ n2 a

mb

)2

. (3.20)

The corresponding orthotropic stresses are hence

σ1′1′

orthot =
π2D′

b′2

(
mb′

a′
+ n2 a′

mb′

)2

(3.21, a)

σ11
orthot =

π2

b2

[
D1

(
mb

a

)2

+ 2D′n2 +D2n
4
( a

mb

)2
]
,

(3.21, b)

which agrees with the known expression in the litera-
ture [7]. Its global minimum, with respect to the half-
wave numbers, is the critical stress at which the plate
buckles out of the plane.4

In contrast to plates and singly-curved cylindrical
shells with orthotropy, few exact results exist for the me-
chanical response of doubly-curved orthotropic shells. As
a concrete application of our mapping, we next show that
patches of orthotropic spheroidal shells transform locally
to isotropic spheroidal shells with a different geometry,
and use this mapping to derive new results for the inden-
tation stiffness and buckling load of general orthotropic
spheroidal shells.

D. Indentation Stiffness of Orthotropic Spheroidal
Shells

The indentation assay—measuring the response of a
structure to a point force—is commonly used to gauge
the material properties of biological [23, 46–51], as well
as synthetic [52, 53] shell structures. It also serves as a
quantifier of shell stiffness and its relationships with ge-
ometry, pressure, and material properties which reveals

4 If the real shear modulus G12 deviates much from the Huber
form, to obtain the orthotropic stress, we can simply replace

D′ in Eq. (3.21, b) with H = G12t
3

6
+ D1υ12, the real bending

stiffness that penalizes twisting deformations (which reduces to
D′ when assuming the Huber form).

the fundamental mechanisms underlying geometric rigid-
ity [32–36]. Our mapping enables us to calculate the
linear indentation response of orthotropic spheroidal and
cylindrical shells under pressure, by making use of known
results for isotropic shells [36].

We consider an orthotropic spheroid, as depicted in
Fig. 1, with a concentrated load exerted at the point O
on its equator.

1. The Zero-Pressure Case

a. General Doubly-Curved Shells. For this simple

case, σα
′β′

0 = 0, and an extra term, −Fδ(x1)δ(x2), needs
to be included on the right-hand side of Eq. (3.12, a)
to model the concentrated load at the origin, where
F denotes the load strength, and δ(x) is the Dirac
delta function. Note that because of the scaling prop-
erty of the delta function, δ(ax) = 1

|a|δ(x), the load

strength does not need rescaling, i.e., Fδ(x1)δ(x2) =

Fδ
(
x1′
)
δ
(
x2′
)
≡ F ′δ

(
x1′
)
δ
(
x2′
)

.

The indentation stiffness is defined as

k := − F

u3(0, 0)
= − F ′

u3′(0, 0)
, (3.22)

where u3(0, 0) is the transverse displacement of the shell
at the origin in response to the indentation load. As
shown in Ref. 36, the inverse of the indentation stiffness
at zero pressure (denoted by k0) is given by the following
definite integral:

1

k0
=

1

4π2

∫
R2

QdQdϕ

D′Q4 + Y ′
(

1

R2′
cos2 ϕ+

1

R1′
sin2 ϕ

)2 ,

(3.23)
where the integration variables Q and ϕ are related to

wavevectors, q =
(
q1′
, q2′

)
, in the following way: q1′

=

1
4√
λ
Q cosϕ and q2′

= 4
√
λQ sinϕ. The fact that Q2 =

√
λ
(
q1′
)2

+ 1√
λ

(
q2′
)2

implicitly reflects that the metric

of the rescaled Fourier space is non-Euclidean, resulting
from the original material orthotropy. Evaluating the
integral in Eq. (3.23) gives

k0 = 8
√
D′Y ′

√
K ′ =

4Eefft
2√

3 (1− υ2
eff)

1√
R1R2

:=
4
√
E1E2t

2√
3 (1− υ12υ21)

√
1− β0

R2
, (3.24)

where in the second line, we used the definition of the
effective elastic constants, Eeff and υeff . The parame-
ter β0 := 1 − R2

R1
characterizes the asphericity of a given

spheroid; for example, β0 = 0 (R1 = R2) corresponds to
a sphere, while β0 = 1 (R1 → +∞) a cylinder. Equa-
tion (3.24) clearly shows the separate contributions of ge-
ometry and material anisotropy to the indentation stiff-
ness. As in the isotropic case, the Gaussian curvature,
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K = K ′ = 1/(R1R2), is still the dominant geomet-
rical quantity that governs shell stiffness at zero pres-
sure [34, 36]. Heuristically, we could have anticipated
this K dependence based on the fact that K is invari-
ant under our rescaling transformation (Eq. (3.8)), and
therefore captures the geometric rigidity independently
of how the rescaling is performed.

Just as the geometric contribution is captured by the
geometric mean of the two curvatures, effects of material
anisotropy also come in the form of geometric means,
Eeff =

√
E1E2 and υeff =

√
υ12υ21. These geometric-

mean dependencies are consistent with the requirement
of invariance of the indentation stiffness under coordi-
nate transformations. Consider the equator of an or-
thotropic sphere. We call the local polar (meridional)
and azimuthal (zonal) direction the first and the second
direction, respectively, i.e., θ ≡ x1 and φ ≡ x2. Assume
that the shell is strengthened along the first direction,
i.e., E1 > E2. We now rotate our local coordinate sys-
tem clockwise by ninety degrees, so that x1 7→ −x2, and
x2 7→ x1. The rotation leaves us with the same spherical
shell locally but with the second direction strengthened.
We can infer two conclusions from this simple argument.
First, any local elastic property around the equator of
an orthotropic sphere should exhibit an exchange sym-
metry: Interchanging directions 1 and 2 does not make a
difference. Second, if material anisotropy and geometry
affect shell elasticity locally separately from one another,
then for shells of any type, their local elastic properties
should depend on combinations of elastic constants which
are invariant under the interchange 1↔ 2.

More generally, local elastic properties should be func-
tions of invariant quantities constructed from the cor-
responding tensors. In our system, such examples are
furnished by the Gaussian curvature (the square root of
the extrinsic curvature tensor’s determinant) as well as
the combination 1−υ12υ21

E1E2
, which happens to be the de-

terminant of the stiffness matrix C[αβ][γδ] (Eq. (2.1)), if
we assume that the deformation is axisymmetrical, i.e.,
ignoring G12. We can to some extent rule out the trace of
these tensors as the invariant setting the stiffness, based
on the fact that these traces are not invariant under the
rescaling transformation (cf. the local mean curvature,
Eq. (3.9)).

For general ellipsoidal shells of revolution, material
properties are usually different along the polar and az-
imuthal direction, which are also the principal directions
of such shell surfaces [54]. Therefore, according to the
shallow-shell theory, for these shells, Eq. (3.24) can be ap-
plied almost globally, except at the two poles, where the
material-orthotropy pattern becomes curvilinear. Never-
theless, if we think of the local indentation stiffness as
a function of positions on the shell surface and consider
only small deformations, we expect that taking the ana-
lytical continuation of the function to the poles will imply
that Eq. (3.24) can be still valid there. An explicit cal-
culation of the zero-pressure indentation stiffness at the
poles confirms this expectation for spherical shells (see
Appendix B for calculation details and comparison to
simulations).
b. Long Cylindrical Shells. As for their isotropic

counterparts [36], the case of long orthotropic cylinders
also requires special attention. In contrast to doubly-
curved shells, cylinders admit nearly-isometric deforma-
tions which are not accurately captured by the two-
dimensional Fourier transform applied to a shallow shell
section as used in Eq. (3.23). Instead, the transverse de-
formation field along the entire circumferential direction
must be described using a Fourier series; this approach
was used by Yuan to describe the indentation of isotropic
cylinders [55]. We apply the rescaling transformation
to Yuan’s analysis and accordingly obtain the following
expression for the zero-pressure stiffness of orthotropic
cylinders (see Appendix C for details):

k0
cyl(λ) ≈ 1

4
√
λ

2π

3
√

2 (1− υ2
eff)

Eefft
3

R2

( ∞∑
n=1

1

n3

√
1 + Ξn
Ξn

)−1

, (3.25)

where Ξ2
n := 1 +

3(1−υ2
eff)

4n4

(
R
t

)2
. The dependence of the stiffness expression on the cylinder’s thickness and radius in

the thin-shell limit (R/t � 1) is obtained by keeping the leading term of the series in Eq. (3.25), which dominates
when R

t is sufficiently large:

k0
cyl(λ) ≈ 1

4
√
λ

2π

3
√

2 (1− υ2
eff)

Eefft
3

R2

√
Ξ1 ≈

1
4
√
λ

π

[3 (1− υ2
eff)]

3
4

Eefft
5
2

R
3
2

. (3.26)

For isotropic (λ = 1) cylinders with a negligible Poisson’s
ratio (υ ≈ 0), Eq. (3.26) becomes

k0
cyl(λ = 1) ≈ 1.38

Et
5
2

R
3
2

. (3.27)

Equation (3.27) matches exactly, including the order-one
prefactor, with the expression obtained by de Pablo et
al. [48].

From Eq. (3.25), we observe that the zero-pressure
indentation stiffness for long cylinders depends on the
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anisotropy parameter λ both implicitly (through the
anisotropic elastic constants absorbed into Eeff and υeff)

and explicitly (in the 1/ 4
√
λ factor), unlike the stiffness

of orthotropic doubly-curved shells whose λ-dependence
is purely implicit (see Eq. (3.24)). The explicit λ-
dependence breaks the aforementioned local exchange
symmetry and is a consequence of the fact that open
cylinders can deform isometrically (see IIID 2 b).

