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Abstract. Numerical simulations of thin sheets undergoing large deformations are
computationally challenging. Depending on the scenario, they may spontaneously buckle,
wrinkle, fold, or crumple. Nature’s thin tissues often experience significant anisotropic growth,
which can act as the driving force for such instabilities. We use a recently developed finite
element model to simulate the rich variety of nonlinear responses of Kirchhoff-Love sheets.
The model uses subdivision surface shape functions in order to guarantee convergence of the
method, and to allow a finite element description of anisotropically growing sheets in the classical
Rayleigh–Ritz formalism. We illustrate the great potential in this approach by simulating the
inflation of airbags, the buckling of a stretched cylinder, as well as the formation and scaling
of wrinkles at free boundaries of growing sheets. Finally, we compare the folding of spatially
confined sheets subject to growth and shrinking confinement to find that the two processes are
equivalent.

1. Introduction
Thin sheets are omnipresent in nature, technology and everyday life, appearing at virtually all
length scales. Being much thinner in one than in the other two dimensions, they can develop
an unparalleled, rich variety of deformation modes when subjected to external forces, spatial
constraints, or intrinsic growth. They buckle, wrinkle, fold, and crumple. Numerical simulations
are an often-indispensable approach for studying the complex interplay of these modes. The
folding and crumpling of a piece of paper [1–7] and metal sheets wrinkling and crumpling in
vehicle collisions [8–11] are two out of many examples. For many such problems, the finite
element method (FEM) has shown to be amongst the most efficient and flexible tools, especially
in cases with strong material nonlinearity, complex geometry, or anisotropy. Even though the
Kirchhoff–Love theory [12] provides a simple kinematic description, numerically sound finite
element implementations of thin sheets have turned out to be difficult and cumbersome in the
past. These problems can be successfully overcome since the subdivision surface paradigm was
introduced to the FEM [13,14].

Large deformations of soft thin tissue such as insect wings, plant leaves, cell membranes, or
flowers are often induced by growth (or shrinkage) [15,16], inevitably leading to the development
of residual stress [17, 18]. In this paper, we present an extension of the Kirchhoff–Love theory



to allow for anisotropic in-plane growth, which we implement with Loop subdivision shape
functions. The combination of these two concepts grants access to a very straightforward and
highly efficient, yet powerful and flexible numerical tool for the simulation of nonlinear thin
sheet mechanics. Our approach accounts for the change of reference curvature when the surface
grows, generalizing recently developed tethered mass-spring models [19, 20]. The next section
summarizes the mentioned extension. It is followed in the subsequent sections by a series of
thin sheet problems that we solve using the developed FEM implementation. Special attention
is paid to the formation of self-similar wrinkles along a plastically stretched free edge as well as
on the scaling of single-wavelength wrinkles of growing cylinders similar to flowers.

2. The Kirchhoff-Love Sheet with Anisotropic Growth
Let Ω ⊂ E3 be the stress-free undeformed (“reference”) middle surface of a sheet with small
thickness h. Under the action of external forces or growth, the sheet deforms into a new
configuration with middle surface Ω ⊂ E3. In the following, let Greek indices α, β, γ, δ ∈ {1, 2},
and Latin indices i, j ∈ {1, 2, 3}. Lower (upper) indices will denote covariant (contravariant)
components. Moreover, let {θ1, θ2, θ3} be a curvilinear coordinate system, and let x(θ1, θ2) and
x(θ1, θ2) be parametrizations of Ω and Ω, respectively (see Fig. 1). The material points p and
p = χ(p) in the reference and deformed sheet are parametrized as

p(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ1, θ2) and p(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ1, θ2), (1)

where θ3 ∈ [−h/2, h/2]. χ is a diffeomorphism that maps from the reference to the deformed
material positions. The tangent spaces of Ω and Ω are spanned by the respective vector fields

aα(θ1, θ2) = x,α =
∂x

∂θα
and aα(θ1, θ2) = x,α =

∂x

∂θα
. (2)

By virtue of the Kirchhoff assumption, straight material lines normal to the middle surface
retain these properties as well as their length. They are determined by the unit normal vectors

a3 =
a1 × a2

|a1 × a2|
and a3 =

a1 × a2

|a1 × a2|
. (3)
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Figure 1. Reference, grown and deformed configurations of the sheet’s middle surface.

