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Zusammenfassung

Wer ein langes Kabel oder eine Schnur platzsparend verstauen will, wird diese in der
Regel zu einer Rolle aufwickeln, im Wissen, dass dies eine effiziente Lösung darstellt,
die anschliessend auch das erneute Abrollen ohne starkes Verheddern ermöglicht.
Gleichzeitig kennt jeder das Phänomen, dass sich Ohrhörerkabel in der Hosentasche
verblüffend schnell ineinander verfangen, obschon man sie nicht absichtlich ver-
knotet hat, besonders wenn sie eine reibungsbehaftete Oberfläche besitzen. Diese
alltäglichen Beispiele zeigen eine Klasse von komplexen Problemstellungen auf, die
auch in der Natur weit verbreitet sind: Die Packung langer und dünner, verformbarer
Objekte in einer beschränkten Räumlichkeit, und die damit einhergehende Tendenz
sich spontan zu bündeln, falten, winden und zerknüllen. So etwa spulen Viren die
DNS-Stränge ihres Genoms unter Ausübung erheblicher Kräfte eng in Kapsiden
auf, Aktinfilament-Netzwerke reorganisieren sich plötzlich zu ringförmigen Bündeln
wenn die flexiblen Vesikel, in denen sie eingeschlossen sind, an Ausdehnung verlie-
ren, und die Darmkanäle im Körperhohlraum vieler Wirbeltiere formieren sich im
Wachstumsstadium aufgrund unterschiedlicher Wachstumsraten zu verworrenen
Schlaufen. Solche Formfindungsprozesse treten auf einer grossen Bandbreite von
Längenskalen auf und unterliegen oft universellen Verhaltensmustern, die sich rein
mechanisch erklären lassen.

Bislang wurden Wachstum, Packung und Formbildung dünner Körper in be-
schränkten räumlichen Verhältnissen fast ausschliesslich unter dem Gesichtspunkt
unverformbarer Behälter systematisch untersucht. Diese idealisierte Betrachtungs-
weise vernachlässigt aber Effekte gegenseitiger mechanischer Interaktionen des
gepackten Materials mit seiner Hülle, wie sie in diversen biologischen, medizini-
schen und materialwissenschaftlichen Anwendungen beobachtet werden können.
Die vorliegende Doktorarbeit nimmt sich genau dieser grundlegenden Problematik
an. Die zentrale Fragestellung ist die nach der deterministischen Morphogenese
dünner, stark verformbarer Schalen und Filamente unter verschiedenen geometri-
schen und materiellen Gegebenheiten wie anisotropes volumetrisches Wachstum,
Selbstkontakt, Kontakt zwischen verschiedenen flexiblen Strukturen und makrosko-
pischen Materialkennwerten. Spezielles Augenmerk wird dabei gelegt auf die Verall-
gemeinerung der bis dato untersuchten starren kugelförmigen Kavität hin zu einer
flexiblen dünnen Schale, und die dadurch auftretenden neuartigen Packungsverhal-
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ten darin eingeschlossener dünner Stränge. Weil dabei eine Vielzahl komplizierter
Vorgänge zusammenspielen, werden primär numerische Simulationen entwickelt
und eingesetzt. Dies erlaubt eine präzise Kontrolle der Systemparameter sowie eine
systematische Durchforstung der morphologischen Phasenräume innert nützlicher
Frist. Die Methode der Finiten Elemente stellt für viele kontinuumsmechanische
Probleme mit starker Anisotropie oder Effekten höherer Ordnung das mächtigste
und flexibelste numerische Werkzeug dar und kommt daher hier zur Anwendung.

Die hierin gewonnenen Erkenntnisse beginnen bei der Identifikation derjenigen
dimensionslosen Kontrollparameter, die unter verschiedenen Randbedingungen den
Wachstums- oder Packungsprozess bestimmen. Überraschenderweise ändert die
Schalenflexibilität nicht nur die geometrische Struktur zu der sich darin eingeführte
lange Filamente aufwinden, sondern auch die Rolle, die die Reibung dabei einnimmt.
Während Reibungskräfte in starren Kugelbehältern nur untergeordneten Einfluss
auswirken, bestimmen sie die Morphologie in flexiblen Kugelschalen massgebend.
Entscheidend sind aber nicht alleine die Verhältnisse der interagierenden intrinsi-
schen Materialkennzahlen, sondern auch die konkurrierenden Längenskalen, die
ebenfalls identifiziert werden. Ein quantitatives Bild des morphologischen Phasen-
raumes zeigt im Folgenden präzise auf, wie geometrische und materielle Grössen
zusammenspielen bei der Gestaltbildung wachsender Ringfilamente in verformba-
ren Membranen. Dadurch ergibt sich eine universelle Vorhersehbarkeit der Form.
Schliesslich gewährt die Messung der mit den Phasenübergängen verbundenen
Ordnungsparametern einen offenbarenden Einblick in dabei auftretende Symme-
triebrechungen und Instabilitäten, welche die spontane Aufwicklung, Bündelung
und Faltung verschiedener Filamente in biologischen und verwandten Systemen mit
mechanischen Prinzipien erklären.



Abstract

When a long cable or string is to be stowed away in a space-saving manner, it is
typically rolled up into an ordered coil, which provides an efficient solution that
allows it to be uncoiled again later without getting tangled up much. On the other
hand, the astounding phenomenon that earphone cords tend to entangle without
much further action in a pocket, even though one likewise carefully coiled them
up beforehand, is known to everyone from painful daily experience, especially if
they possess a rough or sticky surface. These everyday examples illustrate a class
of complex problems that are widely spread also in Nature: The packing of long
and thin deformable objects in spatial confinement, which is accompanied by their
tendency to spontaneously bundle, fold, coil and crumple under different conditions.
Viruses, for instance, apply significant molecular forces to tightly wind up their DNA
strands in capsids. Actin filament networks spontaneously restructure to ring-like
bundles upon sufficient shrinkage of the giant vesicles they are enclosed by, and
the gut tubes of various vertebrates develop a distinct loop pattern in the body
cavity as a result of differential growth during early growth stages. Such kinds of
shape transformations occur on a large range of length scales and can oftentimes
be explained by pure mechanics, which hints at universal underlying principles.

To this date, the systematic studies of packing and morphogenesis of thin bodies
in limited spatial circumstances have almost entirely been restricted to the special
case of rigid containers. Under this idealized viewpoint, however, effects are ne-
glected that result from the mechanical interaction between the packed structure
and its hull, as it can be observed in various biological and medical applications as
well as in materials engineering. The dissertation at hand is concerned with precisely
this fundamental problem statement. The central question addressed is the one re-
garding deterministic morphogenesis of thin shells and filaments undergoing large
deformation, subject to various geometrical and material conditions such as aniso-
tropic volumetric growth, self-contact, contact between different flexible structures,
and macroscopic material properties. Special attention is paid to generalizing the
rigid spherical cavity of packing studies preceding the present work toward a flexible
thin shell, and to the emerging novel packing processes of injected or enclosed thin
strands. Since so many complicated mechanisms mutually interfere in this, numeri-
cal simulations are developed and employed primarily, allowing for a precise control
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of the system parameters as well as to systematically sift through the morphological
phase spaces in a timely manner. The powerful finite element method is utilized
here as it offers the best flexibility for many problems in continuum mechanics, in
particular with strong anisotropy and effects of higher order.

The herein gained novel insights set in at the identification of those dimension-
less control parameters that govern growth and packing processes under given
boundary conditions. Surprisingly, a finite shell flexibility does not merely alter the
geometric structure and coiling of an injected long filament; it also affects the role
friction takes in the game. While frictional forces have only minor influence in rigid
containers, they turn into a key factor governing morphogenesis in flexible shells.
The decisive parameters are thus found to be ratios of interacting intrinsic mate-
rial properties, but also the involved competing length scales, which are identified
too. A quantitative image of the morphological phase space subsequently reveals
how exactly geometric and material properties interplay when elastic ring filaments
grow in deformable membranes, yielding the power to predict the emergence of
shapes universally. Finally, a set of order parameters that quantitatively characterize
the phase transitions are proposed and measured, shedding light on instabilities
and symmetries that are spontaneously broken. Various instances of filament coil-
ing, bundling and folding occurring in biological and related systems are thereby
explained by mechanical principles.
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Chapter 1

Introduction

It behoves us always to remember that in physics it has taken great men
to discover simple things. [...] It is but the slightest adumbration of a dy-
namical morphology that we can hope to have until the physicist and the
mathematician shall have made these problems of ours their own.

– D’ARCY WENTWORTH THOMPSON, On Growth and Form (1917)

1.1 Overview and motivation

A century ago—quite a step ahead of his time—a mathematical biologist postulated
that a good share of the wealth of patterns, shapes and forms found in Nature may
be described and understood as an inevitable consequence of mechanical growth.
D’ARCY THOMPSON’s famous 1917 landmark monograph On Growth and Form [227]
inspired and motivated many natural scientists in the decades to follow to tackle the
mysteries of morphogenesis in a rigorous way from first principles, revolutionizing
the way we nowadays see the variety of shapes in Nature and in our everyday en-
vironment. His thesis that growth and mechanical response of soft tissue (rather
than design or pure evolution) lies at the core of many shape transformations ob-
served in biology has been confirmed theoretically and experimentally in countless
occasions. THOMPSON realized that a key player in the game of morphogenesis is a
certain degree of non-uniformity underlying a plethora of growth scenarios. From a
modern perspective, this very broad notion can be divided into two types: anisotropic
growth and differential growth. The former accounts for a variation in the directions
of growth, whereas the latter introduces a growth gradient or different growth rates
along one of said directions. It is the combination of these complementary concepts
with ideas from elasticity that has let the study of pattern and shape formation
blossom over recent decades.