Figure 2 compares the theoretical predictions for zero-
pressure indentation stiffness of orthotropic spheroids
(curves) to the output of finite-element simulations
(symbols). For each geometry, we report a non-

dimensionalized stiffness k̃ obtained by dividing k0 by
the zero-pressure stiffness of a spherical (for β0 < 1)
or cylindrical (for β0 = 1) shell with the same equa-
torial radius R = R2 and isotropic elasticity governed
by {E = E1, υ = υeff}. This stiffness scale was chosen
to show both the implicit and explicit λ-dependencies as
well as the dependence on Gaussian curvature for doubly-
curved shells (Eq. (3.24)): The Gaussian curvature can

be written as K = 1−β0

R2
2

, so the zero-pressure stiffness

of a doubly-curved shell with a lower β0 is larger (R2 is
fixed).

Theoretical predictions lie within a few percent of
finite-element measurements for all parameter values in
Fig. 2, verifying that our rescaling transformation pro-
vides accurate results for indentation calculations. The
largest discrepancy between theory and simulation is
around 8% for cylinders with λ < 1; this mismatch
likely stems from the fact that Eq. (3.26) omits higher-
order terms. Despite the simplification, the expres-
sion accurately captures the explicit λ-dependence of the
zero-pressure cylinder stiffness, which follows a different
power-law relationship compared to doubly-curved shells
as seen in the insets to Fig. 2. From the top inset, we
can see that the indentation stiffness of doubly-curved
shells all scales as 1√

λ
, which shows the dependence on

Eeff (since Eeff = E1/
√
λ). In contrast, the stiffness of

long cylinders has a λ-dependence given by 1
4√
λ3

; this is a

combination of the same Eeff dependence and the explicit
1
4√
λ

factor in Eq. (3.25).

2. The Pressurized Case

We now consider the indentation stiffness of closed or-
thotropic shells subjected to a uniform pressure. This sit-
uation is relevant to biological shell-like structures, which
often experience high turgor pressures; varying the pres-
sure also provides a route to modifying the shape and
stiffness of artificial shells [11, 56].

In the absence of indenting forces, the pressurized shell
deforms from its original shape to attain a new equilib-
rium in which in-plane stresses balance the transverse
loads due to the pressure. The indentation forces and
deflections are then calculated with reference to this pre-
stressed state. For thin shells, the indentation response

0 5 10 15 20

λ

0.25

0.50

0.75

1.00

1.25

1.50

1.75

k̃

β0 = −0.5
β0 = 0
β0 = 0.5
β0 = 1

101
10−1

100

2

-1

101
10−1

100

4

-3

FIG. 2. Zero-pressure indentation stiffness of four differ-
ent types of orthotropic shells with varying values of the
anisotropy parameter λ. Symbols denote data obtained from
finite-element simulations as detailed in Appendix D. Solid
curves correspond to the analytical expressions Eqs. (3.24)
and (3.26). The vertical axis reports the stiffness scaled by

4E1t
2√

3(1−υ2
eff)

1
R2

for doubly-curved shells (β0 = 0,±0.5), and by

π

[3(1−υ2
eff)]

3
4

E1t
5
2

R
3
2

for cylinders (β0 = 1). The insets show the

same data on logarithmic axes.

is still a local property of the geometry, elasticity, and
prestresses in the vicinity of the indentation point, and a
shallow-shell description of the local response will suffice
to calculate the indentation stiffness. However, the pre-
stressed state itself depends on the global shell shape—it
is not determined solely by local properties [30]. For thin
spheroidal and cylindrical orthotropic shells, these pre-
stress configurations in response to a uniform pressure
are known as a function of pressure and global geome-
try [7], and are independent of the elastic properties of
the shell as long as the deformations in response to the
pressure are small. We will use these prior results as
inputs to our rescaled theory, which we then use to cal-
culate the indentation stiffness as a function of geometry
and pressure.
a. General Spheroids. Spheroids are ellipsoids of

revolution. We are interested in the local indentation
stiffness around a spheroid’s equator. Following Ref. 36,
we use β0 := 1 − R2

R1
to characterize the asphericity of a

spheroid, where R2 is the radius of its equator, and 1
R1

is
the local principal curvature along the meridional direc-
tion for points on the equator. In the vicinity of the equa-
tor, the prestress components are given by σ11

0 t = 1
2pR2,

σ22
0 t = 1

2pR2(1 + β0) and σ12
0 t = 0 [7], where p denotes

the uniform pressure to which the spheroid is subject.5

5 We would like to mention that an orthotropic spheroid shares
the same prestress as the corresponding isotropic one with the
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The sign convention for the pressure is that a positive
(negative) p means an internal (external) pressure.

Following the same procedure as the zero-pressure

case, we obtain the inverse of the indentation stiffness
which is now a function of three parameters, namely, the

scaled pressure ηs,y(λ) =
pR2

2

4
√
D′(λ)Y ′(λ)

, the asphericity

β0 as well as the anisotropy parameter λ explicitly :

1

k(ηs,y(λ), β0, λ)
=

1

8π2

√
R2

2′

D′Y ′

∫ 2π

0

dϕ

∫ +∞

0

du

u2 + 2ηs,y

(
1 + β′λ sin2 ϕ

)
u+

(
1− β′ sin2 ϕ

)2 , (3.28)

where β′ := 1 −
√
λ(1 − β0) and β′λ := 2

√
λ − 2 + β′ appear to couple the geometry and the material anisotropies.

Nonetheless, it turns out that these explicit λ-dependences are spurious, as we will now demonstrate. The double
integral in Eq. (3.28) can be evaluated in the following closed form (see Appendix E for details):

1

k(ηs,y(λ), β0)
=

1

2π

√
R2

2

D′Y ′
1√

1− β0

1√
(1− ηs,y)(1 + αηs,y)

F

(
1

2
arccos ηs,y

∣∣∣∣− 2(1− α)ηs,y

(1− ηs,y)(1 + αηs,y)

)
, (3.29)

where α :=
1+β′

λ

1−β′ = 1+β0

1−β0
is independent of λ, and F

(
ϑ
∣∣C2

)
denotes the incomplete elliptic integral of the first kind:

F
(
ϑ
∣∣C2

)
:=

∫ ϑ

0

dϕ√
1− C2 sin2 ϕ

. (3.30)

Equation (3.29) is the primary result of this work: by applying the rescaling transformation, we have obtained
a closed-form expression for the equatorial indentation stiffness of pressurized orthotropic spheroids, provided that
the material anisotropy directions align with the latitudinal and longitudinal directions as shown in Fig. 1. As a
consistency check, setting β0 = 0 (R1 = R2 = R) and λ = 1 (Eeff = E and υeff = υ) reduces Eq. (3.29) to, after
taking the inverse,

k(ηs,y(1), 0) =
2π
√
DY

R

√
1− η2

F

(
1

2
arccos η |0

) =
8
√
DY

R

√
1− η2

1− 2

π
arcsin η

, (3.31)

which recovers the established result of the indentation stiffness of pressurized isotropic spherical shells [33, 44].

Equation (3.29) demonstrates that the indentation
stiffness depends on the anisotropy parameter λ only im-
plicitly via the coupling constants D′ =

√
D1D2 and

Y ′ = Eefft ≡
√
E1E2t. In other words, the only effect

of material anisotropy is modifying the elastic constants.
As a consequence, our previous analysis on the behavior
of the stiffness integral in different parameter regimes [36]
should carry over to the orthotropic case. In particular,
it was established in Ref. 36 that at high pressures, the
geometry of the spheroid becomes less relevant and in-
stead the indentation response is dominated by a new
length scale—the radius of distensile curvature, defined
as

R ≡ 1

p

√
det
(
σαβ0 t

)
= R2

√
1 + β0;

the indentation stiffness for arbitrary isotropic ellipsoids

same geometry only on regions that are far away from the two
poles [57, 58].

at high pressure approaches that of a sphere of radius
R and experiencing the same pressure. For anisotropic
spheroids, we expect the same behavior, provided the
geometric-mean coupling constants D′ and Y ′ are used
to define the relevant pressure scale: upon defining a
non-dimensionalized pressure ηR ≡ pR2/(4

√
D′Y ′), we

expect the rescaled indentation stiffness k̃ ≡ k/
√

D′Y ′

R2

for different shell geometries to approach a single curve
when ηR � 1.

This expectation is confirmed in Fig. 3, which reports
simulation data (symbols) and theoretical predictions
(solid curves) for the indentation stiffness of pressurized
shells as a function of pressure over a range of geome-
try and anisotropy values. The data have been nondi-
mensionalized using scales related to the radius of dis-
tensile curvature R and the geometric-mean elastic con-
stants D′ and Y ′. Using this rescaling, indentation stiff-
nesses measured from simulations with different material
anisotropies collapse onto curves that depend only on the
geometry parameter β0. The data collapse and agree-
ment with the solid curves for β0 ∈ {−0.778, 0, 0.75, 0.96}
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validate our prediction for the indentation stiffness of
pressurized orthotropic doubly-curved shells, Eq. (3.29).
Theoretical curves and simulation data for different shell
geometries converge in the limit ηR � 1, indicating
that the distensile curvature and the pressure-induced
prestresses fully determine the indentation response for
shells with large internal pressures as anticipated by the
behavior of pressurized isotropic shells (Ref. 36).

b. Long Cylindrical Shells. We had previously men-
tioned that shallow-shell theory failed to capture the in-
dentation stiffness of cylinders at zero pressure, which in-
stead required a different analysis (Section III D 1 b and
Appendix C). However, we expect that the shallow-
shell approach again becomes accurate for cylinders at

large enough internal pressures [36]. At finite internal
pressure, the extent of the indentation deformation along
the circumferential direction of the cylinders is restricted
by a length scale of order

√
D2/(pR2), which becomes

much smaller than R2 at high enough pressures. In this
regime, the shallow-shell analysis leading to Eq. (3.29)
for doubly-curved shells is also appropriate for cylinders.
It is possible to obtain the indentation stiffness of long
pressurized cylinders directly from Eq. (3.29) by taking
the limit β0 → 1− and invoking L’Hôpital’s rule repeat-
edly. As a more direct approach, we first impose that
limit in Eq. (3.28) and then evaluate the resulting defi-
nite integral. By doing so, we get, after some calculations
(see Appendix E),

1

k(ηs,y(λ), 1)
≡ 1

kcyl(ηs,y(λ))
=

1

4π

√
R2

D′Y ′
1
√
ηs,y

∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

=
1

4π

√
R2

D′Y ′
1
√
ηs,y

K

(
1

2
(1− ηs,y)

)
,

(3.32)

where R ≡ R2 is the radius of cylinders, and K
(
C2
)

denotes the complete elliptic integral of the first kind:

K
(
C2
)

:= F
(π

2

∣∣C2
)

=

∫ π
2

0

dϕ√
1− C2 sin2 ϕ

. (3.33)

The fact that K
(
C2
)

is analytic for |C| < 1 indicates that
when 0 < ηs,y � 1, kcyl(ηs,y(λ)) ∝ √ηs,y for orthotropic
cylinders, just like their isotropic counterparts [36].