The covariant components of the first fundamental forms follow as

aαβ = aα · aβ and aαβ = aα · aβ, (4)

while those of the second fundamental forms are given by

bαβ = a3 · aα,β and bαβ = a3 · aα,β. (5)



Assuming that the thin sheet obeys the St. Venant-Kirchhoff law of linear elasticity, the
connection between its kinematics and energetics is provided by the Koiter energy density
functional [21,22]. Let the sheet be characterized by Young’s modulus E and Poisson’s ratio ν.
The elastic energy Ue of the Koiter sheet is obtained by integrating the energy per unit area
over the middle surface:

Ue[x,x] =
1

2

∫
Ω

Eh

1− ν2

(
Hαβγδααβαγδ +

h2

12
Hαβγδβαββγδ

)
dΩ, (6)

where dΩ = |a1 × a2| dθ1dθ2. The Einstein summation applies to repeated indices. H is often
referred to as the “elastic tensor”, and is given component-wise by

Hαβγδ = νaαβaγδ +
1− ν

2
(aαγaβδ + aαδaβγ). (7)

α = (a − a)/2 and β = b − b are the in-plane (2×2) membrane and bending strain tensors,
respectively. The Koiter shell (6) can be extended to incorporate anisotropic growth through
the multiplicative decomposition of the geometric deformation gradient ∇χ = Fe Fg [23,24] into
a growth tensor Fg and a purely elastic response Fe, that ensures continuity and compatibility
of the body. Owing to the Kirchhoff constraints, we may write

Fg =

[
G 0
0T 1

]
(G ∈ R2×2 symmetric), (8)

and the growth-modified elastic strains then simply read [25]

α =
1

2

(
G−TaG−1 − a

)
, (9)

β = b−G−TbG−1. (10)

We further augment the elastic energy (6) with an inertial term to capture the dynamics of the
thin sheet. The kinetic energy reads

Uk[x,x] =
1

2

∫
Ω
hρ ẋ · ẋ dΩ, (11)

where ρ is the mass density of the sheet, and ẋ = ∂x/∂t is the velocity. Our aim is to find the
minimizer x of the total energy U = Ue + Uk for given growth tensors Fg or external driving
forces.

3. Finite Element Implementation with Subdivision Surfaces
To account for out-of-plane bending rigidity, the bending term in Eq. (6) integrates the Gaussian
and mean curvatures, which comprise second derivatives of the displacement field u = x − x,
over the middle surface. For boundedness of the integral in the weak formulation, continuously
differentiable finite element shape functions (C1-continuity) are needed. This requirement has
proven very challenging in the history of shell finite elements, until Cirak et al. [13, 14] have
introduced Loop subdivision surfaces to the FEM. A fundamental difference to traditional finite
elements is that subdivision surfaces gain C1-continuity at the expense of a larger support of
the individual shape functions. Details on their implementation are given in Refs. [13, 25].

Aside from guaranteeing convergence, subdivision surfaces allow a classical Rayleigh–Ritz
formulation of the sought finite element deformation: no rotational variables are needed and
the only unknowns are the three nodal displacements. Moreover, a single quadrature point



per element is sufficient [13, 14, 25], rendering this finite element approach computationally
highly efficient and flexible. Of course, increasing the number of quadrature points may assist
in resolving strongly anisotropic growth fields or constitutive relations. We employ Loop
subdivision surface shape functions here to minimize the total energy U numerically by solving
Newton’s equation of motion with a standard predictor-corrector scheme. Subcritical viscous
damping is added for numerical stability and equilibration.