1
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D’ARCY THOMPSON also acknowledged the inherent need for a quantitative de-
scription of growth phenomena—the language and approach of a mathematician
or physicist—to be able to comprehend forms and structures that biologists and
chemists had previously struggled to explain in their entirety. Along with this dif-
ferent viewpoint comes an additional level of abstraction: The mathematical de-
scription of growth requires cause and effect to be decoupled. What gives rise to
growth—be it a chemical catalyst, a biological morphogen, genetic programming or
a material response to temperature or moisture changes—becomes irrelevant for
the physicist who seeks to explore the space of assumable shapes of a growing body
and to identify universal behavior and fundamental principles. Such a decoupling
treats growth and its induced morphogenesis as a dead process, disregarding active
regulations or control by a living organism. Although it should not be mistaken for
the sole answer to the question of shape development in the biological context, this
approach has been widely and successfully applied to dead and living matter alike.

A morphologist necessarily employs a geometrician’s tools to characterize certain
shapes. Perhaps the most intriguing patterns and structures emerge when thin
objects undergo very large deformations. A body is considered thin if, locally, its
geometrical extent in at least one of the spatial dimensions is much smaller than in
another one. This local definition can be extended to the global scale by requiring
that the body be locally thin at all points constituting its volume. In Euclidean space,
two classes of slender objects are known to everyone from daily life: shells or sheets,
and filaments or wires. Examples are so numerous that any feasible attempt at
listing them will be incomplete. They span virtually all observable length scales—
from graphene sheets to plant leaves and the crust of Earth, from molecular chains
to hair and intercontinental gas pipelines. Thin bodies have relatively little rigidity to
oppose to transverse forces, enabling a large variety of complex three-dimensional
deformations induced by external loading, spatial constraints or volumetric growth.

No study on pattern formation is complete without knowledge about the cir-
cumstances under which they occur. Large deformations of soft thin tissue such as
insect wings, cell membranes or flowers are often on account of growth [43, 221],
inevitably leading to the development of residual stresses [90, 204]. The kind of
growth—its anisotropy and spatial variation—is thus one of these circumstances.
External forcing and volumetric exclusion are further important ones. A whole class
of parameters arises from the geometrical conditions involved: Characteristic length
scales and size ratios governing the transformations of thin objects need to be iden-
tified. Finally, macroscopic material properties that characterize elastic or inelastic
behavior and contact friction can be key to grasping the unparalleled variety of
shapes Nature is furnished with. Only if the role of each of these constituents is well
understood one can hope to make the big leap from observation to prediction; to be
able to answer the question which form will be assumed under given conditions, and
to eventually utilize this knowledge for the design and optimization of technological
or medical devices. In the field of bionics or material engineering, for instance, smart
or self-actuating materials are indeed craft based on this principle (e.g., [102, 103]).



1.2. STATE OF RESEARCH 3

1.2 State of research

A particular subclass of large deformation processes occurs when thin objects are
spatially confined to a degree that requires them to spontaneously rearrange and
self-organize in order to adapt to the altered spatial circumstances. Many living
organisms dynamically pack their polymer chains, filaments or membranes inside
of rigid or deformable cavities like vesicles, cell walls, chorions, and buds. Various
numerical simulations—predominantly employing the discrete element method
(DEM)— of folded and crumpled elastic [112, 222, 235, 236] and elasto-plastic [124,
223] sheets and membranes in shrinking containers have been carried out over the
last two decades. The main finding is that thin sheets tightly crumpled into balls,
although consisting mostly of air, develop a very large bulk stiffness resulting from
a network of ridges and vertices of high magnitudes of mean curvature [17]. A very
large portion of the bending energy is condensed into this network [15, 127].

A well-known natural instance of filament packing is the injection and subse-
quent coiling of long DNA strands in bacteriophage capsids and globules (e.g., [75,
104, 159, 166, 186, 205]). A similar technique called endovascular coiling has been
harnessed by neurosurgeons to revolutionize the minimally invasive treatment of
saccular cerebral aneurysms: Detachable platinum wires are fed through a micro-
catheter into the aneurysm to inhibit blood circulation and to initiate occlusion of
the vessel [84, 85] (Fig. 1.1). High packing densities have been reported to favor a bet-
ter long-term stability of the embolization [224]. Extremely dense fiber packing can
also be observed for instance in hagfish, who manufacture and coil protein threads
within specialized gland thread cells [61]. Albeit their morphology has recently been
unraveled [239] (Fig. 1.2), the understanding of morphogenesis—that is, the process
of shape transformation and development—remains vague.

Figure 1.1: Minimally invasive surgical treatment of saccular aneurysms. Left: Com-
puter animation reproduced from ref. [65] with permission of Wissenschaftsverlag
der Universität Duisburg-Essen. Right: Angiogram showing an embolized aneurysm,
copyright by Operation Backbone (http://www.operationbackbone.com).

http://www.operationbackbone.com
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20 µm

Figure 1.2: Hagfish slime thread densely packed in a gland thread cell. Focused ion
beam scanning electron microscopy image reproduced from ref. [239] and adapted
with permission of Nature Publishing Group.

Significant progress has recently been made in the understanding of two-dimen-
sional packings of long elastic and elasto-plastic wires inside of rigid circular contain-
ers. Several experimental studies [47–50, 73] revealed how they form loop patterns
and alignment between contacting segments, depending on how exactly they are
injected. Subsequent numerical simulations [213] explored the corresponding mor-
phological phase space with friction and plastic yield point as control parameters,
emphasizing on the strong impact the material properties can have on the packing
process. It wasn’t until very recently that wire packing experiments were extended
to three dimensions. Numerical and experimental studies [152, 206, 214] of the three-
dimensional elastic case have unveiled two wire morphologies mainly dependent on
boundary conditions and internal twist rather than the stiffness or amount of fric-
tion of the filament. Figure 1.3 shows an example of these experiments. The packing
of inelastic wires on the other hand, albeit briefly occurring once [72], apparently has
been widely disregarded in the literature.

Figure 1.3: State-of-the-art experiment of wire packing in rigid spherical cavities,
carried out by N. B. STOOP and F. K. WITTEL. Left: Photography of a nylon cord fed
through a small hole into a sphere held tight by four clamps. Right: X-ray computer
tomography scan of a large, densely packed sphere.
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A particular restriction shared by these studies is the perfect rigidity of the
cavities—a constraint rarely met in Nature or biomedical applications. Detachable
platinum coils used for aneurysm embolization, for example, are many orders of mag-
nitude stiffer than the arterial walls they are fed into [209]. Microtubules confined
in lipid bilayer membranes [57, 114] and erythrocytes [39, 155] as well as actin/filamin
networks in vesicles [91, 123] are able to deform their weak confinements signifi-
cantly. In turn, such cavities force the contained filaments to buckle, bundle and
reorder if their persistence length grows large enough. A noteworthy reported ob-
servation is that lipid bilayers can drive the emergence of bundled actin filament
protrusions through elastic interaction [125]. Recent experiments on coiled elastic
nanowires and nanotubes encapsulated in swelling polymer shells and emulsion
droplets have demonstrated how mechanical work can be stored and deployed
through deformable spatial confinement [32, 33, 242]. Furthermore, Monte Carlo
(MC) molecular dynamics simulations at finite temperature have shown that long
fluctuating polymer chains tend to align and coil when spatially enclosed by soft
vesicles [66, 139], and that the latter thus assume an obloid conformation.

Surprisingly little is known about morphogenesis due to growth or packing in
flexible confinements—perhaps owing to the daunting complexity lying in the
nonlinear feedback between two different deformable thin shapes when they come
in contact with one another. None of the aforementioned studies provide a complete
view on the space of possible shapes and configurations of such systems, even
though they have clearly demonstrated how widely they are spread across the fields
of natural sciences and engineering.
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1.3 Purpose and objectives

The nonlinear interplay between large thin-body deformations, anisotropic or dif-
ferential growth, self-contact, contact between different flexible shapes, spatial
constraints or strong external forces can be too complex to handle analytically, while
large-scale experiments oftentimes are time-consuming or suffer from numerous un-
certainties. In such cases, one resorts to numerical methods, which additionally offer
the most direct access to quantitative measurements, especially in very dense or en-
tangled packings. Parameter studies are most conveniently carried out in computer
simulations. At the core of the present thesis lies the assumption that all relevant
macroscopic length scales—including the ones in in the thinness directions—are
far larger than the microscopic building blocks of the considered materials, making
continuum mechanics the theory to base these numerical methods on. In line with
this is the additional assumption that effects of thermal fluctuations are negligible.
Both of them bound the scope of application from below to the super-atomic scale.

The objective of this work is thus twofold. First, a highly efficient and robust
numerical tool is developed, inherently featuring geometrically nonlinear deforma-
tions of thin shells and wires, the capability to let them grow according to arbitrary
prescribed growth fields, as well as exchange of normal and tangential contact
forces. The finite element method (FEM) has proven to be among the most flexible
and efficient frameworks for a large number of such problems, in particular where
complicated geometries, strong material nonlinearities, or anisotropy come into play.
It is hence the method of choice here.

With such a powerful and versatile tool at hand, the second purpose is to explore
the growth, interaction and packing of thin bodies in a quantitative manner. Starting
from the recent results on sheet crumpling and filament morphogenesis in rigid
spherical cavities, several open questions are addressed and answered: What are
the similarities between a thin foil crumpled by hand and a blossom growing in
a closed bud? How do periodic undulations and wrinkles emerge in leaves and
flowers, and what controls how many of them occur? How does confinement shape
influence the packing and coiling of an injected thin filament? What if the enclosing
shell is flexible enough to conform to the inserted thread, and how does that alter
the packing process? What are the resulting morphologies, and how can they be
quantitatively characterized? Which geometrical and material parameters govern
morphogenesis of slender filaments in deformable confinements?
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1.4 Structure and organization

The main body of this thesis follows a structure that is divided into three parts spread
over six chapters. The technical part consists of Chapters 2 and 3 and covers the theo-
retical foundation and efficient numerical simulation of thin elastic objects undergo-
ing large deformation, growth and contact. In the second part that spans Chapters 4
and 5, these models are applied to a series of problems with both theoretical and
practical relevance to study buckling and wrinkling in anisotropic differential growth,
large growth in limited room and the packing of long filaments in deformable con-
finement. Special attention is paid to the interaction of thin elastic bodies on the
example of filament packing in a flexible shell in Chapter 5: how they bundle, coil,
fold, twist, and break symmetries. Finally, in the third part (Chapters 6 and 7), various
extensions of the present work are discussed, with a focus on elasto-plastic materials
and their computationally efficient implementation. In summary, the basic outline
follows the path of modeling–implementation–verification–application–extension.

