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Stefano-Franscini-Platz 3, CH-8093 Zürich, Switzerland
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The packing problem of long thin filaments that are injected into confined spaces is of fundamental
interest for physicists, biologists and materials engineers alike. How linear threads pack and coil is
well known only for the ideal case of rigid containers, however. Here, we force long elastic rods into
flexible spatial confinement borne by an elastic shell to examine under which conditions recently
acquired knowledge on wire packing in rigid spheres breaks down. We find that unlike in rigid
cavities, friction plays a key role by giving rise to the emergence of two distinct packing patterns.
At low friction, the wire densely coils into an ordered toroidal bundle with semi-ellipsoidal cross
section, while at high friction, it packs into a highly disordered, self-similar structure. These two
morphologies are shown to be separated by a continuous phase transition.

PACS numbers: 45.20.dg, 46.25.-y, 46.32.+x, 46.55.+d, 46.70.De, 46.70.Hg, 89.75.Da

Dense filament packing can be found in various sys-
tems in nature, biophysics and materials engineering. A
well-known natural instance is the injection and subse-
quent coiling of long DNA in globules and viral capsids
(e.g., [1–4]). A similar technique has been harnessed in
biomedical applications by neurosurgeons for the min-
imally invasive treatment of saccular aneurysms, into
which detachable platinum wires are fed to initiate oc-
clusion [5, 6]. Extremely dense fiber packing can also
be observed for example in gland thread cells of hagfish
[7]. Albeit their morphology has recently been unrav-
eled [8], the understanding of morphogenesis and pat-
tern formation—the process of shape transformation and
development—remains vague. In particular, the role of
macroscopic material parameters is little understood.

Several experimental and numerical studies [9–14] re-
vealed how long wires form loop patterns and alignment
between contacting segments when injected into rigid
two-dimensional containers, depending on friction, plas-
tic yield point and the precise insertion setup. In rigid
three-dimensional cavities [15–17], on the other hand,
friction has been reported to have negligible impact on
the packing process. In a recent study on morphogen-
esis of elastic ring filaments growing in flexible shells
[18], however, we discovered four morphological phases
strongly dependent on friction, which brought it back
into play. This naturally begs the question to which de-
gree the knowledge previously acquired on the thread
packing problem in rigid cavities is applicable to less
idealized, deformable ones, such as cell walls, vesicles,
or arterial walls. In this Letter, we perform a change
of boundary conditions from ring-like to linear threads,
which are more relevant in nature and biomedical ap-
plications, to answer this question quantitatively using
numerical simulations and simple table-top experiments.
We show how confinement elasticity completely alters the
packing process of a thin wire that is fed in. In strong
contrast to rigid cavities, friction becomes the key macro-

scopic material property beyond a critical point, deter-
mining the packing process by giving rise to the spon-
taneous emergence of two different morphologies. We
characterize them by comparing numerical measurements
of their energetic and structural properties, finding that
frictional forces lead to a highly disordered, self-similar,
crumpled structure governed by power laws, whereas ab-
sence of friction yields a dense toroidal bundle with semi-
ellipsoidal cross section. We further show that the tran-
sition from rigid to flexible cavities as well as the tran-
sition from weak to strong friction in flexible cavities is
continuous and accompanied by spontaneous symmetry
breaking, and we identify the associated order parame-
ter. Our results shed new light on the thread packing
problem from a mechanical viewpoint, building a bridge
between physics and materials engineering.