To test the validity of our prediction for the pressur-
ized cylinder stiffness, Eq. (3.32), we compared the ex-
pression to finite-element simulation measurements for
nearly cylindrical spheroids with β0 = 0.9999 and vary-
ing levels of material anisotropy in Fig. 3. The highly
elongated spheroidal geometry was used to avoid instabil-
ity and convergence issues with simulating perfect cylin-
ders at high pressures (see Appendix D2 a for details).
We found that the nearly cylindrical shells closely fol-
low Eq. (3.32) (solid curve, β0 = 1) for high enough
rescaled pressures (ηR & 10−2). We also simulated per-
fect cylinders (β0 = 1, symbols) of finite length and
rescaled pressure values below 10−2. At these low pres-
sures, the indentation stiffness deviates from the expres-
sion derived from shallow-shell theory, and instead ap-
proaches the zero-pressure expression evaluated using a
Fourier series, Eq. (3.26) (dotted lines). As noted above,
the zero-pressure stiffness of anisotropic cylinders retains
an explicit λ-dependence beyond the implicit dependence
through the combination of elastic moduli D′Y ′; this de-
pendence is made apparent by the fact that the cylin-
der data at low pressures and different anisotropy values
no longer collapse onto each other in Fig. 3. The inset
confirms that the residual λ-dependence of the rescaled

indentation stiffness for cylinders at very low internal
pressures follows the expectation k̃ ∝ k0

cyl/Eeff ∝ 1
4√
λ

from Eq. (3.25). The results for shells with β0 = 0.9999
and β0 = 1 show that the expressions Eq. (3.25) and
Eq. (3.32), taken together, provide a nearly comprehen-
sive analytical understanding of the indentation stiffness
of pressurized orthotropic cylinders.

E. Buckling Load of Orthotropic Spheroids under
Uniform Pressure

Shell buckling is a catastrophic failure mode of thin-
walled structures, and its avoidance is of critical impor-
tance in engineering design [30, 41]. Buckling is also
one of the key mechanisms that give rise to a diversity
of morphologies in nature, ranging from saddle-shaped
leaves [59] to the undulating shapes of animal tissues
in diverse organs [60]. In technology, buckling can be
exploited for actuation and shape control of soft cap-
sules [56, 61], with a range of potential applications in,
e.g., 4D printing and drug delivery [62]. Although shell
buckling is a nonlinear phenomenon, the buckling load of
a shell can be predicted by linear stability analysis [7].
We now use our mapping to generate expressions for
the critical buckling pressures of spheroids in parameter
regimes for which buckling is driven by a linear instability
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FIG. 3. Indentation stiffness of orthotropic shells of vary-
ing geometries (β0 values) and degrees of anisotropy (λ val-
ues), as a function of pressure. Symbols denote data obtained
from finite-element indentation simulations as described in
Appendix D. Solid curves correspond to the analytical ex-
pressions Eq. (3.29) for β0 < 1 and Eq. (3.32) for β0 = 1.

Data are scaled using the stiffness scale
√

D′Y ′

R2 and the pres-

sure scale 4
√
D′Y ′

R2 derived from the distensile curvature ra-
dius R. Dotted horizontal lines indicate the scaled zero-
pressure stiffness of orthotropic cylinders (Eq. (3.26)). Inset,
indentation stiffness of cylinders simulated at a low pressure
ηR = 9.44 × 10−10. The dashed line indicates the power-law
relationship k̃ ∝ 1

4√
λ

.

in a region of local rectilinear orthotropy.

1. General Spheroids

a. External Buckling Pressure. When a curved shell
buckles under a uniform pressure, it also becomes locally
soft, i.e., its indentation stiffness vanishes, because of the
emergence of an unstable mode, for which the integral
in Eq. (3.28) diverges [36]. We can then obtain the local
buckling pressure around the equator of such shells by
studying the zeros of k(ηs,y(λ), β0) for a given β0. We
can read off the zeros directly from Eq. (3.29) and hence
acquire the nondimensionalized buckling pressure:

ηc =


−1, for the oblate (β0 ≤ 0),

−1− β0

1 + β0
, for the prolate (β0 > 0).

(3.34, a)

Recall that the pressure scale used in Eq. (3.29) is psc :=
4
√
D′Y ′

R2
2

. The dimensionful buckling pressure is thus

pc := ηcpsc =


−4
√
D′Y ′

R2
2

, for β0 ≤ 0,

− 4
√
D′Y ′

2R1R2 −R2
2

, for β0 > 0.

(3.34, b)

As was the case with the indentation stiffness expres-
sion, the local buckling pressure of orthotropic spheroids
(both prolate and oblate) is exactly that of the corre-
sponding isotropic shells [36] with the same geometry and
with geometric-mean elastic constants taking the place of
the isotropic elasticity parameters. This fact again shows
that the main effect of material anisotropy is to mod-
ify the elastic constants; the geometric contribution (ra-
dius dependence of the buckling pressure) is not affected.
Our result is consistent with the established expression
for the buckling pressure of spheroidal shells stiffened by
reinforcements along the equatorial or longitudinal direc-
tions, which was also founded on the shallow-shell the-
ory [29].

As a special case, the local buckling pressure of an
orthotropic sphere around its equator is given by setting
β0 = 0 above:

pc, sph = −4
√
D′Y ′

R2
, (3.35)

The buckling of orthotropic spheres was investigated
computationally and experimentally in Ref. 11. In that
work, it was found that upon increasing the external pres-
sure on an orthotropic sphere with material anisotropy
aligned to the polar and azimuthal directions, buckling
first occurred in the vicinity of the equator when λ ≥ 1
(i.e., when the stiffness E1 along the polar direction is
greater than the stiffness E2 along the azimuthal direc-
tion). Consequently, our expression for the local buck-
ling pressure at the equator provides a prediction for the
global buckling pressure when λ > 1.

We compared our theoretical result against simulation
results for the buckling load of orthotropic spherical shells
with λ > 1, which were generated following the computa-
tional approach reported in Ref. 11 (see Appendix F for
details). To isolate the explicit dependence of the buck-
ling pressure on the anisotropy parameter, theory and
simulation values were rescaled by the classical buckling
pressure of an isotropic sphere with the same radius and
elastic parameters {E1, υ12}:

pM
sc := − 2E1√

3 (1− υ2
12)

(
t

R

)2

. (3.36)

Using this pressure scale, the rescaled prediction for the
buckling pressure of spheres with λ > 1 is

ηM
c, sph :=

pc, sph

pM
sc

=
1√
λ

√
1

1− υ2
eff

(
1− υ2

eff

λ

)
, (3.37)

which is plotted as a solid line in Fig. 4. We found that
upon subtracting a constant offset of 0.0738, the theo-
retical result successfully captures the dependence of the
buckling pressure on the anisotropy parameter. The con-
stant offset, which comes from matching the simulated
buckling pressure for an isotropic sphere (λ = 1) and
the corresponding known theoretical expression [63], is
well within the expected deviation between theory and
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FIG. 4. The scaled global buckling pressure of orthotropic
spheres as a function of the degree of material anisotropy λ.
The spheres considered here have a larger Young’s modulus
along the polar direction, i.e., λ ≥ 1 (E1 ≥ E2). Symbols
denote finite element simulation data (see Appendix F for

details). We set υeff
!
= 0.3 in the simulations. The solid curve

corresponds to the analytical result Eq. (3.37) subtracting a
constant offset of 0.0738.

simulations due to factors such as imperfection sensitiv-
ity. Reference 11 also reported buckling pressures for
orthotropic spherical shells with λ < 1, for which buck-
ling was observed to first occur near the two poles where
the type of orthotropy is not rectilinear but polar. The
rescaling transformation does not apply to this form of
anisotropy, so we cannot predict the global buckling pres-
sure in this parameter region using our approach.

b. Internal Buckling Pressure. In our previous
work [36], we demonstrated qualitatively that because
of the sign switch of the prestress component σ22

0 (=
1
2pR2 (1 + β0)) at β0 = −1, it is possible for a highly
oblate spheroidal shell with β0 < −1 to buckle under
a high enough internal pressure (p > 0, ηs,y > 0 in our
convention) due to compressive stresses along its equator.
Using Eq. (3.29), we are able to identify that pressure ex-
actly. For β0 < −1 (α < 0) and ηs,y > 0, the function
k(ηs,y(λ), β0) vanishes when 1 + αηs,y = 0, or equiva-
lently, when ηs,y reaches the internal buckling pressure

ηint
c := − 1

α
=

1− β0

|1 + β0|
> 0. (3.38, a)

(This behavior arises from the property
lim

x→+∞

∣∣√xF (ϑ |x )
∣∣ = +∞.) Restoring the physical

units gives

pint
c =

4
√
D′Y ′

R2
2 − 2R1R2

(3.38, b)

(cf. Eqs. (3.34)). Equations (3.38) are consistent with
predictions by Tovstik and Smirnov for the internal
buckling pressure of highly oblate isotropic spheroidal

shells [64], and yet again show that the orthotropic shell
response is dictated by replacing the isotropic elastic con-
stants with their geometric-mean counterparts D′ and
Y ′.