In Chapter 5, which is the main chapter in terms of morphological analysis, the
rigid spatial constraints of previous filament packing studies are gradually relaxed
from radial insertion into perfect spheres to ellipsoidal shapes and, finally, very
flexible shells. A change of topology from an open elastic thread to a closed growing
ring brings about a completely new set of morphologies. Along this way, a recurring
phenomenon is filament alignment at low to moderate frictional forces—a type of
spontaneous order that grants access to simple geometrical models approximating
the observed structures and coils. Where possible, the results on morphology and
energetics obtained numerically are hence compared to analytical expressions, the
complete derivation of which is also given in the respective sections of Chapter 5.
Moreover, the thread morphologies in elastic shells presented in this thesis are simple
enough for everyone to reconstruct in table-top experiments, which is likewise shown
in the same chapter.

A note on terminology is in order here for clarity. Growth as a general concept of
change of volume, area or length, may also be negative, under which circumstances
it is typically referred to as shrinkage. Here, the term growth is used to represent
both these mutually inverse processes, including shrinkage. Furthermore, depending
on the material and context, a long thin thread is sometimes termed wire, fiber,
filament, string or similar, whereas a thin sheet may also be called a shell, membrane
or foil. In accordance with the level of abstraction introduced in Section 1.1, these
expressions are henceforth used interchangeably.
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Chapter 2

Continuum description of thin elastic
objects

[The zoologist] is deeply reluctant to compare the living with the dead, or to
explain by geometry or by mechanics the things which have their part in the
mystery of life.

– D’ARCY WENTWORTH THOMPSON, On Growth and Form (1917)

This chapter covers the quantitative description of large deformations and an-
isotropic growth of thin elastic bodies in the framework of classical continuum
mechanics, in a way that is amenable to efficient numerical implementation in
Chapter 3 for the study of growth, morphogenesis and dense packing problems. The
main goals are to establish a theoretical basis for the considerations to follow in
the subsequent chapters, and to introduce the various quantities and terms used
throughout. At the core of the abstract continuum approach below lie the following
assumptions:

• All relevant length scales of the theory are so large that the discrete building
blocks of matter and natural tissue—atoms, grains, cells etc.—can be disre-
garded. There is thus a separation of length scales between microscopic and
macroscopic, of which the former is considered absent, such that the material
can be perpetually subdivided into infinitesimal pieces with conserved intrinsic
properties, completely filling a closed portion of Euclidean space.
• There are no effects from thermal fluctuations (i.e., temperature is identically

zero), quantum mechanics or relativity.
• All body transformations are continuous in spacetime, and thus there are no

discontinuous effects due to fracture, dislocations, or other types of damage.
• All materials are considered to be free of any texture at any scale, i.e., they are

homogeneous, without imperfections and micro- or mesostructure.

9
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• Any control or active regulation by a living organism can be decoupled from
the geometrical and mechanical description of the material and growth; it is
dead in THOMPSON’s spirit.

The result is a uniform field description of the averaged interaction between the
microscopic constituents. In Chapter 3, these fields will be discretized for numerical
implementation, introducing a mesoscopic length scale, the size of a finite element.
The governing equations are chosen to be those of linear elasticity, as that reduces
the parametric complexity to a minimum, allowing for a quantitative interpretation
of thin body interaction mechanisms as they result from the most basic principles.
It is assumed in the following that the reader is familiar with the fundamental
concepts of continuum mechanics, linear elasticity and tensor calculus.

Compared to solving the full three-dimensional elasticity problem on a narrow
volumetric domain, the slenderness of long elastic sheets and filaments offers a
well-established way to save a considerable amount of computational expenses, at
the cost of somewhat increased technical complexity. In shell and beam theories, the
3D elastic bulk equations are expanded in the direction(s) of small thickness, and the
series is truncated at low order to yield a set of governing equations operating on
two- or one-dimensional domains, termed middle surface and centerline, respectively.
Under certain kinematic restrictions imposed to the material deformation in the
expanded direction(s), the stresses can then be integrated over the small thickness
to yield stress resultants, and the continuum theory is reformulated in this reduced
set of variables. The KIRCHHOFF kinematic assumptions [106], which premise that
straight material lines that point in a thickness direction

1. remain straight,
2. keep their length, and
3. remain perpendicular to the middle surface or centerline

under deformation, lead to a truncation at first order. When imposed in one thickness
direction, they result in the widely used KIRCHHOFF–LOVE shell theory [106, 131], which
will be employed to describe thin sheet mechanics in Section 2.1. Higher order theo-
ries such as the second-order MINDLIN–REISSNER theory [145, 181], which includes a
linear transverse shear profile, are less restrictive and thus apply also to thicker shells.
When imposed in both transverse directions of beams, the KIRCHHOFF assumptions
induce the well-known EULER–BERNOULLI beam theory, as outlined in Section 2.2. The
second-order counterpart with linear transverse shear is due to TIMOSHENKO [228,
229], and a third-order approach that accounts for the actual quadratic shear profile
will be revisited in Section 3.2 for its convenient algorithmic implementation. The
idea of dimensional reduction can in principle be carried on to expanding all three
directions in order to express all types of thin and thick deformable bodies in one
unified model that works with “elastons” [141]. This approach, however, requires high
spatial resolution in discretized form and is not well suited for thin filaments with
circular cross section.
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2.1 Thin sheets

The adopted continuum model for thin sheets is based on the geometrically exact,
nonlinear KIRCHHOFF–LOVE shell theory, expressed in the common total Lagrangian
stress resultant formulation. As is standard in reduced-dimensionality solid me-
chanics, a purely kinematic description of deformation states is given in a first
step, independent of the material considered. The kinematics are then extend by a
large-strain continuum growth model that supports anisotropic differential in-plane
growth fields. In the second step, a constitutive relationship between strains and
stresses establishes the connection between geometry and physics.

The volumetric growth model employed here is based on the ideas of RODRIGUEZ
et al. [184], which have been put on rigorous foundation [45, 133]. The basic premise
is that body deformations can be due to both a growth-induced change of mass
or volume, and an elastic response [92, 204], which results in a multiplicative de-
composition of the deformation gradient. Since the continuum mechanical model
presented in the following is a joint effort with STOOP, it has been covered in full
elaboration in ref. [215], and is recapitulated here only in a condensed form for con-
ciseness.

2.1.1 KIRCHHOFF–LOVE kinematic theory with anisotropic growth

Let Ω ⊂ R3 be the compact, two-dimensional, stress-free, undeformed (“reference”)
middle surface of a sheet with small uniform thickness h, embedded in Euclidean
space. Under the action of growth or external forces, the sheet deforms into a new
(“deformed”) configuration with middle surface Ω ⊂ R3. In the following, let Greek
indices α, β, γ, δ take values in {1, 2}, and Roman indices i, j in {1, 2, 3}. EINSTEIN’s
summation convention applies to repeated indices, and lower (upper) indices denote
covariant (contravariant) tensorial components. Barred symbols henceforth always
refer to the reference state. Moreover, let {θ1, θ2, θ3} be a curvilinear coordinate
system, and let x(θ1, θ2) ∈ Ω and x(θ1, θ2) = x(θ1, θ2) + u(θ1, θ2) ∈ Ω be parameteri-
zations of the respective middle surfaces, as shown in Fig. 2.1, where u = x− x is the
displacement field. The positions r ∈ R3 and r = χ(r) ∈ R3 of material points in the
reference and deformed shell may be parameterized as

r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ1, θ2), (2.1a)
r(θ1, θ2, θ3) = x(θ1, θ2) + θ3a3(θ1, θ2), (2.1b)

where θ3 ∈ [−h/2, h/2] is the through-the-thickness coordinate. χ is a diffeomor-
phism that maps from the reference to the deformed material positions. The local
tangent space of the middle surface is spanned by the vectors

aα(θ1, θ2) = x,α :=
∂x

∂θα
, aα(θ1, θ2) = x,α :=

∂x

∂θα
, (2.2)
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θ1

θ2

θ3

Ω
Ω

isoparametric

reference grown deformed

a3

a3

u

x x

Figure 2.1: Reference, grown and deformed configurations of the shell. The middle
surface is shown with parameterizations x(θ1, θ2) for the stress-free reference state
and x(θ1, θ2) for the deformed state, respectively.

and by virtue of the three KIRCHHOFF kinematic assumptions, the material orientation
in the thickness direction of the shell is determined by the unit surface normal
vectors

a3 =
a1 × a2

‖a1 × a2‖
, a3 =

a1 × a2

‖a1 × a2‖
, (2.3)

which are commonly called shell directors. Through the relationships ai · aj = δji and
ai · aj = δji , the contravariant vectors are defined. The infinitesimal reference area
element can be expressed as dΩ = j dθ1 dθ2, where j = ‖a1 × a2‖ is the Jacobian
determinant of the reference configuration. The components of the surface metric
tensor, or first fundamental form, are given by

aαβ = aα · aβ, aαβ = aα · aβ, (2.4)

and those of the shape tensors, or second fundamental forms, by

bαβ = −a3,α · aβ = a3 · aα,β, bαβ = −a3,α · aβ = a3 · aα,β. (2.5)