4. Inflated Pillows and Airbags
As a first instance of folding and wrinkling, we reproduce the inflation of pillows and airbags from
Ref. [14]. A square sheet with diagonal length d = 120 cm and thickness h = 1 mm and a circular
sheet with radius R = 35 cm and thickness h = 0.4 mm are instantaneously pressurized with 5
kPa to buckle out of their flat initial configuration. The elastic moduli are given by E = 588
MPa, ν = 0.4 and E = 60 MPa, ν = 0.3, respectively. We exploit the reflection symmetry
by simulating only the upper half of the geometry. The quasi-static equilibrium configurations
are shown in Fig. 2, and a movie of the dynamic deformation is provided in the supplementary
material. The square pillow features a distinct folding pattern in the middle of the four edges,
resulting from the non-uniform distribution of Gaussian curvature: The edges are closer to
the point of maximal uplift than the corners, thus getting curved more and pulled towards
the center. They are laterally stretched and longitudinally compressed, yielding the observed
folds. The circular airbag, on the other hand, is initially axisymmetric and therefore behaves
differently. Wrinkles develop similarly to elastic plates stamped into curved cavities [26] or
ultrathin films placed on fluid drops [27]. On top of these low-amplitude wrinkles, axisymmetry
of the stress field is broken and large crumples occur that localize the geometrically imposed
Gaussian curvature.

(a) (b)

Figure 2. Inflated square pillow (a) and circular airbag (b).

5. Buckling of a Stretched Cylinder
A frequently studied buckling problem is the laterally stretched open cylinder [28, 29]. Two
opposite point forces of equal increasing magnitude F cause the cylindrical sheet with radius
R = 4.953 cm, length L = 10.35 cm, thickness h = 0.94 mm, and free edges to first bend before
snapping through at Fc = 11.836Eh3/R to the post-buckling regime, where further deformations
are dominated by stretching. The elastic moduli are fixed to E = 10.5 MPa, ν = 5/16. In Fig. 3,
we plot the radial displacements of the points A, B and C, which are degenerate at the buckling
threshold Fc. The corresponding movie can be found in the supplementary material.
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Figure 3. (a) Reference state of the cylindrical sheet. (b) Equilibrium solution at F = 1.92Fc.
The stretching energy density is shown on a logarithmic color scale. (c) Normalized radial
displacements vs. the rescaled point force.

6. Boundary Instabilities and Wrinkling
An interesting feature observed in plant growth is the occurrence of self-similar wrinkles along
free tissue boundaries, such as the edges of flowers and leaves [19, 20, 30–33]. The morphology
is very similar to the shape of torn plastic sheets, and apparently, both phenomena are
characterized by a plastic longitudinal metric profile gl(z) = 1/(1 + z/l), where l > 0 is a
characteristic length scale and z ≥ 0 is the coordinate perpendicular to the growing edge. Audoly
and Boudaud [34] were able to show that the solution of the Föppl–von Kármán equations on the
edge of a free rectangular sheet with such growth profiles consists of self-similar wrinkles governed
by odd integral scaling factors. The Föppl–von Kármán equations are, however, geometrically
limited as they don’t allow reentrancy. The present growing Koiter shell model allows us to
numerically solve the problem with its full geometric nonlinearity taken into account. Consider
a flat rectangular sheet of thickness h = 10−4, length L = 4, and width W = 1, initially lying
in the xz plane. We clamp the long edge at z = W and constrain the short edges to stay at
x = −L/2, L/2, leaving them free to move in other directions. Plastic growth is imposed by
setting the growth tensor to

Fg = diag
(
1 + gl(z), 1, 1

)
(12)

in Cartesian coordinates (x, y, z), and we choose a characteristic length l = 40h for the growth
field in this example. Fig. 4 shows the resulting equilibrated configuration after growth (or
tearing), and a movie showing the equilibration is provided in the supplementary material. The
self-similarity of the free edge at z = 0 is apparent, clearly resembling the wrinkling cascades
observed in experiments [20,30].