IV. DISCUSSION

We have established that under a particular coordinate
transformation (Eq. (3.3)), which we termed the rescal-
ing transformation, an orthotropic shallow shell can be
treated locally as an isotropic one of a different geometry.
The principle underlying the rescaling transformation—
mapping an anisotropic system to an isotropic one by
rescaling the coordinate system used—has also been used
in other contexts, e.g., the anisotropic XY -model [65].
The rescaling transformation enabled us to obtain an-
alytical expressions for the local mechanical properties
of orthotropic spheroidal and cylindrical shells, such as
their buckling load (Eqs. (3.34), (3.15) and (3.18)) and in-
dentation stiffness (Eqs. (3.29) and (3.26)), directly from
using the corresponding isotropic results.

Besides its mathematical convenience that engendered
new exact results for orthotropic shells, the transforma-
tion also helped to quantify the separate effects of geom-
etry and material anisotropy on these local mechanical
properties. We demonstrated that when the principal di-
rections of curvature and material anisotropy are aligned,
the two forms of anisotropy are effectively decoupled—
our expressions factor into terms that capture the elas-
ticity, multiplied with terms that incorporate the shell
geometry. A consequence of this decoupling is that an or-
thotropic shell can have identical local mechanical prop-
erties as an isotropic shell with the same local geom-
etry, and with appropriately chosen elastic parameters
that render the material contributions identical as well.
This fact was previously recognized and exploited in the
geometric-mean isotropic (GMI) approach to studying
orthotropic cylinders, in which the orthotropic material
was replaced with an isotropic material whose elastic con-
stants are geometric means of the orthotropic values [40].
Our mapping rigorously establishes the equivalence of the
two problems when the orthotropic in-plane shear mod-
ulus satisfies the Huber form (GH given by Eq. (2.4)).

The separation of geometry and material properties al-
lowed us to use the results of our previous work, Ref. 36,
to calculate the geometric contribution to local mechan-
ical properties. The effects of material anisotropy, which
we have derived in this work, differ depending on whether
or not the deformation considered is localized. In the
case of a localized deformation, the anisotropic elastic
constants combine in the form of geometrical mean as in
the GMI approach; the resulting combinations serve the
role of effective isotropic elastic constants. However, if
the deformation is not localized, like the case of indent-
ing a cylinder at zero pressure (Section III D 1 b), local
mechanical properties can also depend on other dimen-
sionless combinations of the anisotropic elastic constants,
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such as their ratio (see Eq. (3.26)). In such cases, the
GMI approximation is no longer appropriate since the
geometric means of the elastic constants do not capture
all the material effects.

We assumed throughout this paper that the or-
thotropic in-plane shear modulus G12 is given by the
Huber form (GH, Eq. (2.4)). While the Huber form is
widely used and its validity has been verified for several
different forms of orthotropic materials [31, 38, 39], it is
known that some properties of general orthotropic ma-
terials, such as tristability [14], require a departure from
the Huber form. Our work provides theoretical insight on
why this is the case: any local elastic behavior of a Huber-
form orthotropic shell can, through our mapping, also be
observed in an isotropic shell of the same geometry. Our
mapping cannot be used to calculate properties of general
orthotropic materials that would not be observed in an
isotropic shell. However, we envision that the rescaling
transformation can be adapted to shells made of general
orthotropic materials: In these cases, G12 is in general
a free parameter, and a torsion-like term with coupling
constant proportional to (G12 − GH) needs to be added
into the governing equations in addition to the terms
that are derived from isotropic shells. This additional
term could be analyzed as the driver of phenomena that
have no counterparts in isotropic shells.

Besides the potential for extension to general (non-
Huber form) orthotropic materials, our work points to a
few additional directions for future investigations. First,
recall from IIIA that the rescaling transformation only
applies in the case where the axes of curvature and mate-

rial anisotropy perfectly coincide (Fig. 1 (c)). When the
two sets of axes are misaligned, i.e., they are locally re-
lated by a rotation of some angle, we expect that effects
of geometry and material anisotropy can couple together,
unlike the case we studied in this paper, potentially lead-
ing to richer stiffness behaviors that could be useful for
structural design. In the case of spheroids for which the
extrinsic curvature tensor K and the prestress tensor σ0

share the same principal axes, the effect of the mismatch
between the two sets of axes can be captured by a second
torsion-like term6 whose coupling constant will be given
by off-diagonal components of σ0 if one uses as the coor-
dinate axes the principal material axes. Furthermore, we
note that at the poles of the spheroids that we considered,
material orthotropy becomes curvilinear. The rescaling
transformation does not apply in this case because of the
complicated form that the biharmonic operator takes in
polar coordinates [6]. It remains an open question what
the buckling pressure and indentation stiffness of shells of
curvilinear orthotropy are. Knowing these can shed some
light on morphogenesis [11], such as the reason why an
apple develops a cusp [66].
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Journal for Numerical Methods in Engineering 47, 2039
(2000).



17

Appendix A: Unrescaled Linearized Shallow-Shell Equations

This appendix contains expressions for linearized (rectilinearly) anisotropic shallow-shell equations 7 written in
terms of unrescaled coordinates (which are unprimed in this paper) without using tensor notation. The dimensionless
version of the equations has been derived in Ref. 43; we are here going to restore physical units.

For shells made of orthotropic materials, the compatibility equation takes the following form:

√
λ
∂4Φ(x, y)

∂x4 + 2Eeff

(
1

2G12
− υ12

E2

)
∂4Φ(x, y)

∂x2 ∂y2 +
1√
λ

∂4Φ(x, y)

∂y4 = Y ′
(

1

R2

∂2w(x, y)

∂x2 +
1

R1

∂2w(x, y)

∂y2

)
, (A.1)

and the EOE is given by

√
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(A.2)

Let G12
!
= Eeff

2(1+υeff )
, i.e., assuming that the Huber form applies. We notice the following simplifications:

1
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1 + υeff

Eeff
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(A.3)

and

t3

12

(
2G12 +

E1υ12

1− υ12υ21

)
=
t3

12

(
Eeff

1 + υeff
+
Eeffυeff

1− υ2
eff

)
=

Eefft
3

12 (1− υ2
eff)
≡ D′. (A.4)

The two shallow-shell equations then reduce to(
4
√
λ
∂2

∂x2 +
1
4
√
λ

∂2

∂y2

)2

Φ(x, y) =: L̂ Φ(x, y) = Y ′∆V w(x, y) (A.5, a)

and
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where ∆V ≡ 1
R2

∂2

∂x2 + 1
R1

∂2

∂y2
denotes the Vlasov operator. Combining the two equations, we obtain
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)
. (A.6)

7 The fact that the original nonlinear shallow-shell equations can
be linearized implies that rectilinearly orthotropic shells can de-

form uniformly under a uniform pressure, at least in an approx-
imate sense.
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Appendix B: Mechanical Properties at the Poles of an Orthotropic Spheroid.

In this appendix, we will derive the indentation stiffness at the poles of an orthotropic spheroid in the absence
of pressure. Recall that the material orthotropy pattern is curvilinear at the poles. The result is obtained in two
ways, first by a qualitative energy-balance argument which is then supported by analytically solving the governing
linearized equations of equilibrium (EOEs). We finish the appendix with a short discussion about what will happen
if the spheroid is pressurized.

1. Zero-Pressure Indentation Stiffness.

a. The Energy-Balance Argument.

Landau and Lifshitz first used this approach to obtain the indentation stiffness and buckling pressure of an isotropic
spherical shell [16]. We here modify their approach to include polar material orthotropy.

FIG. 5. Indenting a spherical shell of radius R near one of its poles. A point load, F, is applied right at the pole. The radius
of the resulting deformed region is roughly d, and the vertical deflection along F is denoted by ζ.

Figure 5 depicts that a point load F is applied at one of a spheroid’s poles, the center of a locally spherical region with
radius R. The area of the resulting deformed region is of the order d2 (∼ d2). The deflection ζ varies significantly over

a distance of d, which implies that the bending energy is ∼ Ert3
(
ζ
d2

)2

d2, where Er denotes Young’s modulus along

the meridional direction. The reason why Er was used to estimate the bending energy is that from the cross-sectional
view, Fig. 5, shell bending mainly occurs in the meridional direction, while stretching happens in the zonal direction.

Strain does not depend on d and is ∼ ζ
R . The stretching energy is thus ∼ Eθt

(
ζ
R

)2

d2, and the total elastic energy

is roughly

U ∼ Ert
3ζ2

d2
+
Eθtζ

2

R2
d2. (B.1)

The global minimum of U can be rapidly obtained by recalling the AM-GM inequality:

Umin ∼
2
√
ErEθt

2ζ2

R
= 2

√(
Ert3ζ2

d2

)(
Eθtζ2

R2
d2

)
≤ Ert

3ζ2

d2
+
Eθtζ

2

R2
d2 ∼ U. (B.2)

Varying Umin with respect to ζ and equating the result to F δζ, the variation of the work done by the point load, we
find the deflection ζ ∼ FR

4
√
ErEθt2

and hence the indentation stiffness

kpole
p=0 =

F

ζ
∼ 4
√
ErEθt

2

R
, (B.3)



19

which agrees with Eq. (3.24) up to a factor of two. As this argument explicitly shows, although the local symmetry
at the equator (see IIID) completely breaks down at the poles, i.e., the two orthogonal directions now become
curvilinear and hence distinguishable, the geometric-mean dependence persists and stems from balancing the bending
and stretching energies.

b. The Analytical Approach.