For the theoretical considerations and numerical sim-
ulations, we model the thin wire by an extensible, in-
trinsically straight and untwisted Kirchhoff rod [19]. Its
centerline, a space curve x(s), is parameterized by its
arclength s ∈ [0, L]. In its deformed state, an orthonor-
mal director frame {di}i=1,2,3 specifies the cross-sectional
orientation along the curve, with the third one being
the unit tangent d3 = ∂sx/ ‖∂sx‖. Its rate of change
∂sdi = k × di defines the Darboux vector k with direc-
tor components ki = k · di. Assuming a homogeneous,
isotropic, linearly elastic material with Young’s modulus
Ew and Poisson’s ratio νw, the elastic potential energy
Uw of the wire reads

Uw =
1

2

∫ L

0

EwIκ
2 +GJk2

3 + EwAε
2 ds, (1)

in which κ =
√
k2

1 + k2
2 denotes the curvature, k3 is the

twist per unit length, whereas ε = ‖∂sx‖ − 1 is the axial
Cauchy strain due to compression or tension. For an
invariant circular cross section with radius r, A = πr2 is
the cross section area, I = πr4/4 the second moment of
inertia, and J = 2I the polar moment of inertia. The
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shear modulus reads G = Ew/2(1 + νw).
Analogously, a Kirchhoff–Love shell with middle sur-

face Ω and uniform thickness t is used to represent the
flexible hull. In linear elasticity (Young’s modulus Es

and Poisson’s ratio νs), the elastic potential energy of
the shell reads [20]

Us =
1

2

∫
Ω

Hijkl (Mαijαkl +Bβijβkl) dΩ, (2)

Hijkl = νsa
ijakl +

1− νs

2
(aikajl + ailajk), (3)

where M = Est/(1 − ν2
s ) is the membrane rigidity and

B = Mt2/12 the bending rigidity. Einstein summation
over repeated indices i, j, k, l ∈ {1, 2} is used, with sub-
scripts (superscripts) denoting covariant (contravariant)
coefficients. The membrane strains αij = (aij − aij)/2
and the bending strains βij = bij − bij are the covariant
coefficients of the change of first (a) and second (b) fun-
damental forms from the initial stress-free configuration
(barred symbols) to the current one (bare symbols).

For a realistic treatment of body contacts between any
combination of types (wire-wire, wire-shell, shell-shell),
we use a contact model with dry stick-slip friction anal-
ogous to Refs. [14, 16, 18] in the simulations. Repelling
Hertzian contact forces are exchanged when two body
volumes overlap, whereas the tangential contact forces
are set to obey Coulomb’s law with static and dynamic
friction coefficients µs and µd, respectively.

We minimize the elastic energies U = Uw +Us with the
finite element method and integrate Newton’s equations
of motion with a common predictor-corrector scheme of
second order with adaptive time-stepping. Subcritical
viscous damping forces are added to allow the system to
stay close to static equilibrium at all times. Details on
these numerical models and their implementation can be
found in Refs. [21, 22].

An intrinsically straight thread is radially injected into
a thin shell whose unstrained equilibrium configuration is
a sphere with radius R with a small opening with diam-
eter 2r through which the thread is fed in. The confin-
ing shell is held in place by imposing zero displacement
on a narrow rim about the entrance hole. A small ran-
dom transverse deflection is initially added to the wire
to break the rotational symmetry about the feeding axis.
In all simulations, the following parameters are fixed:
r = 0.5 mm, Ew = 1 GPa, νw = νs = 1/3. To reduce
the influence of friction on the phase space to a single
dimension, we always use a fixed ratio µd/µs = 0.9. The
wire is pushed in at a constant speed of 0.5 m/s, which
is slow enough for inertial effects have negligible impact
on the outcome.

In summary, the system is effectively characterized by
the four dimensionless and independent control parame-
ters σ = R/r, ξ = R/t, ε = Ew/Es and µs if it is close to
static equilibrium—a parameterization which is equiva-
lent to that introduced in Ref. [18]. The slenderness ratio
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FIG. 1. Packing evolution in flexible confinement. Series of
simulation snapshots at µs = 0 (top row) producing aligned
coils, and at µs = 1/2 (bottom row) producing disordered
crumpled packings. The remaining parameters are σ = 20,
ξ = 200, ε = 100. All images to scale.

ξ and the cavity flexibility ε generalize the rigid spheres
considered in preceding related studies [15–17].