The covariant basis vectors for a generic point within the shell follow as

gα =
∂r

∂θα
= aα + θ3a3,α, g3 =

∂r

∂θ3
= a3, (2.6a)

gα =
∂r

∂θα
= aα + θ3a3,α, g3 =

∂r

∂θ3
= a3, (2.6b)

and their duals are defined by gi · gj = δji and gi · gj = δji . This allows the definition
of the shell metric tensors in curvilinear coordinates,

G = gi ⊗ gj = Gij gi ⊗ gj, G = gi ⊗ gj = Gij gi ⊗ gj (2.7)
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whereGij = gi·gj andGij = gi·gj . Owing to the KIRCHHOFF constraint, equation (2.3),
G33 = G33 = 1 and Gα3 = G3α = Gα3 = G3α = 0. The geometric deformation
gradientF , which maps between deformed and reference metric according toFgi =
gi, follows as

F = ∇χ =
∂r

∂r
=

∂r

∂θi

[
∂r

∂θi

]−1

= gi ⊗ gi (2.8)

In the growth model proposed by RODRIGUEZ et al. [184], the deformation gradient is
multiplicatively decomposed into a growth tensor Fg, which accounts for a perma-
nent change of volume, and a purely elastic response Fe, that ensures compatibility
and continuity of the body, according to

F = Fe Fg (2.9)

analogous to LEE’s multiplicative decomposition in elasto-plastic modeling [116]. This
introduces an intermediate “grown” configuration as depicted in Fig. 2.1, with respect
to which the elastic strains of the deformed state are expressed. In order not to
violate the KIRCHHOFF constraints (equation (2.3)), growth is restricted to the tangent
plane, such that the growth tensor can be written in matrix form as

Fg = [(Fg)ij] =

[
[(Fg)αβ] 0

0T 1

]
(2.10)

with respect to the reference basis {gi}i=1,2,3. If one requires that Fg be independent
of the deformed configuration, the GREEN–LAGRANGE strain tensor in curvilinear
coordinates reads

E =
1

2

(
F T

e Fe −G
)

=
1

2

(
F−Tg F TFF−1

g −G
)

= Eij gi ⊗ gj

(2.11)

where the non-zero strain components are expanded in the thickness coordinate θ3

to
Eαβ = ααβ + θ3βαβ +O((θ3)2). (2.12)

Second and higher-order termsO((θ3)2) are neglected conforming to the definition
of the shell directors in equation (2.3), making the KIRCHHOFF–LOVE theory a first
order shell theory which is valid for small thickness h. The leading-order terms ααβ
and βαβ are the membrane strains and bending strains in curvilinear coordinates,
which, after some tensor algebra, read

ααβ =
1

2
(ãαβ − aαβ), (2.13a)

βαβ = bαβ − b̃αβ. (2.13b)
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where the growth-corrected first and second fundamental forms in matrix notation
are given by

[ãαβ] = [(Fg)αβ]−T [aαβ] [(Fg)αβ]−1, (2.14a)
[̃bαβ] = [(Fg)αβ]−T [bαβ] [(Fg)αβ]−1. (2.14b)

The strain expressions in equation (2.13) are formally identical to the strains of a
KIRCHHOFF–LOVE shell without growth. Growth enters the final form only through
the transformations in equation (2.14). Note also that the three in-plane growth pa-
rameters (Fg)11 > 0, (Fg)22 > 0, (Fg)12 = (Fg)21, which in general may be functions
of various external or internal variables such as time, space, stress etc. [3, 149], are
expressed with respect to the reference tangent basis {a1, a2} in the above formal-
ism. In practice, it is thus necessary to perform a change of basis when they are to
be given with respect to a specific coordinate system. Likewise, it is convenient for
a number of reasons (in particular for the formulation of constitutive models, see
Section 2.1.2 and Section 3.1.2), to express also the GREEN strains in an orthonormal
basis of the tangent plane of the of the middle surface, rather than the curvilinear
coordinate system. Denote by {e1, e2} any such orthonormal basis. The curvilin-
ear membrane and bending strains can then be transformed to the classical shell
stretches εαβ and curvatures καβ in the orthonormal coordinates through

εγδ = tαγ ααβ tβδ, (2.15a)
κγδ = tαγ βαβ tβδ, (2.15b)

where tαβ = aα · eβ [52], and the in-plane growth tensor components (Fg)αβ are
transformed accordingly.

2.1.2 Nonlinear KOITER energy functional

Assuming that the thin shell obeys the geometrically nonlinear, linearly elastic
ST. VENANT–KIRCHHOFF law, the connection between its kinematics and energetics is
provided by KOITER’s elastic potential energy per unit surface area of the reference
configuration [34, 109]

W =
1

2

∫ h/2

−h/2
λ tr2(E) + 2G tr

(
E2
)

dθ3

=
h

2
εαβC

αβγδεγδ +
h3

24
καβC

αβγδκγδ

(2.16)

where Cαβγδ denotes the components of the fourth-order elasticity tensor, given by

Cαβγδ = λδβαδ
δ
γ +G

(
δγαδ

δ
β + δδαδ

γ
β

)
, (2.17)
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with LAMÉ parameters

λ =
Eν

(1 + ν)(1− 2ν)
, G =

E

2(1 + ν)
. (2.18)

Here, E represents YOUNG’s modulus and ν POISSON’s ratio of the sheet. Equa-
tion (2.16) is typically transformed into the curvilinear coordinate system by writing

W =
1

2
KααβH

αβγδαγδ +
1

2
DβαβH

αβγδβγδ (2.19)

with membrane stiffness K and bending rigidity D, given by

K =
Eh

1− ν2
, D =

Eh3

12(1− ν2)
. (2.20)

Hαβγδ are the stripped-down components of the isotropic plane-stress elasticity
tensor in curvilinear coordinates, which read

Hαβγδ = νaαβaγδ +
1− ν

2
(aαγaβδ + aαδaβγ), (2.21)

where the contravariant components of the reference surface metric tensor, aαβ ,
derive from equation (2.4) through the usual relation aαγaγβ = δβα. The curvilinear
resultant membrane stresses nαβ and bending stresses mαβ follow by the principle
of work conjugacy:

nαβ =
∂W

∂ααβ
= KHαβγδαγδ, mαβ =

∂W

∂βαβ
= DHαβγδβγδ. (2.22)

The total elastic energy Us of the shell is obtained by integrating the energy density
in equation (2.19) over the reference middle surface:

Us = Um + Ub =

∫
Ω

W dΩ, (2.23)

in whichUm andUb are the membrane energy and bending energy, respectively, given
by

Um =
1

2

∫
Ω

ααβ n
αβ dΩ, Ub =

1

2

∫
Ω

βαβm
αβ dΩ. (2.24)

Notice that the energy density in the above form coincides with the non-Euclidean
plate approach derived in ref. [56]. To complete the material characterization of the
thin sheet, its total mass Ms is determined from its homogeneous mass density ρ as

Ms =

∫
Ω

hρ dΩ. (2.25)
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2.2 Thin filaments

In 1859, KIRCHHOFF was the first to introduce a theory for the three-dimensional
deformation modes of a thin rod [105]. His equations were justified later by LOVE [132],
who showed how KIRCHHOFF’s assumptions can be rationalized by a series expansion
of the three-dimensional equations of elasticity in the directions of an invariant
cross section. It wasn’t until the COSSERAT brothers introduced the more convenient
parameterization using point orientations [40], however, that the development
of thin elastic filaments began to follow a more modern representation suitable
for numerical implementation (see ref. [46] for a comprehensive historical review).
These difficulties arose from the observation that—unlike the middle surface of
thin shells—a parametric space curve alone is insufficient to describe the elastic
state of a thin filament. An angle of rotation is needed to describe the orientational
evolution of the cross section along the centerline. The use of a convected set of
director vectors to describe this material point orientation is commonly attributed to
the COSSERATs.

The contemporary treatment of first-order thin elastic filaments in 3D therefore
consists of imposing the KIRCHHOFF kinematic assumptions on the COSSERAT broth-
ers’ director parameterization of an elastic rod. The kinematic description can be
outlined in a manner that starts off analogously to KIRCHHOFF-LOVE shells, but then
takes a somewhat different turn to account for the additional twisting angle, just
to return to the constitutive description known from thin shells in terms of stress
resultants again. While the KIRCHHOFF shell required six internal variables (three
strain components for both stretching and bending), the analogous description of
thin KIRCHHOFF wires needs only four degrees of freedom: uniaxial stretch, two
bending curvature components, and the new variable, axial twist.

2.2.1 COSSERAT–KIRCHHOFF kinematic theory with axial growth

Let Γ ⊂ R3 be the compact, one-dimensional, stress-free, undeformed (“reference”)
centerline of the filament, whose cross section is a circle with small uniform radius
r. Under the action of growth or external forces, the filament deforms into a new
(“deformed”) configuration with centerline Γ ⊂ R3. Moreover, let x(θ1) ∈ Γ and
x(θ1) = x(θ1) + u(θ1) ∈ Γ be parameterizations of the respective centerlines, where
u = x− x denotes the displacement field. The positions r ∈ R3 and r = χ(r) ∈ R3

of material points in the reference and deformed filament may be parameterized as

r(θ1, θ2, θ3) = x(θ1) + θ2a2(θ1) + θ3a3(θ1), (2.26a)
r(θ1, θ2, θ3) = x(θ1) + θ2a2(θ1) + θ3a3(θ1), (2.26b)

where θ2 and θ3 are the through-the-thickness coordinates, subject to the constraint
(θ2)2 + (θ3)2 ≤ r2. Evidently, in strong contrast to thin shells, the directors a2
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and a3, which span the circular cross section, cannot be defined through the one-
dimensional tangent space alone, which is in line with the intuitive notion of an
additional degree of freedom that thin filaments offer: axial twist. The kinematic
description is not fully established by the centerline only. In addition, an angle of
rotation about the centerline is required to describe the evolution of the cross section
along the space curve. The KIRCHHOFF kinematic assumptions are manifest in thin
COSSERAT rods through the restriction that the three COSSERAT vectors {a1, a2, a3},
that define the material orientation, form an orthonormal basis of R3 and remain
orthonormal under any deformation [46]. The first one is thus given by the unit
tangent

a1(θ1) =
x,1
‖x,1‖

=
∂x

∂θ1

/∥∥∥∥ ∂x

∂θ1

∥∥∥∥, a1(θ1) =
x,1
‖x,1‖

=
∂x

∂θ1

/∥∥∥∥ ∂x

∂θ1

∥∥∥∥, (2.27)

and the third one can be chosen according to

a3 = a1 × a2, a3 = a1 × a2, (2.28)

so that A = [a1, a2, a3] defines a right-handed trihedron. This implicitly defines the
angle of twist through the unconstrained direction of the director a2, with ‖a2‖ = 1.
The infinitesimal reference line element can be expressed as ds = j dθ1, where
j = ‖x,1‖ is the Jacobian determinant of the reference configuration, and s denotes
the centerline arclength. By virtue of the FRENET–SERRET formulas, there exists a
vector k which is uniquely defined by