We have measured the fractal dimension of the grown edge depicted in Fig. 4(a) using the
box counting method [35] and the self-similarity method [36]. In the former, the curve length Lin

contained in a cubic box is determined as a function of the edge length Lbox of the box. A fractal
curve is expected to scale as Lin ∼ LDf

box. Such scaling is indeed observed with fractal dimension
Df = 1.15(1) (Fig. 5(a)). The scaling breaks down due to the influence of the clamped opposite
edge, which introduces a global straightening effect when the box size is large (Lbox ≈W ). The
second method is more robust to global orientation and is thus better suited here. The length Ls
of a piecewise linear path along the curve with segment size s is measured and expected to scale
as Ls ∼ s1−D. We find a self-similarity dimension D = 1.196(5) (Fig. 5(b)), which is very close
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Figure 4. Self-similar sheet boundary after growing according to Eq. (12). (a) Projection of
the grown edge onto the xy plane. (b) 60◦ Fibonacci word fractal. (c) Koch snowflake.

to the Hausdorff dimension of a 60-degree Fibonacci word fractal (Fig. 4(b)), DH = 1.2083 [37],
and a bit lower than that of a triadic Koch curve (Fig. 4(c)), DH = 1.2619 [38].
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Figure 5. Fractal dimension of the edge at z = 0 of a thin sheet grown according to Eq. (12),
measured with two standard methods.

The metric profile used above is not the only one yielding wrinkled edges. When it comes
to wavy flowers like certain orchids for instance, single-wavelength undulations instead of self-
similar edges are not uncommon. The feature causing wrinkle cascades is the presence of a non-
constant geometric length scale defined by lgeo(z) = −g(z)/g′(z) [33]. The following families of
growth fields will thus produce similar boundary instabilities:

gl,p(z) ∝
(

1 +
z

p l

)−p
, (l > 0, p > 0, z ≥ 0), (13)

gl,p(z) ∝
(

1− z

p l

)p
, (l > 0, p > 1, 0 ≤ z ≤ p l), (14)

On the other hand, an exponential growth field

gl(z) ∝ exp
(
−z
l

)
, (l > 0, z ≥ 0) (15)



yields only a single wavelength [19] because lgeo(z) ≡ l in this case. On some flowers, these
undulations may be forced to integral wavenumbers n by angular periodicity of a single petal.
Let’s hence significantly increase the characteristic length l and thickness h such that only a
single wavelength λ prevails even for growth in the form of Eqs. (13,14), and let’s consider a
cylinder with height H and radius R instead of a flat plate. This change in geometry delivers
dramatic consequences: A thin cylindrical sheet growing in circumferential direction according to
g(z), where z is the cylinder axis, only breaks its axisymmetry if growth leads to a circumference
that changes faster than the sheet’s metric can account for [31]. (Note that the excluded linear
case p = 1 of Eq. (14) produces the excess cone [16,39] in the limit R→ 0, which doesn’t wrinkle
at the boundary because g′′l,1(z) ≡ 0.) A direct consequence of the Gauss–Bonnet theorem is
that the axisymmetry is preserved as long as∣∣∣∣R dg

dz
(z)

∣∣∣∣ ≤ 1, 0 ≤ z ≤ H, (16)

and broken otherwise. The origin for this instability is the (non)existence of embeddings of
the surface: According to Gauss’s Theorema Egregium, the creation or elimination of Gaussian
curvature must be accompanied by in-plane stretching, which is traded for out-of-plane buckling
if the sheet is sufficiently thin (see Fig. 6).
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Figure 6. Boundary instability of a circumferentially growing cylinder. (a) As long as Ineq. (16)
holds, axisymmetry is preserved. (b) Same growth field g(z) ∝ exp(−z/l) as in (a), but
larger prefactor. The axisymmetry is spontaneously changed to n-fold rotational symmetry
Cn (h/R = 0.02, l/R = 1, n = 8). The rescaled bending energy density is shown in color,
revealing the line where Ineq. (16) holds equally. (c) A relatively short cylinder (small H/l)
with free boundaries also buckles away from the wrinkled edge, breaking Cn symmetry further
to C2.