The typical packing evolution obtained in sufficiently
elastic or thin shells is displayed in Fig. 1 for increas-
ing thread lengths l = L/R. In absence of friction, a
highly ordered packing pattern is observed in which the
wire bundles into a tight toroidal coil (comparable e.g. to
how microtubules bundle up in erythrocytes [23, 24]) that
continues to grow and stretch the confining shell as more
thread is injected. Eventually, both upper and lower
faces of the shell are fully flattened, turning it into the
convex hull of the enclosed coil. Similar forms have been
experimentally obtained by enclosing elastic nanotubes
and nanowires with emulsion droplets and polymer shells,
which were then intentionally contracted [25, 26]. Monte
Carlo simulations at finite temperature [27, 28] have like-
wise indicated that soft vesicles deform into obloids when
enclosing a fluctuating polymer chain whose persistence
length grows much larger than the vesicle diameter.

When friction is activated, however, the situation is
dramatically changed: Tangential sliding is hampered,
which lets the wire tip poke the surrounding shell sig-
nificantly. The compressive forces acting on the inserted
thread are much higher in consequence, and soon let it
buckle out of the coiling plane to form a more three-
dimensional packing process with frequent spontaneous
loop reorientations, yielding a crumpled structure that
tends toward an approximately spherical bulk shape at
high packing density. Due to the thin shell’s tensile flexi-
bility, frictional forces let the pushing wire locally drag its
confinement along a small distance, making static friction
much more relevant in deformable than in rigid cavities.

For validation and demonstration, we have reproduced
these two morphologies in table-top experiments, three
examples of which are shown in Fig. 2(c-e). Polycaprolac-
tam wires (r = 0.5, 1 mm, up to L = 22 m) were manually
pushed through a straight steel pipe into customary in-
flatable balloons made of natural rubber (R = 18, 23 mm,
t = 0.25 mm). To reduce friction, we coated the wires
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FIG. 2. Packing morphologies in flexible confinement. (a)
Toroidal coiling at weak friction (µs = 0). (b) Crumpling at
strong friction (µs = 1/2). The further simulation parameters
are σ = 20, ξ = 10, ε = 103, and the packed wire length
is l = 800. In color, the dimensionless curvature is shown.
Images to scale, except that the wire radius is halved to reveal
the inner structure. (c-e) Experimental realizations of the two
morphologies in transparent and opaque rubber balloons. (c)
r = 1 mm, R = 23 mm, l ≈ 950. (d) r = 0.5 mm, R = 23 mm,
µs ≈ 0.55, l ≈ 650. (e) r = 0.5 mm, R = 18 mm, µs ≈ 1.2,
l ≈ 750. (f) Cross section of a (a) with superposed ellipses
and geometric parameters.

with an acrylic dye and additionally used a silicone lu-
bricant.

To quantitatively characterize the coiled morphology
at low friction, we measured the geometrical properties
of cross sections, of which a typical example with fully
stretched lateral faces of the thin shell is displayed in
Fig. 2(a,f). Within the reasonable parameter range ex-
amined here (20 ≤ σ ≤ 40, 10 ≤ ξ ≤ 200, 1 ≤ ε ≤ 104),
if the shell is flexible enough, the cross sections of the
toroidal bundle are very well approximated by two half el-
lipses, with major toroidal radiusRt, and two minor ellip-
soidal radii Rx, Ry, as labeled in Fig. 2(f). While the evo-
lution of these three radii with the packed thread length
depends on the system parameters σ, ξ, ε, the com-
mon functional form is well approximated by a power-
law scaling Rt/R ∼ lα, Rx/R ∼ lβ , Ry/R ∼ lγ in all ob-