∂ai
∂s

= k× ai,
∂ai
∂s

= k× ai, i = 1, 2, 3, (2.29)

for the reference and deformed configurations; it is usually referred to as the DAR-
BOUX vector. Notice that k in equation (2.29) relates the derivatives ∂ai/∂s to the
basis of the reference configuration, ai, so that rigid body transformations as well as
axial extension are eliminated from the difference between k and k. For notational
convenience, it is useful to relate the director basis {a1, a2, a3} to the FRENET frame
consisting of the tangent vector t, the normal vector n and the binormal vector b
(see Fig. 2.2) through [143]

t = a1,
∂t

∂s
= κn, b = t× n,

∂b

∂s
= −τn, (2.30)

where κ is the FRENET curvature along the centerline and τ is its torsion. This allows
to write the DARBOUX vector explicitly in terms of the angle ϕ between the cross
section director a2 and the normal vector n:

k =

k1

k2

k3

 =

τ + ∂ϕ/∂s
κ sinϕ
κ cosϕ

. (2.31)

k1 represents the change of twist per unit arclength, and k2 and k3 are the two
curvature components along the centerline satisfying κ2 = k2

2 + k2
3 .
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t = a1b

n

a2

a3

1

κ

Γ

ϕ

ϕ

s

Figure 2.2: Relationship between the COSSERAT directors and the FRENET frame. The
material orientation of a thin KIRCHHOFF filament is defined by a parametric center-
line Γ (blue) and a twist angle ϕ, which locally represents the relative orientation
of the cross section with respect to the FRENET frame of the space curve. The local
FRENET curvature κ defines a touching circle with radius 1/κ that lies in the plane
spanned by the tangent vector t and the normal vector n (gray).

As a direct consequence of how the directors were defined, the convected CAUCHY
strain tensor components ε22, ε33, γ23 vanish identically, i.e., there is no cross-sectional
deformation (stretching or shear) in the KIRCHHOFF filament. The three remaining
non-zero components are found by substituting equation (2.29) in equation (2.26):

[ε11, γ12, γ13]T =
∂u

∂s
+ θ2

(
∂a2

∂s
− ∂a2

∂s

)
+ θ3

(
∂a3

∂s
− ∂a3

∂s

)
=
∂(x− x)

∂s
+ θ2(k× a2 − k× a2) + θ3(k× a3 − k× a3)

=
∂x

∂s
− ∂x

∂s
+ θ2ϑ× a2 + θ3ϑ× a3

=

ζ − θ2ϑ3 + θ3ϑ2

−θ3ϑ1

θ2ϑ1

,
(2.32)

where the short-hand notation

ϑ =

ϑ1

ϑ2

ϑ3

 =

k1 − k1

k2 − k2

k3 − k3

 = k− k (2.33)

was used to express the change of curvatures and twist of the filament between the
reference and deformed configurations, and

ζ =

∥∥∥∥∂x

∂s

∥∥∥∥− 1 (2.34)
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denotes the axial strain due to compression or tension. In this framework, volumetric
growth is trivial to incorporate. All that is needed is to redefine ζ to

ζ = (Fg)−1
11

∥∥∥∥∂x

∂s

∥∥∥∥− 1 (2.35)

where (Fg)11 > 0 is the axial growth tensor component analogous to equation (2.10).

2.2.2 Three-dimensional EULER–BERNOULLI beam theory

Like the thin shell, it is assumed here that the filament obeys HOOKE’s law and is
characterized by an isotropic, homogeneous YOUNG’s modulus E, POISSON’s ratio
ν, and a shear modulus of G = E/2(1 + ν). The non-zero convected CAUCHY stress
components hence directly follow from equation (2.32) as [245]

σ11

σ12

σ13

 =

E 0 0
0 G 0
0 0 G

ε11

γ12

γ13

 =

E(ζ − θ2ϑ3 + θ3ϑ2)
−Gθ3ϑ1

Gθ2ϑ1

. (2.36)

The stress resultants are then obtained by integrating the corresponding stress
components over the cross section, yielding

N =

∫
A

σ11 dA = EAζ, (2.37a)

M1 =

∫
A

(θ2σ13 − θ3σ12) dA = GJϑ1, (2.37b)

M2 =

∫
A

θ3σ11 dA = EIϑ2, (2.37c)

M3 =

∫
A

−θ2σ11 dA = EIϑ3, (2.37d)

N is the axial force due to extension or compression along the tangent, and Mi

represents the torque (i = 1) or bending moments (i = 2, 3) about the i-th basis
vector. The sign convention is chosen such that positive angles induce positive
moments for simplicity. For a circular cross section with radius r, the cross section
area is A = πr2, the area moment of inertia I = πr4/4 and the polar moment of
inertia J = 2I = πr4/2. The elastic strain energy of the filament can finally be
compactly expressed by

Uf = Ux + Ut + Ub (2.38)
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in which Ux, Ut and Ub are the stretching energy, torsion energy and bending energy,
respectively, given by

Ux =
1

2

∫
Γ

ζN ds =
1

2

∫
Γ

EAζ2 ds, (2.39a)

Ut =
1

2

∫
Γ

ϑ1M1 ds =
1

2

∫
Γ

GJϑ2
1 ds, (2.39b)

Ub =
1

2

∫
Γ

ϑ2M2 + ϑ3M3 ds =
1

2

∫
Γ

EI
(
ϑ2

2 + ϑ2
3

)
ds. (2.39c)

Notice that by setting ϑ1 = ϑ2 = 0, no else than the classical strain energy of
an EULER–BERNOULLI beam in large uniaxial bending and compression/tension is
retrieved. Analogous to the thin sheet, the material characterization is completed by
noting that the filament carries a homogeneous mass density ρ, which gives rise to
a total mass of

Mf =

∫
Γ

Aρ ds. (2.40)

With these definitions, the theoretical foundation for the present work has been
laid. In Chapter 3, a detailed description will be given of how the elastic energies of
thin shells and wires can be minimized efficiently by means of the finite element
method. The deformation variables and energies established in this chapter will also
be referred to again in Chapters 4 to 7, where the configuration of thin bodies is to
be quantified in terms of their individual degrees of freedom or energies in various
growth and packing problems.



Chapter 3

Numerical implementation

Dreams apart, numerical precision is the very soul of science, and its attain-
ment affords the best, perhaps the only criterion of the truth of theories and
the correctness of experiments.

– D’ARCY WENTWORTH THOMPSON, On Growth and Form (1917)

The large deformation response of thin bodies to external loading or internal
growth, be it for whatever physical cause or technical purpose, is often too complex
to admit complete analytical treatment. This holds in particular when contact
gives rise to completely new shapes through spatial rearrangements. Dense three-
dimensional packing problems entail the additional difficulty that the inner structure
is difficult to access quantitatively, which hampers experimental approaches, calling
for an efficient and robust numerical tool to be applied instead. When it comes
to thin shells, not many common numerical discretization techniques are fit for
anisotropic growth. The DEM, or beam networks, for instance, are not well suited, as
their only degree of freedom capable of accounting for in-plane growth is the edge
length connecting the mesh vertices, which may not be aligned with the desired
growth direction. To the FEM, on the other hand, anisotropic behavior poses no
problem, since the mesh faces are numerically integrated over, regardless of their
orientation. Additional advantages of the FEM include its well-known convergence
properties and ability to cope with arbitrarily complicated geometries. To study the
growth and packing of thin elastic sheets and filaments, as they were defined in
Chapter 2, the FEM is therefore employed as the main tool here.

In this chapter, a compact account is given of how to efficiently minimize the
elastic energies of said thin bodies. As their kinematic descriptions departed from
one another in the previous chapter as a result of the different deformation modes
they allow, also their numerical discretization follows separate pathways. KIRCHHOFF–
LOVE shells are fully determined by their middle surface, such that the displacement

21
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field u = x − x is the only unknown to solve for. The orientation of the cross-
sectional trihedron in COSSERAT–KIRCHHOFF wires, on the other hand, requires an
approach that includes rotations on top of the purely translational displacement of
the centerline. A unified contact model is then presented in Section 3.3 that takes
volumetric exclusion as well as frictional forces into account. The latter will turn out
to be pivotal in the interaction problem of flexible slender objects in Chapter 5. To
trace the evolution of deformations over time, NEWTON’s equations of motion are
discretized in Section 3.4. In the final section of this chapter, a series of numerical
test problems is worked through to verify and benchmark the numerical simulations.

It is assumed in the following that the reader is sufficiently familiar with the
fundamental FEM concepts. The implementation of the finite element program has
been realized with the aid of the libMesh C++ library [107], which provides common
basic FEM functionality such as degree-of-freedom (DOF) mapping, matrix and vector
assembly, numeric quadrature etc. The present work has lead to various extensions
of the library. Most notably, subdivision surface shape functions were added for the
representation of thin shells in version 0.9.4. The program has been parallelized with
the OpenMP application programming interface [161].