How does the number n of boundary waves scale with l, h,R when axisymmetry is broken,
and is it universal for all positive, monotonically decreasing and strictly convex growth profiles
satisfying

lim
z→0

lgeo(z) = l ? (17)

Since the preferred wavelength λ is a local feature independent of global geometry and topology
(independent of R), we may use the ansatz [33]

λ ∼ hα l1−αgeo , i.e.,
λ

h
∼
(
lgeo

h

)1−α
. (18)

On the other hand, geometry implies that

λ =
2πR

n
(1 + g(0)) . (19)



since z = 0 is where Ineq. (16) is violated first, given that g′ < 0 and g′′ > 0. After combining
Eqs. (16–19), one thus finds a scaling for the number of wrinkles

n ∼
(

1 +
R

l

)(
l

h

)α
. (20)

Up to the first term, which accounts for the mean curvature of the cylinder, this coincides with
the scaling law reported in [34] for the wrinkling hierarchies in initially flat sheets, where α = 2/5
is found for the family gl(z) ∝ 1/(1 + z/l). Our numerical data, which best fits Eq. (20) with
α = 0.39(2), shows that the wrinkles studied here fall in the same category, see Fig. 7. Moreover,
the data collapse of all employed growth profiles on a single line indicates that the scaling is
universal in this respect. For this numerical study, we used

Fg = diag
(
1, 1 + g(z), 1

)
(21)

in cylindrical coordinates (r, ϕ, z) with various growth profiles proportional to Eqs. (13-15), and
with slowly increasing proportionality prefactors. A movie showing such spontaneous wrinkling
for different n is provided in the supplementary material.
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Figure 7. Scaling of the wrinkle number n along the edge of a circumferentially growing
cylinder. The mode with the lowest energy is the integer n closest to the power law (20), but
excited modes also randomly occur and are metastable (data points lying significantly above or
below the straight line).

7. Confined Growth and Crumpling
Many numerical simulations of thin sheets getting folded and crumpled inside of shrinking hollow
spheres have been carried out recently [4–6,40]. An important result is that the high bulk stiffness
of crumpled sheets is due to a network of vertices and lines carrying large mean curvature
and bending energy [1]. But what if instead of externally forced compression, the thin sheet
intrinsically grows inside of a fixed spatial container? Are the processes that crumple a plant
leaf or petal growing inside a bud the same as for a piece of foil crumpled by hand? Indeed they
are in the elastic limit, as the following simulation demonstrates.



A thin circular sheet (radius R) is placed inside of a spherical cavity (radius R). In the
first setup, the container is shrunk, folding and crumpling the sheet into a ball of the size of
the container. In the second setup, the container sustains its size while the sheet undergoes
uniform isotropic growth, both in plane and in thickness. The only important parameter for
this problem is the Föppl–von Kármán number γ ∼ (R/h)2 = 104. Equivalent time scales are
obtained by shrinking the sphere according to R(t) = R/(1+g(t)), where g(t) = λt is the growth
factor of the growing sheet. The growth rate λ is chosen small enough to keep inertial effects
negligible. We add repulsive contact forces penalizing volumetric overlap between any two pieces
of the sheet. Initially, both sheets buckle to form a developable cone with a single vertex (see
Fig. 8, first column) that starts to nucleate at R/R ≈ 0.53. The emerging ridge network of
focused mean curvature (third column) and bending energy (fourth column) is the same in both
scenarios. Compared to similar measurements [5], the cross correlation r = 0.89 of the mean
curvature ridge patterns is very high. The differences are only local and of the order of the mesh
resolution. A movie showing the crumpling process is contained in the supplementary material.
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Figure 8. Comparison between shrinking confinement (bottom row) and growth in static
confinement (top row), showing that the two processes are equivalent. k1 and k2 are the principal
curvatures of the middle surface.

8. Conclusions
Simulating the plastic growth of thin sheets can be numerically demanding. The finite element
method, being perhaps the best-suited technique for anisotropies, lacked an expedient C1-
continuous discretization, which is indispensible from a theoretical viewpoint, until subdivision
surfaces were ported to it. We have extended the Kirchhoff–Love theory by arbitrary volumetric
in-plane growth [25] and used the Loop subdivision surface paradigm to build a highly flexible
and efficient numerical tool for the simulation of nonlinear thin sheet mechanics. Requiring no
rotational variables, a thin sheet representation of this kind is remarkably simple to implement
and superior to traditional approaches in terms of computational costs. A series of example
simulations were carried out to demonstrate these strengths. In particular, we have quantified



the self-similarity and scaling of wrinkles along plastically stretched free edges of thin sheets, and
found that the problem of a growing confined sheet is equivalent to the narrowing confinement
of a static sheet.
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