served cases within a certain range of the rescaled thread
length l = L/R. This is demonstrated in Fig. 3(a) on
the example setting σ = 20, ξ = 10, ε = 103 for which
α = 0.04 ± 0.01, β = 0.35 ± 0.01, γ = 0.46 ± 0.01, indi-
cating that while the minor radii grow quickly, the major
radius Rt remains approximately constant. α = 0 is in-
deed expected in the flexible cavity limit M ∼ Est → 0
(i.e., ξ, ε→∞), since 1/Rt is the maximum curvature in
the coil, the square of which is minimized according to the
principle of minimum energy. This high degree of order
allows for an analytical approximation following the ideas
of Purohit et al. [29]. Their geometrical model, which was
originally devised for the description of DNA coils in vi-
ral capsids, has also been successfully applied to ordered
wire packing in rigid cavities [16, 21]. It is based on the
approximation that thin threads coil such that their bi-
normal vectors are always parallel to the main coiling
axis x, and that their radius of curvature about this axis
is maximal, resulting in an empty cylindrical region as
it is observed here. Assuming that the centerlines of in-
dividual strands in the coil are separated by a distance
d(L) ≥ 2r on average, the number of windings along the
x axis is given by w(y) = 2Rx

√
1− (y/Ry)2/d(L). The

packed thread length follows as

L =
2√

3d(L)

∫ Ry

0

2π(Rt + y)w(y) dy =
2πcRxR

2
y√

3d(L)2
(4)

where c = 4/3 + πp and p = Rt/Ry. This fixes the
average strand separation d(L) given that L,Rt, Rx, Ry
are known. Analogously, the wire bending energy Ub =

(1/2)
∫ L

0
EwIκ

2 ds reads

Ub(L) =
2√

3d(L)

∫ Ry

0

πEwI

Rt + y
w(y) dy. (5)

Using Eq. (4), the unknown d(L) can be eliminated to
yield

Ub(L) =
2LEwI

cR2
y

(
q ln

[
1 + q

p

]
+
π

2
p− 1

)
(6)

where q =
√

1− p2. Note that Eq. (6) is real-valued
even for p > 1. Ub is monotonically decreasing in p, and
thus the wire favors toroidal configurations with large
major radius Rt but small minor radii Rx, Ry. This ten-
dency of the wire competes with the shell deformations
necessary to adopt such a shape. In Fig. 3(c), the di-

mensionless bending energy Ûb := Ubr
2/REwI of both

morphologies is compared. The numerical measurement
of the coiled morphology is very well approximated by
Eq. (6), with only a slight overestimation at early pack-
ing. The crumpled morphology simulated at µs = 1/2, on

the other hand, exhibits a clear power-law trend Ûb ∼ lδ
with δ = 1.192± 0.006, which hints at a hierarchic inner
packing structure: The more wire is injected, the more
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FIG. 3. (a) Scaling of the shape of the coil with the in-
serted wire length. Data obtained by fitting semi-ellipses to
the cross sections as shown in Fig. 2(f). (b) Number of wire

self-contacts N . (c) Non-dimensionalized bending energy Ûb.
(d) Total curvature K. Symbol and line legends in subplots
(c) and (d) hold for (b-d). Data from simulations at σ = 20,
ξ = 10, ε = 103.

spatial freedom is limited, resulting in higher bending
curvature in the newly formed loops. The bulges visible
in Fig. 2(e) provide some intuition on this phenomenon.

To gain further insight into the packed structure, we

consider the total curvature K =
∫ L

0
κ ds, which reads

K(L) =
2√

3d(L)

∫ Ry

0

2πω(y) dy =
πL

cRy
(7)

in our coiling model. This excellently approximates the
numerical measurement with a slight initial overestima-
tion, as shown in Fig. 3(d). In the hierarchic crumpled
morphology at µs = 1/2, we find a power law K ∼ lλ

with λ = 1.083 ± 0.004 consistently with the energet-
ics. The hierarchic nature of the crumpled structure is
manifest also in the number of contacts between wire seg-
ments, N , as Fig. 3(b) shows. After the two morphologi-
cal phases have bifurcated, it follows a power law N ∼ lτ
with τ = 1.40 ± 0.01 at µs = 1/2. On the contrary, low
friction leads to dense alignment with hexagonal packing
in the coiled morphology, hence N ∼ l once a few coil
windings are established.