3.1 Shell finite element model

Even though the KIRCHHOFF–LOVE theory provides a straightforward kinematic pa-
rameterization, numerically sound finite element implementations of thin shells
have turned out to be difficult and cumbersome in the past. The KOITER energy func-
tional in equation (2.19) represents the integral form of partial differential equations
of fourth order, as it integrates the squared curvature over the shell’s middle surface.
For boundedness of the bending energy, this inevitably calls for twice differentiable
shape functions with continuous first derivatives (C1 continuity) across element
boundaries, i.e., functions that belong to the SOBOLEV space H2(Ω,R). This require-
ment has posed a tough challenge in the history of shell finite elements. Higher
order theories such as the MINDLIN–REISSNER shells decouple the shell director from
the middle surface, thus reducing the continuity requirements, but typically suffer
from numerical deficiencies such as the parasitic shear locking, which in turn requires
explicit counter-measures to be taken. As a starting point of the extremely extensive
literature on this issue, see e.g. ref. [246].

To recapitulate ref. [215], many of the developed elements introduce interpolation
coefficients for higher derivatives of the displacement field, leading to a significant
increase in the number of unknowns to compute. PARISCH [165] has proposed quadri-
lateral shell elements with only displacement variables at lateral surface nodes and
an auxiliary degree of freedom on the middle surface. An entire class of quadri-
lateral C1 elements is obtained from tensor products of HERMITE polynomials, see
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e.g. ref. [245]. However, while simple to construct, they are restricted to regular
rectangular meshes. Non-uniform rational B-splines (NURBS) were recently popular-
ized as shape functions for use with KIRCHHOFF–LOVE shells [101], but are likewise
topologically limited. The family of HSIEH–CLOUGH–TOCHER triangles have shown
success in plate bending and other biharmonic problems [210], but are tedious to set
up and add many additional DOFs.

These problems can be successfully overcome since C IRAK et al. have ported
the subdivision surface paradigm to the FEM in 2000 [36, 38]. LOOP subdivision
surfaces, beingC1-continuous everywhere and evenC2-continuous except at a finite
set of extraordinary (“irregular”) vertices, fully meet the continuity requirement of
KIRCHHOFF–LOVE shells. However, as will be detailed in Section 3.1.3, they substantially
deviate from traditional shell elements in the following respects:

• They don’t interpolate the mesh vertices, instead they approximate them. That
is to say, the vertices of the computational mesh don’t lie in Ω.
• They gain C1-continuity at the expense of a larger local support of the individ-

ual shape functions. The solution on a given element is determined not only
by the displacements of its own nodes, but also by the displacements of the
vertices of all directly neighboring elements.
• The number of shape functions required to represent an element, and conse-

quently the surface evaluation procedure, varies with the mesh connectivity.

LOOP subdivision surface shape functions provide many advantages over traditional
C0 elements and other C1 shape functions:

• They meet the continuity requirement imposed by the KIRCHHOFF–LOVE theory
and thus permit a shell finite element description in the classical RAYLEIGH–
R ITZ formalism with all its amenities like straightforward implementation and
optimal convergence.
• They operate on triangular elements and can thus handle arbitrary mesh

topologies, even those homeomorphic to a sphere, which is difficult to im-
possible to achieve with alternative C1 finite elements. This feature is of
particular importance here because a closed spherical thin shell will be used
to model a flexible hull for filament packing problems in Chapter 5.
• They require only three DOFs per vertex, nine per element. No rotational or

auxiliary variables are needed. The computational efficiency of the subdivision
shell elements is outstanding, which will be demonstrated in Section 3.5.
• One GAUSS point per element is generally sufficient for KIRCHHOFF–LOVE shells

(see however Section 3.5.1).

Despite their clear superiority to C0 elements in this regard, subdivision shell ele-
ments are accompanied by new challenges:

• The extended local support of subdivision shape functions requires new con-
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cepts for boundary conditions, adaptive mesh refinement and fracture mod-
eling [37, 79, 80, 113], which are more intricate than conventional techniques
applicable to C0 finite elements or discrete elements (e.g., [241]). The only
points that is relevant for the present work is the treatment of domain bound-
aries, which will be addressed in Section 3.1.3.
• Contact detection on the smooth physical surface is a nonlinear optimization

problem (see Section 3.3).

Details on the LOOP subdivision surface shape functions, which are employed in the
following, will be given in Section 3.1.3. For the moment being, it is sufficient to bear
in mind that they enable a finite element discretization in which the only unknowns
are the three translational components of the displacement field u = [u, v, w]T. The
procedure outlined below has been compiled in collaboration with the author of
ref. [215].

3.1.1 Finite element discretization

The total mechanical energy Π of the KIRCHHOFF–LOVE shell with total Lagrangian
displacement of the middle surface, u = x− x, subject to applied distributed loads
q(θ1, θ2) per unit surface area, takes the form

Π[u] =

∫
Ω

hρu̇ · u̇ dΩ +

∫
Ω

W [u] dΩ−
∫

Ω

q · u dΩ. (3.1)

where u̇ = ∂u/∂t denotes the velocity field, and W is the KOITER energy density
functional of equation (2.19). Minimizing equation (3.1) is equivalent to finding a
displacement field u satisfying the variational problem

0 = δΠ[u]

=

∫
Ω

hρ δu̇ · u̇ dΩ +

∫
Ω

(
δααβn

αβ + δβαβm
αβ
)

dΩ−
∫

Ω

q · δu dΩ.
(3.2)

If the growth tensor is assumed not to depend on the displacement field, the vari-
ations of the membrane and bending strains are easily calculated by resorting to
equations (2.13) and (2.14):

[δααβ] = [(Fg)αβ]−T [δaαβ/2] [(Fg)αβ]−1, (3.3a)
[δβαβ] = [(Fg)αβ]−T [−δbαβ] [(Fg)αβ]−1. (3.3b)

δaαβ/2 and−δbαβ are the usual first strain variations for thin shells without growth,
see e.g. refs. [199, 201]. Since NEWTON’s equations of motion induced by equation (3.1)
will be integrated explicitly in time (see Section 3.4), no second variations are needed
at this point. Note, however, that the derivation of the second variations straight-
forwardly follows the usual formalism (e.g., [77, 201]) without complications for the
growth-modified strains.
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The finite element discretization is then carried out in the usual way. First, the
exact minimization problem is replaced by an approximate minimization over a
finite-dimensional subspace V ⊂ H2(Ω,R3) of admissible displacements:

inf
{

Π[u] | u ∈ H2(Ω,R3)
}
−→ min{Π[u] | u ∈ V }. (3.4)

Second, the computational domain Ω is divided intoN e finite elements indexed by
e ∈ {1, . . . ,Ne}, and an affine finite element map

Θ: (θ1, θ2) 7→ (e, ξ, η) (3.5)

is defined that assigns each point in the parametric domain its corresponding ele-
ment e and barycentric element coordinates ξ, η. On each element e, the trial space
V is spanned by a finite set of shape functions{

NI(ξ, η) | I = 1, . . . ,N f
e

}
(3.6)

with compact local support (to be specified in Section 3.1.3), whereN f
e is the number

of shape functions contributing to the solution associated with element e. This setup
allows the displacement field and its spatial and temporal derivatives to be written
as a linear combination of the local trial space shape functions NI :

u(θ1, θ2) =

N f
e∑

I=1

uINI(ξ, η), δu(θ1, θ2) =

N f
e∑

I=1

δuINI(ξ, η). (3.7)

with (e, ξ, η) = Θ(θ1, θ2). By substituting the above interpolation into the weak form
(equation (3.2)), and using the arbitrariness of the trial field, the variational statement
is recast into an algebraic minimization problem for the nodal displacements uI ,
which are driven by nodal forces f I :∑

J

MIJ üJ + f int
I = f ext

I (3.8)

where MIJ are the entries of the mass matrix, given by

MIJ =

∫
Ω

hρNINJ dΩ, (3.9)

and the generalized internal and external forces read

f int
I =

∫
Ω

(
∂ααβ
∂uI

nαβ +
∂βαβ
∂uI

mαβ

)
dΩ, (3.10a)

f ext
I =

∫
Ω

qNI dΩ. (3.10b)
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As usual in finite element analysis, the integrals in equation (3.10)) are numerically
evaluated on each element e using a quadrature rule withN p

e integration points

{qp = (ξp, ηp) | p = 1, . . . ,N p
e } (3.11)

and corresponding weights

{wp | p = 1, . . . ,N p
e }, (3.12)

taking advantage of the local support of the shape functions. A single element’s
contribution to the masses and generalized forces thus becomes

MIJ,e =

Np
e∑

p=1

wp
{
hρNINJj

}
e,qp
, (3.13a)

f int
I,e =

Np
e∑

p=1

wp

{(
∂ααβ
∂uI

nαβ +
∂βαβ
∂uI

mαβ

)
j

}
e,qp

, (3.13b)

f ext
I,e =

Np
e∑

p=1

wp
{
qNIj

}
e,qp
. (3.13c)

where {·}e,qp denotes evaluation of the integrand at the quadrature point qp on ele-
ment e. Explicitly, if the nodal displacement vector is written as uI = [uI1, uI2, uI3]T,
and ek denotes the k-th canonical unit vector, the k-th components of the growth-
corrected strain gradients ∂(·)/∂uI in equation (3.13b), are given in terms of the
shape functions by [

∂ααβ
∂uIk

]
= [(Fg)αβ]−T

[
AIkαβ

]
[(Fg)αβ]−1, (3.14a)[

∂βαβ
∂uIk

]
= [(Fg)αβ]−T

[
BIk
αβ

]
[(Fg)αβ]−1. (3.14b)

in matrix form due to equation (3.3), where [38, 77, 215]

AIkαβ =
1

2
(NI,αaβ +NI,βaα) · ek, (3.15a)

BIk
αβ =

(
1

j
(aα,β − bαβ a3)× (NI,1a2 −NI,2a1)−NI,αβa3

)
· ek, (3.15b)

in which j = ‖a1 × a2‖ is the Jacobian determinant of the deformed surface. Fi-
nally, the global mass matrix and force vectors are assembled by summing over all
elements and shape functions in the usual way.