Equation (B.3) can also be obtained by solving the EOEs that govern the deformations of a curvilinearly orthotropic
shallow spherical shell. The full nonlinear EOEs can be found in, for example, Ref. 6. Since we only consider small
deformations due to a point load at the center of the shell, it is reasonable to linearize these equations and further
assume, from a symmetry point of view, that the deformations of interest are axisymmetric, i.e., do not vary along
the azimuthal direction. In this case, the governing equations reduce to [26]

Dr ∆ 1√
λ
y(r) +

y(r)

R
= − F

2π

1

r
(B.4, a)

1

Yθ
∆ 1√

λ
φ(r)− φ(r)

R
= 0, (B.4, b)

where Dr := Ert
3

12(1−υrθυθr) is the bending stiffness along the meridional direction; Yθ := Eθt the Young’s modulus in

the zonal direction; and λ := Er
Eθ

the anisotropy parameter in this case. That Dr and Yθ show up in the governing
equations supports our previous observation that shell bending and stretching occur in different directions. The fields
y and φ are the first derivative of the normal displacement u3 and the Airy stress function Φ, respectively: y := du3

dr ,

and φ := dΦ
dr , where r is the distance away from the pole. The operator ∆ν ≡ d2

dr2
+ 1

r
d
dr −

(
ν
r

)2
(ν ∈ C) is the

Bessel differential operator. It is known that Bessel functions of the first kind with order ν (denoted by Jν) are its
eigenfunctions. This motivates us to solve Eqs. (B.4) using the Hankel transform.

a. Hankel Transform. Roughly speaking, Hankel transform is like Fourier transform in polar coordinates and is
often used to solve linear axisymmetric differential equations. The Hankel transform of a well-behaved axisymmetric
function f(r) is given by [67]

f̂ν(k) ≡Hν {f(r)} (k) =

∫ +∞

0

r dr f(r)Jν(kr). (B.5)

The inverse transform is given by

f(r) =

∫ +∞

0

k dk f̂ν(k)Jν(kr). (B.6)

The Hankel transform of the Bessel operator, ∆ν , is simply −k2, which is independent of ν. This can be most
easily seen by recalling the definition of the Bessel differential equation:(

∆ν + k2
)
Jν(kr) = 0. (B.7)

It follows that for an axisymmetric function f(r),

∆ν f(r) = ∆ν

∫ +∞

0

k dk f̂ν(k)Jν(kr) =

∫ +∞

0

k dk
(
−k2f̂ν(k)

)
Jν(kr). (B.8)

It is also straightforward to obtain the Hankel transform of the function 1
r : By definition,

Hν

{
1

r

}
(k) =

∫ +∞

0

r dr
1

r
Jν(kr) =

∫ +∞

0

dr Jν(kr) =
1

k

∫ +∞

0

duJν(u) =
1

k
, (B.9)

where we have used the fact that for all ν, ∫ +∞

0

dxJν(x) = 1. (B.10)
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The Hankel transform of Eqs. (B.4) is hence

−Drk
2ŷ 1√

λ
(k) +

1

R
φ̂ 1√

λ
(k) = − F

2π

1

k
(B.11, a)

− 1

Yθ
k2φ̂ 1√

λ
(k)− 1

R
ŷ 1√

λ
(k) = 0. (B.11, b)

Substituting Eq. (B.11, b) into Eq. (B.11, a) to eliminate φ̂ 1√
λ

(k), we get, after applying the inverse transform,

dw

dr
(r) =: y(r) =

F

2π

∫ +∞

0

dk
k2

Drk
4 +

Yθ
R2

J 1√
λ

(kr). (B.12)

To proceed, we impose the boundary conditions w(0) = −ζ and lim
r→+∞

w(r) = 0 which together give

∫ +∞

0

dr
dw

dr
(r) = lim

r→+∞
w(r)− w(0) = ζ. (B.13)

Combining Eqs. (B.12) and (B.13), we finally attain the following relation between ζ and F :

ζ =

∫ +∞

0

dr
F

2π

∫ +∞

0

dk
k2

Drk
4 +

Yθ
R2

J 1√
λ

(kr) =
F

2π

∫ +∞

0

dk
k2

Drk
4 +

Yθ
R2

∫ +∞

0

dr J 1√
λ

(kr)

=
F

2π

∫ +∞

0

dk
k

Drk
4 +

Yθ
R2

= F
R

8
√
DrYθ

.

(B.14)

From Eq. (B.14), we can get the indentation stiffness:

k :=
F

ζ
=

8
√
DrYθ
R

=
4
√
ErEθt

2√
3 (1− υrθυθr)

1

R
(B.15)

(cf. Eq. (3.24)). This proves our claim in the main text (see IIID). As the figure below shows, our analytical
expression agrees well with numerical simulations using COMSOL.
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FIG. 6. Zero-pressure indentation stiffness of an orthotropic sphere at its poles as a function of the anisotropy parameter
λ. Symbols denote data obtained from COMSOL simulations. Solid curves correspond to the analytical expression Eq. (B.15).

Indentation stiffness is scaled by 4Ert
2√

3(1−υrθυθr)

1
R

. The inset shows the same data on double-log scale.
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2. Pressurized Orthotropic Spheroids.

Recall the fact that near its poles, a spheroid is locally spherical. Therefore, the following discussions are centered
around curvilinearly orthotropic spherical shells.

Unlike its isotropic counterpart, a curvilinearly orthotropic sphere does not deform uniformly under a constant
pressure. This can be seen by substituting the membrane solution

ym(r) = 0,

φm(r) =
1

2
pRr,

(B.16)

into the nonlinear shallow-shell equations [26]

Dr ∆ 1√
λ
y(r)− φ(r)

r

(
y(r)− r

R

)
=

1

2
pr (B.17, a)

1

Yθ
∆ 1√

λ
φ(r) +

1

2

y(r)

r

(
y(r)− 2r

R

)
= 0. (B.17, b)

Equation (B.17, b) gives
(
1− 1

λ

)
pR
Yθ

= 0 which only holds in the isotropic case (λ = 1). Moreover, we notice that(
1− 1

λ

)
pR
Yθ

switches its sign at λ = 1. The presence of this term illustrates the fact that upon being pressurized,
spheres with a curvilinear orthotropy pattern deform differently depending on whether Er > Eθ or the other way
around [15, 58]. Therefore, the term cannot be ignored in general, and linearization using the membrane solution
thus generally fails for these shells.

In fact, as Reissner has demonstrated, for pressurized curvilinearly orthotropic spheres, both the displacement field

w(r) and the Airy stress function Φ(r) scale as r
1√
λ

+1
near the origin [58]. As a result, the actual stress, ‖σ(r)‖ t ∼ Φ(r)

r2

will have the power-law behavior r
1√
λ
−1

; that is, depending on the magnitude of λ, the stress at the poles will either
vanish (λ < 1) or explode (λ > 1). This stress singularity makes it challenging to derive the indentation stiffness and
buckling pressure of pressurized curvilinearly orthotropic spheres in general.

However, for sufficiently low pressures, such that the approximation
(
1− 1

λ

)
pR
Yθ
≈ 0 can be safely made, following

the same procedure as in the pressureless case, we obtain

ζ =
F

2π

∫ +∞

0

dk
k

Drk
4 +

pR

2
k2 +

Yθ
R2

=
F

4π

√
R2

DrYθ

∫ +∞

0

du

u2 + 2ηs,yu+ 1

= F
R

8
√
DrYθ

1− 2

π
arcsin ηs,y√

1− η2
s,y

,

(B.18)

where ηs,y := pR2

4
√
DrYθ

. The indentation stiffness in this case is hence

k ≡ F

ζ
=

8
√
DrYθ
R

√
1− η2

s,y

1− 2

π
arcsin ηs,y

. (B.19)

Note that Eq. (B.19) is still invariant under interchange of labels r and θ. Mathematically, this means that k(λ) =
k
(

1
λ

)
. This analytical insight is confirmed by COMSOL simulations, as Fig. 7 shows. At low pressures, such that

pR
Yθ
≈ 0, indentation stiffness of the two orthotropic spheres is basically identical to each other; however, when the

scaled pressure increases to order one (ηs,y ∼ 1), we start to see deviations from the theory. The fact that the two

sets of data fall onto different sides of the theory curve is a result of the term
(
1− 1

λ

)
pR
Yθ

being non-negligible.
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FIG. 7. Indentation stiffness of two orthotropic spheres with different degrees of anisotropy as a function of pressure. Symbols
denote data obtained from COMSOL simulations. The solid curve corresponds to the analytical expression Eq. (B.19). Indentation

stiffness is scaled by

√
DrYθ
R

.
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Appendix C: A Derivation for the Zero-Pressure Indentation Stiffness of Long Cylinders

In this appendix, we will combine Yuan’s approach [55] and the rescaling transformation to solve the linearized
shallow-shell equation for long cylindrical shells:

D′ L̂
2
w(x, s) +

Y ′

R2

∂4w(x, s)

∂x4 = L̂ q(x, s) (C.1, a)

(see Eq. (A.6)) or equivalently,

D′ L̂
′2
w′(x′, s′) +

Y ′

R′2
∂4w′(x′, s′)

∂x′4
= L̂

′
q′(x′, s′). (C.1, b)

1. Yuan’s Approach

In short, the approach by Yuan has two main distinctive features compared with our analysis in Ref. 36. First,
along the circumferential direction (associated with the coordinate s), a Fourier series defined on (−πR, πR], instead
of a Fourier transform, was used: More specifically, a well-behaved function f(x, s) can be written as

f(x, s) =

∫ +∞

−∞

dk

2π
f̂(k, s)eikx =

∫ +∞

−∞

dk

2π

∞∑
n=−∞

f̂n(k)ein sR eikx. (C.2)

Furthermore, if the function f(x, s) is even in both x and s, the above expression reduces to

f(x, s) = 2

∫ +∞

0

dk

2π

[
1

2
f̂0(k) +

∞∑
n=1

f̂n(k) cos
(
n
s

R

)]
cos kx, (C.3)

where we have implicitly used the fact that the Fourier transform of an even function is even. For a separable function,
i.e., f(x, s) = X(x)S(s), Eq. (C.3) becomes

f(x, s) = 2

[
1

2
S0 +

∞∑
n=1

Sn cos
(
n
s

R

)]∫ +∞

0

dk

2π
X̂(k) cos kx. (C.4)

Second, Yuan did not use the Dirac delta function to model a concentrated load; instead, he first considered a
uniformly distributed load over a rectangular region and then shrank the size of the region.