To complete the quantitative characterization of the
two morphological phases, an order parameter is required
that discriminates them rigorously. What defines the
order of the coil at low friction is alignment between
the individual loops. The hierarchic packing pattern in

100 101 102 103
0

0.2

0.4

0.6

0.8

1

coiled crumpled

(a)
D

ε 0 0.2 0.4 0.6 0.8 1

0.1 0.13 0.16
0

0.1

0.2

(b)

µs

FIG. 4. Order parameter D for the coiling-to-crumpling tran-
sition. (a) As a function of the confinement flexibility ε at
σ = 20, ξ = 30, µs = 1. (b) As a function of the friction
coefficient µs at σ = 20, ξ = 10, ε = 103. The inset shows
a magnification about the critical point. Error bars indicate
standard errors from 10 independent simulations. The solid
gray lines are used as a guide to the eye. Error bars indi-
cate standard errors from 10 independent simulations. Data
maximized over l ∈ [5, 50].

the crumpled morphology emerges due to frequent three-
dimensional loop reorientations, which break this align-
ment. Denote by n the unit vector pointing in direction
of the wire’s principal axis of minimal moment of iner-
tia. The curvature of the wire about n is given by the
triple product κn(s) = n · (∂sx × ∂2

sx), whose average

sign S = (1/L)
∫ L

0
sgnκn(s) ds measures the fraction of

the wire turning in either direction about that axis. S
vanishes iff left- and right-turning wire segments are bal-
anced (e.g., when the loops are isotropically distributed,
degenerate n), whereas it takes one of its extreme values
±1 iff the coil never changes orientation. Since this coil-
ing direction is initially selected at random, the sample
average of S is zero. The decisive non-trivial quantity is
thus |S|, and D = 1− |S| is an order parameter that dis-
criminates ordered coiling from disordered crumpling. A
closely related quantity has already served to distinguish
morphologies of growing elastic rings confined in spheres
[18]. As shown in Fig. 4, D vanishes in the coiled phase
observed in relatively stiff confinements even with very
strong friction, and in flexible shells if the friction coeffi-
cient is sufficiently small. Evidently, the crumpled phase
(D > 0) requires a flexible shell and moderate friction to
emerge, and the phase transition is continuous.

Our findings accentuate the fundamental difference be-
tween rigid and flexible cavities for the wire packing prob-
lem. Friction is responsible for a morphological phase
transition from ordered coiling to a disordered hierar-
chic structure. In rigid spheres, such disorder needed to
be introduced by artificially pre-curving the wire [16],
whereas in the tight flexible confinement considered here
it occurs spontaneously even with straight rods. This
insight might contribute to explaining the high degree
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of order observed in hagfish gland cell thread morpho-
genesis. It has far-reaching implications for biomedical
applications such as the surgical occlusion of cerebral
aneurysms, where the friction coefficient is estimated to
be well above the critical value reported here and where
common simulations ignore deformations of the arterial
walls (e.g., [30]). While friction can cause problems dur-
ing injection [31], our results suggest that it is neverthe-
less highly desirable in order to obtain a broader spatial
distribution of loops, which is known to assist in stabi-
lization [30]. An open question is the sensitivity of the
packing behavior to material nonlinearity. It could also
be worthwhile to determine the functional dependence of
the exponents and critical points reported here on the
system parameters.
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Grant No. ETH-03 10-3 is gratefully acknowledged.

∗ vetterro@ethz.ch
[1] D. E. Smith, S. J. Tans, S. B. Smith, S. Grimes, D. L.

Anderson, and C. Bustamante, Nature 413, 748 (2001).
[2] J. Kindt, S. Tzlil, A. Ben-Shaul, and W. M. Gelbart,

Proc. Natl. Acad. Sci. USA 98, 13671 (2001).
[3] P. Grayson and I. J. Molineux, Curr. Opin. Microbiol.

10, 401 (2007).
[4] A. S. Petrov and S. C. Harvey, Biophys. J. 95, 497 (2008).
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