The above finite element description accounts for the change of reference cur-
vature when the surface grows. This is a noteworthy difference to numerical ap-
proaches with tethered mass-spring models, that were employed recently to sim-
ulate prescribed non-Euclidean target metrics [6, 108, 136, 138], which missed this
feature.
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3.1.2 Efficient VOIGT formulation

KIRCHHOFF–LOVE shells are commonly formulated and implemented using VOIGT’s
vector notation for convenience and efficiency, exploiting the symmetry of the in-
volved tensors [38, 200]. The first and second fundamental forms of the reference
and deformed middle surfaces from equations (2.4) and (2.5) are rewritten in vector
form as

a =

 a11

a22

2a12

, a =

 a11

a22

2a12

, b =

 b11

b22

2b12

, b =

 b11

b22

2b12

. (3.16)

Since the thin shell is always in a state of locally plane stress, the curvilinear strain
tensors in equation (2.13) can be compactly expressed as

α =

 α11

α22

2α12

 =
1

2

(
G̃a− a

)
, β =

 β11

β22

2β12

 = b− G̃b. (3.17)

where

G̃ =

 g̃2
11 g̃2

21 g̃11g̃21

g̃2
12 g̃2

22 g̃12g̃22

2g̃11g̃12 2g̃21g̃22 g̃11g̃22 + g̃12g̃21

, [g̃αβ] = [(Fg)αβ]−1, (3.18)

is the matrix form of the inverse growth transformation in equation (2.14). The
corresponding local transformation of the strains into an orthonormal basis of the
tangent space {e1, e2} (equation (2.15)) then reads

ε =

 ε11

ε22

2ε12

 = Tα, κ =

 κ11

κ22

2κ12

 = Tβ (3.19)

with the asymmetric transformation matrix

T =

 t211 t221 t11t21

t212 t222 t12t22

2t11t12 2t21t22 t11t22 + t12t21

, tαβ = aα · eβ, (3.20)

analogous to equation (3.18). In this reduced representation, KOITER’s energy density
(equation (2.16)) is simply given by

W =
1

2

(
hεTCε+

h3

12
κTCκ

)
=

1

2

(
KαTHα+DβTHβ

)
=

1

2

(
αTn + βTm

) (3.21)
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with the rigidities K and D from equation (2.20). Here,

H =
1− ν2

E
TTCT (3.22)

is the symmetric, stripped-down plane-stress constitutive matrix in curvilinear coor-
dinates of equation (2.21) in VOIGT notation, calculated through a change of coordi-
nates from the common form

C =
E

1− ν2

1 ν 0
ν 1 0
0 0 (1− ν)/2

. (3.23)

The curvilinear stress resultants in VOIGT’s vector notation are defined through
equation (3.21) as

n =

n11

n22

n12

 = KHα, m =

m11

m22

m12

 = DHβ. (3.24)

Consequently, the contribution of element e to the generalized internal force vector
(equation (3.13b)) can be rewritten and implemented in the very convenient form

f int
I,e =

Np
e∑

p=1

wp

{(
(G̃AI)

Tn + (G̃BI)
Tm
)
j
}
e,qp
, (3.25)

where the membrane and bending strain matrices AI and BI are given by [38]

AI =

 AI111 AI211 AI311

AI122 AI222 AI322

2AI112 2AI212 2AI312

, BI =

 BI1
11 BI2

11 BI3
11

BI1
22 BI2

22 BI3
22

2BI1
12 2BI2

12 2BI3
12

, (3.26)

with entries from equation (3.15). Notice that ref. [38] is missing the factor 2 in the
third row of BI .

3.1.3 LOOP subdivision surfaces

All that remains to be specified to complete the implementation are the shape
functions NI ∈ H2(Ω,R). LOOP subdivision surface box splines are used in this
work, as they are currently the only two-dimensional, topologically unconstrained,
C1-continuous finite elements available. Subdivision surfaces were developed simul-
taneously by CATMULL and CLARK [26] in the context of computer graphics in 1978 as
a method of representing smooth surfaces by a coarse polygonal mesh, termed the
control mesh. C IRAK et al. have ported them to the finite element analysis of thin and
thick shells [36, 38, 129]. The methodology is based on STAM’s eigenanalysis [208]
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of LOOP’s recursive refinement rule [130] for triangulated surfaces with arbitrary
topology, which gave access to a set of 12 quartic box splines, that exactly interpolate
the infinitely refined surface (the limit surface) at all parametric points except on
elements connected to mesh vertices that have a valence other than six (irregular
vertices). Recursive subdivision of these irregular elements allows one to evaluate
the surface and its derivatives arbitrarily close to irregular vertices using the same
12 basis functions (see ref. [38] for details on the algorithm). In a compact notation,
they read

N1(ξ, η) = N4(ξ, η) + 2ξ2(1− ξ) + ξ(ξ3 + η3 + ζ3)/2 + ξηζ(5− 3ξ)/2 (3.27a)
N2(ξ, η) = N5(ξ, η) + 2η2(1− η) + η(ξ3 + η3 + ζ3)/2 + ξηζ(5− 3η)/2 (3.27b)
N3(ξ, η) = N6(ξ, η) + 2ζ2(1− ζ) + ζ(ξ3 + η3 + ζ3)/2 + ξηζ(5− 3ζ)/2 (3.27c)
N4(ξ, η) = N8(ξ, η) +N12(ξ, η) + ηζ(1− ξ)/2 (3.27d)
N5(ξ, η) = N9(ξ, η) +N10(ξ, η) + ξζ(1− η)/2 (3.27e)
N6(ξ, η) = N7(ξ, η) +N11(ξ, η) + ξη(1− ζ)/2 (3.27f)
N7(ξ, η) = ξ3(ξ + 2ζ)/12 (3.27g)
N8(ξ, η) = η3(η + 2ξ)/12 (3.27h)
N9(ξ, η) = ζ3(ζ + 2η)/12 (3.27i)
N10(ξ, η) = ξ3(ξ + 2η)/12 (3.27j)
N11(ξ, η) = η3(η + 2ζ)/12 (3.27k)
N12(ξ, η) = ζ3(ζ + 2ξ)/12 (3.27l)

where ξ ≥ 0 and η ≥ 0 are the natural coordinates of the standard triangle, subject
to ζ = 1− ξ − η ≥ 0. They are visualized to scale in Fig. 3.1.

In fundamental difference to traditional finite elements (but much like with
NURBS), the the middle surface in general locally approximates the mesh nodes
rather than interpolating them (xI 6∈ Ω and xI 6∈ Ω), as depicted in Fig. 3.2, according
to

x(θ1, θ2) =
12∑
I=1

xINI(ξ, η), x(θ1, θ2) =
12∑
I=1

xINI(ξ, η), (3.28)

where the finite element map notation of equation (3.5) is implied. Subdivision
surfaces gain H2 integrability at the expense of a larger local support of the shape
functions. The shape of an element is determined by the nodal coordinates of all
vertices belonging to the element itself or one of its direct neighbors.

A single GAUSS point per element has been found sufficient for convergence
and accuracy in previous geometrically linear [38] and nonlinear shell models [36].
This apparently stems from the enhanced support of the shape functions. While
classical triangular elements with quartic polynomials require at least six integration
points per triangle [217], each element is integrated using only its own points. The
numerical integration over subdivision surface elements, on the other hand, includes
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Figure 3.1: The 12 quartic LOOP subdivision surface shape functions on the regular
standard element. The numbering is identical to the node order in Fig. 3.2.
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Figure 3.2: Regular LOOP subdivision patch. The nodal coordinates map from the
standard triangle (red) to the control mesh in real space (blue). The limit surface
(green) of the triangular domain is obtained as a linear superposition of the 12 shape
functions from equation (3.27) with the corresponding vertices xI as weights, via
equation (3.28).
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1

2 3

4

Ghost elements

Ghost node position:
x4 = x2 + x3 − x1

BC type Imposed displacements
free u4 = u2 + u3 − u1

pinned u2 = u3 = 0, u4 = −u1

clamped u1 = u2 = u3 = u4 = 0

Figure 3.3: Boundary conditions of the SCHWEITZER–CIRAK type.

all points from the element’s 1-neighborhood (typically 12, except at irregular ver-
tices), so a single point per triangle suffices to satisfy the theoretical lower bound.
Indeed, no significant inaccuracies or spurious modes were found when using a one-
point quadrature even in situations with extremely large deformation (see however
Section 3.5.1). Of course, increasing the number of quadrature points can assist in
resolving strong material inhomogeneities or differential growth.

Boundary Conditions

The treatment of domain boundaries is in general non-trivial for subdivision sur-
face interpolation because elements along a shell boundary lack a complete 1-
neighborhood and hence per se cannot be interpolated like elements in the interior
of the domain. Three principal approaches have been proposed to solve this problem.

1. As pointed out by C IRAK et al. and BIERMANN et al. [16, 35, 38], a special sub-
division rule may be applied to boundary elements, corresponding to one-
dimensional subdivision on the boundary curve.

2. Alternatively, SCHWEITZER [194] suggested appending an additional row of
“ghost” vertices and elements to the control mesh along its boundaries as
shown in Fig. 3.3. If these ghost vertices are positioned and the displacement
field is projected onto them component-wise according to C IRAK et al. [38],
the usual boundary conditions can easily be imposed. This type of boundary
will be referred to as the SCHWEITZER–C IRAK type in the following. However, as
demonstrated by GREEN [77, 78], such boundary constraints are overly restrictive
and lead to a reduction of the convergence with the number of elements from
order two to one. In practice, this implies that rather fine meshes are required
for high accuracy, undermining the otherwise high computational efficiency
of subdivision finite elements.