2. The Rescaling Transformation

We can thus write

w(x, s) =

∫ +∞

0

dk

2π

[
ŵ0(k) +

∞∑
n=1

2ŵn(k) cos
(
n
s

R

)]
cos kx

=

∞∑
n=0

[
(2− δ0n)

∫ +∞

0

dk

2π
ŵn(k) cos kx cos

(
n
s

R

)] (C.5)

since the normal displacement field w(x, s) must be an even function in both x and s from a symmetry point of view.
The constant load is applied on a rectangular region that is symmetric with respect to the origin; therefore, q(x, s) is
even and separable: q(x, s) = X(x)Q(s), and

q(x, s) =

∞∑
n=0

[
(2− δ0n)

∫ +∞

0

dk

2π
X̂(k)Qn cos kx cos

(
n
s

R

)]
. (C.6)

Letting the region be R = {(x, s) ∈ [−ε, ε]× [−c, c]}, we can then determine X̂(k) and Qn. By definition,

X̂(k) =

∫ +∞

−∞
dxX(x)e−ikx = 2

∫ ε

0

dx cos kx = 2ε sinc kε, (C.7)
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and

Qn =
2

πR

∫ πR

0

dsQ(s) cos
(
n
s

R

)
=

2

πR

∫ c

0

ds q0 cos
(
n
s

R

)
=

2

π

c

R
sinc

(
n
c

R

)
q0. (C.8)

The intensity of the load is denoted by q0, and the total force is hence F = q0A = 4q0cε. In the limits of kε→ 0 and
n c
R → 0,

X̂(k) ≈ 2ε, and Qn ≈
2

π

c

R
q0. (C.9)

Remark. In Yuan’s original formulation of the problem, there is an additional concentrated load being applied at
the bottom of the cylinder (s = ±πR). As a consequence, when computing the Fourier coefficients Qn for the original
system, an extra term,

2

πR

∫ πR

πR−c
dsQ(s) cos

(
n
s

R

)
= (−1)nQn, (C.10)

needs to be added. This leads to vanishing of the odd terms in the Fourier series.

Therefore, for a point load,

q(x, s) ≈ F

πR

∞∑
n=0

[
(2− δ0n)

∫ +∞

0

dk

2π
cos kx cos

(
n
s

R

)]
. (C.11)

Substituting Eqs. (C.5) and (C.11) into Eq. (C.1, a), we obtain, after some algebra,

ŵn(k) =
F

πR

(
4
√
λk2 +

1
4
√
λ

n2

R2

)2

D′
(

4
√
λk2 +

1
4
√
λ

n2

R2

)4

+
Y ′

R2
k4

. (C.12)

We now apply the rescaling transformation in Fourier space: R 7→ R′ = 4
√
λR, k 7→ k′ = 8

√
λk and n 7→ n′ = 8

√
λn;

Eq. (C.12) then reduces to

ŵn(k) =
4
√
λ

1

π

FR′3

D′

(
k̃′2 + n′2

)2

(
k̃′2 + n′2

)4

+ γ′k̃′4
, (C.13)

where k̃′ := R′k′ =
8
√
λ3Rk, which is dimensionless, and γ′ := Y ′R′2

D′ is the Föppl-von Kármán number for the rescaled
system. We note that Eq. (C.13) can also be attained by directly substituting into Eq. (C.1, b) Fourier series and
transforms that are written in terms of the rescaled variables, e.g.,

f(x′, s′) =
1
8
√
λ

∫ +∞

−∞

dk′

2π

∞∑
n=−∞

f̂n′(k′)ein′ s′
R′ eik′x′

. (C.14)

From Eq. (C.13), we can get the following expression for the inverse of the indentation stiffness:

1

k0
cyl(λ)

:=
w(0, 0)

F
=

1

2π2

8
√
λ
R′2

D′

∞∑
n=0

[
(2− δ0n)

∫ +∞

0

du

(
u2 + n′2

)2
(u2 + n′2)

4
+ γ′u4

]

=
1

2π2

8
√
λ
R′2

D′

∫ +∞

0

du

u4 + γ′
+

1

π2

8
√
λ
R′2

D′

∞∑
n=1

∫ +∞

0

du

(
u2 + n′2

)2
(u2 + n′2)

4
+ γ′u4

.

(C.15)
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Remark. Notice that the n = 0 mode does not lead to a divergence, unlike the situation in Ref. 36 where the stiffness
was written in terms of the following double integral:

1

k0
cyl(λ = 1)

=
1

2π2

R√
DY

∫ π
2

0

dθ

∫ +∞

0

du

u2 + cos4 θ
, (C.16)

which diverges in the infrared limit (u→ 0). As Yuan found, the contribution of the n = 0 mode to the indentation
stiffness is in fact negligible compared to other modes; as a result, the first term on the right-hand side of Eq. (C.15)
can be neglected.

Equation (C.15) takes the same form as Eq. (10) in Ref. 55, except for an extra factor of 1
2

8
√
λ. We can hence

directly apply Yuan’s final result, Eq. (17), without actually evaluating the definite integrals in Eq. (C.15):

1

k0
cyl(λ)

≈ 1

2π
8
√
λ

3
√

2
(
1− υ2

eff

)
Eeff

R′2

t3

∞∑
n=1

1

n′3

√
1 + Ξn
Ξn

, (C.17)

where Ξ2
n := 1 +

3(1−υ2
eff)

4n′4

(
R′

t

)2

= 1 +
3(1−υ2

eff)
4n4

(
R
t

)2
. After some rearrangements, we finally get Eq. (3.25).
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Appendix D: Simulation methods: shell indentation (COMSOL)

In this appendix, we provide implementation details of finite element simulations of the indentation studies (IIID),
which were performed using the software COMSOL Multiphysics. We used the Stationary solver with the Shell
module to simulate the equilibrium configurations of orthotropic thin shells under combined pressure and point
loads. Geometric nonlinearity was enabled to ensure that the influence of the pressure-induced prestress was correctly
accounted for in the indentation study.

1. Orthotropic Materials

COMSOL allows for the definition of arbitrary anisotropic elastic materials using the Material module. It is known
that a three-dimensional orthotropic material has nine independent elastic constants; these include three Young’s
moduli (E1, E2 and E3), three Poisson’s ratios (υ12, υ13 and υ23) and three shear moduli (G12, G13 and G23) [6]. The
nine parameters have to satisfy constraints that stem from positive definiteness of the corresponding stiffness tensor.
This makes it challenging to choose sets of these parameters which can guarantee stable simulations. We therefore
followed the presentation by Li and Barbič for simulating orthotropic materials [68]. The essence of their approach is
summarized below.

Li and Barbič consider a subclass of orthotropic materials which can be characterized with only four independent

parameters:
{
E1, λ ≡ λ12 := E1

E2
, λ13 := E1

E3
, υeff

}
. The last parameter υeff is related to the three Poisson’s ratios in

the following way:

υeff :=
√
υ12υ21

!
=
√
υ13υ31

!
=
√
υ23υ32, (D.1)

which implies (using the facts
υij
Ei

=
υji
Ej

) that

υij = υeff

√
Ei
Ej

(i, j ∈ {1, 2, 3}). (D.2)

The three shear moduli are given by the corresponding Huber form:

Gij
!
=

√
EiEj

2(1 + υeff)
. (D.3)

The positive definiteness constraints require that E1, λ, λ13 ∈ R>0, and υeff ∈ (−1, 1
2 ].8

In our simulations, we fixed the value of E1 and υeff to be 70 GPa and 0.3, respectively. We also fixed the value of

λ13 after having verified that transverse shear deformations were indeed negligible in our studies. We chose λ13
!
= 2.

Therefore, in our simulations, there was really only one free parameter that needed tuning to vary the degree of a
thin shell’s material anisotropy, namely λ.

2. Shells with Material Orthotropy and Boundary Conditions

The 3D Component feature was first used to generate spheroidal and cylindrical surfaces. We then used the Shell
module to turn these surfaces into actual shells.

a. Spheroidal Shells

A spheroid is an ellipsoid of revolution. To parametrize a spheroid, x2

a2 + y2+z2

b2 = 1, two parameters, a and b, are

needed. In our simulations, we fixed b
!
= 1 m (so that Ry

!
= 1 m) and set a

!
= b√

1−β0
. We varied the asphericity of a

8 Note that the isotropic Poisson’s ratio υiso has the same range
as υeff : υiso ∈ (−1, 1

2
]. This is indeed the key motivation for

introducing υeff .
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spheroid by changing β0 (β0 ∈ (−1, 1]). The thickness of the spheroidal shell (denoted by t) was also fixed during each

simulation. Since we were simulating thin shells, it is required that b
t & 50. We used t

!
= 1 mm in our simulations.

For best results, we aimed for the mesh in the vicinity of the indentation point to be as fine as possible, relative
to the characteristic length scales for thin-shell deflections which are the geometric means

√
R1t and

√
R2t; however,

setting the same fine mesh size for the entire shell was computationally impractical and also unnecessary: the main
contribution of the rest of the shell away from the indentation region is to provide the geometry-determined prestress
in response to the internal pressure, which varies on much longer length scales of order R1 and R2. Therefore,
we assembled the shell surface out of separate regions with different mesh fineness requirements to balance physics
performance with computational efficiency, as described below.

We used both the Physics-controlled mesh and the User-controlled mesh to build our spheroidal shells (β0 6=
1). Each shell surface S is composed of three disjoint regions: S = StoptSbottSrest. Take the ellipsoid in Fig. 1 (c) as
an example. Among the three, the second region Sbot is centered at O. Its projection onto the tangent plane at O is an
elliptical disk E whose semi-major (semi-minor) axis is given by max

{
3
√
Rxt, 3

√
Ryt

}
(min

{
3
√
Rxt, 3

√
Ryt

}
). The

first region Stop is centered at the top of the ellipsoid but otherwise identical to Sbot, and Srest represents the rest of
the shell surface. The first two regions can be built by obtaining the Intersection of S and a solid elliptical cylinder
with cross-section E (the cylinder can be built with the built-in Extrude function), and the third region by taking
the Difference. For Stop and Sbot, we used the User-controlled mesh and set the mesh size exactly to 3t = 3 mm
(we enforced Maximum element size and Minimum element size to be equal). For Srest, the physics-controlled
Extremely fine mesh size was used.

Material orthotropy was implemented using the Material module. Orientations of material or-
thotropy were conveniently set, by default in COMSOL, to coincide with the shell’s Global coordinate
system, which can be found under Shell/Linear Elastic Material/Shell Local System/Coordinate System
Selection/Coordinate system. The default orientation recreated the desired alignment of the material directions
with the symmetry directions of spheroidal shells for equatorial indentations (Fig. 1). For simulations on indentation
response at the poles of an orthotropic sphere (Appendix B), we instead used the Boundary System for orienting
the orthotropy directions, which conveniently put the two poles at the sphere’s top and bottom.

We used the boundary condition Rigid Motion Suppression for All boundaries. We also used the boundary
condition Symmetry for All edges except the boundary of Stop and Sbot.

To simulate an internal pressure, a negative Face Load was applied. For the zero-pressure simulations, the magni-
tude of the Face Load was set to zero. The indentation itself was implemented using two instances of Point Load
to ensure force balance: one Point Load with a negative magnitude was applied at the top of the shell, (0, 0, b), and
a positive one at the bottom, (0, 0,−b). The absolute magnitude of the two loads was identical (this is essential for
Rigid Motion Suppression to be used properly) and small, such that the resulting normal displacement, shell.w,
was much less than the shell thickness t. In our simulations, the force magnitude used was 1 N. The ratio of the
force magnitude to the resulting normal displacement provided the desired indentation stiffness measurement in our
simulations.

FIG. 8. COMSOL setup for a sphere (β0 = 0). The different mesh regions are indicated.



28

b. Cylindrical Shells

The radius of the cylindrical shells (denoted by R) was fixed to be 1 m. As for spheroidal shells, it is required that
R
t & 50, where t again denotes the shell thickness. As before, we used 1 mm for t. We also used the same loading
conditions (Face Load and Point Load); however, depending on the magnitude of the internal pressure, different
geometries with associated boundary conditions were employed.

a. Low pressures. Under this circumstance, which includes the zero-pressure case, indentation response of long
cylinders is not localized. In our simulations, this corresponds to the pressure range ηs,y . 10−4. For this pressure
range, we run our simulations with real cylindrical shells for which β0 is exactly equal to one. Because COMSOL is

not able to simulate infinite cylinders, we set the length of our shells to be 10R
√

R
t . The combination R

√
R
t is

the characteristic deformation length scale for indenting a cylinder at zero pressure [48]: The indentation response
becomes negligible at distances greater than this length scale away from the point load. For this geometry, Rigid
Motion Suppression was again imposed for All boundaries, and Symmetry for All edges. We only used the
User-controlled mesh to build our cylindrical shells; the mesh size belongs to the range (10t, 1000t).
b. High pressures. By “high pressure” we mean that the internal pressure that a cylinder is subjected to is

high enough, so that the resulting indentation response starts to become localized [36], and it is accurate to use
the double Fourier transform. In our simulations, this happens when the scaled pressure is of the order of 10−2

(ηs,y ∼ 10−2). However, we found that for perfectly cylindrical shells, the prestress components computed by COMSOL
did not match the well-established results for cylindrical pressure vessels [5]. While we could not pinpoint the source
of this discrepancy, we observed that the discrepancy was eliminated upon using highly elongated spheroids with
β0 = 0.9999, which have approximately the same prestress profile and the same local geometry as cylinders at the
equator. Therefore, for ηs,y & 10−2, we run our simulations using elongated spheroids with β0 = 0.9999. The Rigid
Motion Suppression was again imposed for All boundaries. Unlike before, Symmetry was only imposed for the
edges with respect to which the top and bottom of a spheroid are symmetric (e.g., the blue curves in Fig. 8); imposing
Symmetry for All edges created issues related to a known “bursting” instability of nearly cylindrical shells at very
high pressures [69].

We built the surface of these elongated spheroidal shells using the same three regions as before (see Ap-
pendix D2 a). For Stop and Sbot, the User-controlled mesh was used with mesh size belonging to the range
(3t, 30t), and the physics-controlled Extremely fine mesh size was used for Srest.
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Appendix E: Evaluating the Stiffness Integrals

In this appendix, we will show the details how we evaluated the definite integrals in Eqs. (3.28) and (3.32). We will
start with the latter, which is a special case of the former.

1. Equation (3.32)

Setting β0 = 1 (and hence β′ = 1 and β′λ = 2
√
λ− 1) in Eq. (3.28) gives

1

kcyl(ηs,y(λ), λ)
:=

1

8π2

√
R′2

D′Y ′
I1(ηs,y(λ), λ), (E.1)

where R′ = 4
√
λR with R the radius of cylinders, and

I1(ηs,y(λ), λ) :=

∫ 2π

0

dϕ

∫ +∞

0

du

u2 + 2ηs,y

(
1 + β′λ sin2 ϕ

)
u+ cos4 ϕ

= 4

∫ π
2

0

dϕ

∫ +∞

0

du

u2 + 2ηs,y (1 + β′λ cos2 ϕ)u+ sin4 ϕ
;

(E.2)

we have used the fact ∫ 2π

0

dϕf(cos2 ϕ) = 4

∫ π
2

0

dϕf(sin2 ϕ). (E.3)

To evaluate I1(ηs,y(λ), λ), we make two changes of variables: s = u csc2 ϕ and t = cotϕ; as a result,

I1(ηs,y(λ), λ) = 4

∫ π
2

0

dϕ
csc4 ϕ

csc4 ϕ

∫ +∞

0

du

u2 + 2ηs,y (1 + β′λ cos2 ϕ)u+ sin4 ϕ

= 4

∫ π
2

0

dϕ csc2 ϕ

∫ +∞

0

d
(
u csc2 ϕ

)
(u csc2 ϕ)

2
+ 2ηs,y

(
csc2 ϕ+ β′λ cot2 ϕ

)
(u csc2 ϕ) + 1

= 4

∫ +∞

0

∫ +∞

0

dsdt

s2 + 2ηs,y

(
1 + 2

√
λt2
)
s+ 1

,

(E.4)

where in the last step, we changed the order of integration. We notice at this point that we can easily “tease out”
the integral’s explicit λ-dependence by making another change of variables v = 2

√
ηs,y

4
√
λt:

I1(ηs,y(λ), λ) =
2

√
ηs,y

4
√
λ

∫ +∞

0

∫ +∞

0

dsdv

sv2 + (s2 + 2ηs,ys+ 1)
. (E.5)

It is now straightforward to evaluate I1(ηs,y(λ), λ):

I1(ηs,y(λ), λ) =
2

√
ηs,y

4
√
λ

∫ +∞

0

ds

s

∫ +∞

0

dv

v2 +

(√
s2 + 2ηs,ys+ 1

s

)2

=
π

√
ηs,y

4
√
λ

∫ +∞

0

ds√
s

1√
s2 + 2ηs,ys+ 1

=
2π

√
ηs,y

4
√
λ

∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

.

(E.6)
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The last integral in the equation above can be expressed in terms of the complete elliptic integral of the first kind [70]:∫ +∞

0

dx√
x4 + 2ηs,yx2 + 1

=

∫ +∞

0

dx√
(x2 + 1)2 − 2(1− ηs,y)x2

=

∫ π
2

0

d(tan θ)√
(tan2 θ + 1)2 − 2(1− ηs,y) tan2 θ

=

∫ π
2

0

sec2 θ dθ√
sec4 θ − 2(1− ηs,y) tan2 θ

=

∫ π
2

0

dθ√
1− 1

2
(1− ηs,y) sin2 2θ

=
1

2

∫ π

0

dφ√
1− 1

2
(1− ηs,y) sin2 φ

= K

(
1

2
(1− ηs,y)

)
;

(E.7)

to arrive at the last step, we have used ∫ π

0

dφ g(sin2 φ) = 2

∫ π
2

0

dφ g(sin2 φ). (E.8)

After some more algebra, we obtain Eq. (3.32).

Remark. By changing the order of integration, like what we did in Ref. 36, we get the following identity for the
complete elliptic integral of the first kind:

K (x) =

√
2

π

∫ +∞

0

du
arccos

(
u2 + 1− 2x

)√
1− (u2 + 1− 2x)

2
. (E.9)

2. Equation (3.28)

We now return to the more general case, Eq. (3.28); the way of evaluating the integral is essentially the same, but
the changes of variables involved will require slightly more thoughts.

We start by rewriting the integral in Eq. (3.28):

I(ηs,y(λ), β0, λ) :=

∫ 2π

0

dϕ

∫ +∞

0

du

u2 + 2ηs,y

(
1 + β′λ sin2 ϕ

)
u+

(
1− β′ sin2 ϕ

)2
= 4

∫ π
2

0

dϕ

∫ +∞

0

du

u2 + 2ηs,y (1 + β′λ cos2 ϕ)u+ (1− β′ cos2 ϕ)
2

= 4

∫ π
2

0

dϕ

1− β′ cos2 ϕ

∫ +∞

0

dv

v2 + 2ηs,y

(
1 + β′λ cos2 ϕ

1− β′ cos2 ϕ

)
v + 1

,

(E.10)

where v := u
1−β′ cos2 ϕ . Realizing

d

dϕ
arctan

(
1√

1− β′ tanϕ

)
=
√

1− β′ 1

1− β′ cos2 ϕ
, (E.11)

we make the change of variables

s = arctan

(
1√

1− β′ tanϕ

)
. (E.12)
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As a result, we can make the following simplification:

1 + β′λ cos2 ϕ

1− β′ cos2 ϕ
= 1 +

β′ + β′λ
sec2 ϕ− β′

= 1 +
β′ + β′λ

1 + (1− β′) tan2 s− β′ = 1 +
β′ + β′λ
1− β′ cos2 s := 1 + α′ cos2 s,

(E.13)

where

α′ :=
β′ + β′λ
1− β′ =

2β0

1− β0
=

1 + β0

1− β0
− 1 := α− 1, (E.14)

a combination of parameters, which is independent of λ; accordingly, with the new integration variable,

I(ηs,y(λ), β0, λ) =
4√

1− β′
∫ π

2

0

ds

∫ +∞

0

dv

v2 + 2ηs,y (1 + α′ cos2 s) v + 1
. (E.15)

We notice that all the explicit λ-dependence is in the prefactor 4√
1−β′ .

Changing the order of integration, we first evaluate the s-integral. After some algebra, we arrive at

I(ηs,y(λ), β0, λ) =
2π√

1− β′
∫ +∞

0

dv

v2 + 2ηs,yv + 1

1√
1 +

2α′ηs,yv

v2 + 2ηs,yv + 1

, (E.16)

where we have used ∫ π
2

0

ds

A+B cos2 s
=
π

2

1√
A

1√
A+B

. (E.17)

We notice that the term
(

1 +
2α′ηs,yv

v2+2ηs,yv+1

)− 1
2

contains all the non-trivial geometric dependence: Setting β0 = 0

(β′ = 1−
√
λ and α′ = 0) gives

I(ηs,y(λ), β0 = 0, λ) =
2π
4
√
λ

∫ +∞

0

dv

v2 + 2ηs,yv + 1
(E.18)

which is the familiar integral corresponding to the stiffness of a spherical shell.
Realizing

d

dv
arctan

 v + ηs,y√
1− η2

s,y

 =
√

1− η2
s,y

1

v2 + 2ηs,yv + 1
, (E.19)

we make the change of variables

t = arctan

 v + ηs,y√
1− η2

s,y

 . (E.20)

As a consequence, we can rewrite the term just mentioned, which is related to geometric anisotropy, in terms of t:

v

v2 + 2ηs,yv + 1
=

√
1− η2

s,y tan t− ηs,y√
1− η2

s,y

(
dv

dt
(t)

)−1

=

√
1− η2

s,y tan t− ηs,y

(1− η2
s,y) sec2 t

= − 1

2(1− η2
s,y)

(
−
√

1− η2
s,y sin 2t+ ηs,y cos 2t+ ηs,y

)
= − 1

2(1− η2
s,y)

[cos (2t+ arccos ηs,y) + ηs,y] .

(E.21)
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It follows that in terms of the new integration variable,

I(ηs,y(λ), β0, λ) =
2π√

1− β′
1√

1− η2
s,y

∫ π
2

arcsin ηs,y

dt√
1− α′ ηs,y

1− η2
s,y

[cos (2t+ arccos ηs,y) + ηs,y]

=
π√

1− β′
1√

1− η2
s,y

∫ π+arccos ηs,y

π−arccos ηs,y

dθ√
1− α′ η2

s,y

1− η2
s,y

− α′ ηs,y

1− η2
s,y

cos θ

,

(E.22)

where we used the following identities:

arctan

 ηs,y√
1− η2

s,y

 = arcsin ηs,y and arccos ηs,y + arcsin ηs,y =
π

2
, (E.23)

and we also changed the integration variable from t to θ = 2t + arccos ηs,y. Performing another change of variables

φ = θ− π, we can rewrite I(ηs,y(λ), β0, λ) as follows: Factoring out the term

√
1− α′ η2s,y

1−η2s,y from the denominator of

the integrand,

I(ηs,y(λ), β0, λ) =
2π√

1− β′
1√

1− αη2
s,y

∫ arccos ηs,y

0

dφ√
1 +

α′ηs,y

1− αη2
s,y

cosφ

; (E.24)

recall α = α′ + 1. Using the identity∫ ϑ

0

dφ√
1 +A cosφ

=
2√

1 +A
F

(
1

2
ϑ

∣∣∣∣ 2A

1 +A

)
, (E.25)

we finally get, after some rewriting, Eq. (3.29).
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Appendix F: Simulation methods: buckling of orthotropic spheres

The buckling pressure of orthotropic spherical shells, Fig. 4, was determined with finite element simulations. As
the implementation in C++ is based on previous work [11, 71–73], we summarize only the main aspects here.

Denote by Ω ⊂ R3 the middle surface of the thin shell with thickness t. We now distinguish between the stress-free
reference configuration denoted by barred symbols, and the deformed configuration, denoted by bare symbols. Thus,
Ω ⊂ R3 is the middle surface of the unstrained shell (a sphere in the case considered here). We describe the shell in
a total Lagrangian formulation, with x(x1, x2) and x(x1, x2) curvilinear parameterizations of Ω and Ω, respectively.
The tangent spaces of Ω and Ω are then spanned by

aα(x1, x2) = x,α =
∂x

∂xα
, aα(x1, x2) = x,α =

∂x

∂xα
, (F.1)

and by virtue of the Kirchhoff assumption, the shell directors are given by the unit surface normals

a3 =
a1 × a2

‖a1 × a2‖
, a3 =

a1 × a2

‖a1 × a2‖
. (F.2)

To define the membrane and bending strains, we require the covariant components of the metric tensor,

aαβ = aα · aβ , aαβ = aα · aβ , (F.3)

and those of the shape tensor,

bαβ = a3 · aα,β , bαβ = a3 · aα,β . (F.4)

Since the thin shell is in a state of locally plane stress, the strain tensors for stretching and bending with respect to
the curvilinear coordinates can be expressed in Voigt notation as

α =

 α11

α22

2α12

 =
1

2

 a11 − a11

a22 − a22

2(a12 − a12)

 , β =

 β11

β22

2β12

 =

 b11 − b11

b22 − b22

2(b12 − b12)

 . (F.5)

We now transform these into an orthonormal basis {e1, e2} of the tangent space, with respect to which the material
orthotropy is expressed, using a transformation matrix T [73]:

ε = Tα, κ = Tβ (F.6)

with

T =

 t211 t221 t11t21

t212 t222 t12t22

2t11t12 2t21t22 t11t22 + t12t21

 , tαβ = aα · eβ . (F.7)

For a spherical shell, we define the material coordinate system aligned with the polar and azimuthal directions:

e1 =
x

‖x‖ × e2, e2 =
ẑ× x

‖ẑ× x‖ (F.8)

where ẑ = (0, 0, 1)
>

.
With these definitions, the potential energy of a pressurized, orthotropic thin shell can be expressed as [73]

U =

∫
Ω

1

2

(
tε>Cε+

t3

12
κ>Cκ

)
− pa3 · (x− x) dΩ (F.9)

where p is the internal-to-external pressure difference, dΩ = ‖a1 × a2‖ dx1dx2 the reference area element, and

C =

 E1/(1− υ12υ21) υ21E1/(1− υ12υ21) 0
υ12E2/(1− υ12υ21) E2/(1− υ12υ21) 0

0 0 G12

 (F.10)
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the elastic tensor for orthotropic plane stress. To minimize U numerically, we discretized the spherical shell into a
triangulated mesh that was built by recursively subdividing a regular icosahedron five times, resulting in a so-called
“icosphere” consisting of 20480 triangles and 10242 vertices. 10% of the average edge length was added to each vertex
position on the sphere as random noise to break the mesh symmetry. Using C1-conforming Loop subdivision surface
shape functions [74], the middle surface can then be expressed as linear combinations of the shape functions NI with
the nodal positions xI as weights:

x(x1, x2) =

12∑
I=1

xINI , x(x1, x2) =

12∑
I=1

xINI . (F.11)

(Note that for evaluation of the surface on patches with nodes of valence other than six, a recursive procedure is
needed [74].) With this finite element discretization, and using a single Gauss point per triangle, the nodal forces can
be assembled as [73]

f I = −
∑
e

{(
tM>I Ĉα+

t3

12
B>I Ĉβ − pNI a3

) ‖a1 × a2‖
2

}
e

, (F.12)

where the sum runs over all triangles e within the local support of NI , {·}e denotes evaluation at the barycenter of e,

Ĉ = T>CT (F.13)

is the elastic tensor transformed to the local frame, and MI and BI are membrane and bending matrices, whose
transpose are column-wise given by [73]

M>I =
(
NI,1a1 NI,2a2 NI,1a2 +NI,2a1

)
(F.14)

B>I =
(
bI11 bI22 2bI12

)
(F.15)

with

bIαβ =
1

‖a1 × a2‖
(aα,β − bαβ a3)× (NI,1a2 −NI,2a1)−NI,αβa3. (F.16)

With the nodal forces, we solved Newton’s equations of motion with far-subcritical viscous damping added, using
a Newmark predictor-corrector method [73]. To determine the critical pressure, we slowly ramped up the applied
pressure p in the simulations until the shell collapsed.