3. The third approach was proposed by GREEN [77, 78] as a remedy to the limita-
tions of the second. Instead of drastically constraining the ghost displacements
according to Fig. 3.3, only the minimum set of necessary conditions is imposed
directly on the limit surface. The resulting linear constraint equations can be
solved using the penalty method, LAGRANGE multipliers, or any other solving



32 Chapter 3. NUMERICAL IMPLEMENTATION

technique suitable for constrained minimization.

In summary, SCHWEITZER–C IRAK boundaries are the easiest to implement, but should
be avoided in cases where high accuracy is needed with only few elements. The two
alternatives are significantly more complex to implement in general, with the excep-
tion of free GREEN boundaries, where the ghost nodes are simply left unconstrained.
In cases where the shell boundary is free, GREEN’s convenient method is applied here.
SCHWEITZER–C IRAK boundaries are used in all other situations for simplicity.

3.2 Beam finite element model

Unlike for thin surfaces, the C1-continuity requirement imposed on the transverse
displacements by the KIRCHHOFF kinematic restriction is easy to satisfy in the finite
element interpolation of thin bent beams. Most naturally, this is achieved by using
cubic HERMITE splines [245], and indeed, EULER–BERNOULLI beams are commonly
implemented with these shape functions in finite element analysis. Pure torsion and
axial extension or compression, on the other hand, are governed by second-order
differential equations and hence require only piecewise linear shape functions (C0

continuity). The computational challenge of large-deformation beams instead lies in
handling the geometric nonlinearity, which exhibits considerable complexity arising
from the superposition of axial twist and bidirectional bending.

Three prominent approaches have been developed, refined, mixed, and broadly
applied over decades to incorporate geometric nonlinearity in beam finite elements.
In the total Lagrangian (TL) formulation, the sought deformation fields are expressed
with respect to the stress-free initial configuration, as was done in the implementa-
tion of thin shell mechanics in Section 3.1. The updated Lagrangian (UL) formulation,
which can be shown to be effectively equivalent to the TL [195], deploys a series
of intermediate states which are incrementally used as a reference. Finally, in the
corotational (CR) formulation, a local reference frame is introduced for each element
that continuously translates and rotates along with the element, within which the
theory can be considered geometrically linear. The CR approach has been acclaimed
for superiority over the TL and UL formulations in various regards such as accuracy,
performance, simplicity and generality [13, 41, 142, 175, 225, 233], and it is utilized in
the following.

3.2.1 Finite element discretization

A very convenient feature of the CR formulation is that it is sufficient to state the
beam theory in its linear limit, which is addressed first here. Assuming small dis-
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placements and rotations, an element’s contribution to the generalized internal
forces can be written in linear elasticity as the product of an element stiffness matrix
Ke and a vector of generalized element coordinates ue,

f int
e = Keue. (3.29)

Most commonly, the global x-axis is taken as the beam reference centerline, and
each mesh node n carries six degrees of freedom: three Cartesian displacements
un, vn, wn in x-, y-, and z-direction, respectively, and three generalized angles ϕn,
θn, ψn representing the nodal rotation about these respective axes in a way that
depends on the order of the kinematic theory considered. In the first-order EULER–
BERNOULLI beam theory (EBT), θ = − dw/dx and ψ = dv/dx represent the slopes of
the transverse displacements. The conventional element DOF ordering

ue = [uT
1 , uT

2 ] = [u1, v1, w1, ϕ1, ψ1, θ1, u2, v2, w2, ϕ2, ψ2, θ2]T, (3.30)

is employed in the following, where the subscript i = 1, 2 locally refers to the ele-
ment’s i-th node. The six deformation fields are then interpolated across the element
according to

v(ξ) =
2∑
I=1

vINI(ξ) + ψINI+2(ξ), w(ξ) =
2∑
I=1

wINI(ξ) + θINI+2(ξ) (3.31)

for the transverse deflections, and

u(ξ) =
2∑
I=1

uINI+4(ξ), ϕ(ξ) =
2∑
I=1

ϕINI+4(ξ) (3.32)

for axial displacement and torsion, where ξ ∈ [0, 1] is the element’s natural coordi-
nate. As mentioned earlier, the four cubic HERMITE splines [245]

N1(ξ) = ζ2(2ξ + 1) (3.33a)
N2(ξ) = ξ2(2ζ + 1) (3.33b)
N3(ξ) = −ξζ2 (3.33c)
N4(ξ) = ξ2ζ (3.33d)

are usually used for bending, with ζ = 1 − ξ. For the reader’s convenience, they
are plotted in Fig. 3.4. The axial variables are interpolated using the trivial C0 basis
functions

N5(ξ) = ζ, N6(ξ) = ξ. (3.34)

By substituting equations (3.31) and (3.32) in equations (2.37) to (2.39) with

ζ =
du

dx
, ϑ1 =

dϕ

dx
, ϑ2 =

d2w

dx2
, ϑ3 =

d2v

dx2
, (3.35)
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Figure 3.4: The four cubic HERMITE shape functions on the standard element.

carrying out the usual variation (omitted here for brevity, see e.g. ref. [245]), and
integrating over the element analytically, the element stiffness matrix Ke can be
calculated exactly.

Remarkably, in 1997 REDDY et al. [178, 180] showed that by cleverly simplifying
the involved equilibrium equations of third-order beams, which include the true
quadratic transverse shear profile in bending, a stiffness matrix can be derived that
is technically identical to that of the first-order beams considered here so far. The
governing equations of third-order beams are of sixth order in the displacement
field, which they reduced to fourth order by neglecting higher-order terms. In this
simplified third-order beam theory (henceforth termed RBT), the stiffness matrix
resulting from integration over the HERMITE splines as usual accommodates those
of EBT and even TIMOSHENKO beam theory [228, 229] as a special case, without
suffering from shear locking [171, 226]. Adopting the DOF ordering introduced in
equation (3.30), the linear three-dimensional RBT element stiffness matrix can be
written as [178, 180]

Ke =



ku 0 0 0 0 0 −ku 0 0 0 0 0
kv 0 0 kvψ 0 0 −kv 0 0 kvψ 0

kw 0 0 −kwθ 0 0 −kw 0 0 −kwθ
kϕ 0 0 0 0 0 −kϕ 0 0

kψ 0 0 −kvψ 0 0 kψψ 0
kθ 0 0 kwθ 0 0 kθθ

ku 0 0 0 0 0
kv 0 0 −kvψ 0

symm. kw 0 0 kwθ
kϕ 0 0

kψ 0
kθ



(3.36)
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with entries

kw =
12EIyy
µxza3

e

, kθ =
4EIyy
µxzae

λxz, kwθ =
6EIyy
µxza2

e

, kθθ =
2EIyy
µxzae

ξxz, (3.37)

kv =
12EIzz
µxya3

e

, kψ =
4EIzz
µxyae

λxy, kvψ =
6EIzz
µxya2

e

, kψψ =
2EIzz
µxyae

ξxy, (3.38)

µxz = 1 + 12Ωxz, λxz = 1 + 3Ωxz, ξxz = 1− 6Ωxz. (3.39)

Here, ae = (Fg)11 ae = (Fg)11 ‖x2 − x1‖ denotes the (grown) mesh spacing, i.e.,
the current equilibrium length of element e. Notice that in equation (3.36) the
generalized rotations in the two bending directions have opposite sign convention.
Ωxz is the parameter determining the order of the kinematic theory. The stiffness
matrix of EBT is retrieved by setting Ωxz = 0, whereas in RBT,

Ωxz =
E
(
I

(2)
yy − 2I

(4)
yy /(3r2

z) + I
(6)
yy /(9r4

z)
)

a2
eG
(
I

(0)
yy − 2I

(2)
yy /r2

z + I
(4)
yy /r4

z

) (3.40)

in which rz is the half thickness of the beam in z direction. I(i)
yy is the i-th moment of

inertia of the beam about the y-axis, calculated as

I(i)
yy =

∫
A

zi dA. (3.41)

Equations (3.39) to (3.41) hold analogously with the roles of y and z interchanged.
The axial and torsional spring constants are given by

ku =
EA

ae
, kϕ =

GJ

ae
, (3.42)

where the polar moment of inertia reads J = Iyy + Izz by the perpendicular axis
theorem. For a filament with circular cross-section and radius r = ry = rz , one can
write I(i) = I

(i)
yy = I

(i)
zz , which implies that

kv = kw, kψ = kθ, kvψ = kwθ, kθθ = kψψ, (3.43)

I(0) = A = πr2, I(2) = I =
π

4
r4, I(4) =

π

8
r6, I(6) =

5π

64
r8, J = 2I, (3.44)

such that Ωxy = Ωxz = 101
180

(1 + ν)(r/ae)
2 in RBT. Since this form of the element stiff-

ness matrix offers improved physical accuracy over that of EBT without substantially
altering implementation, it is used in this work.
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3.2.2 Corotational quaternion formulation

The corotational formulation is rooted in in the works of WEMPNER [238], BELYTSCHKO
and HSIEH [13], and ORAN [162, 163]. Its fundamental principle is based on the polar
decomposition theorem, which states that any general motion can be expressed as
the sum of a rigid body transformation and a pure shape deformation. Mathemati-
cally, this is reflected in a unique multiplicative decomposition of the deformation
gradient into an orthogonal tensor with determinant 1 representing the change of
orientation, and a symmetric positive-definite tensor to account for local straining
[232]. Indeed, in Section 2.2.1, equations (2.29) and (2.32), this decomposition was
implicitly carried out to derive the filament strains. The same is achieved in the CR
formulation by corotating a dedicated coordinate frame with each beam element,
exactly passing through its nodes, hence the name of the method. All strains are
assumed to be small, allowing for the linear beam theory of Section 3.2.1 to be applied
locally within the corotated coordinate system. It is for this reason that the CR ap-
proach is computationally highly competitive. The stiffness matrix in equation (3.36),
which was derived by analytically integrating the shape functions over the element,
holds in each corotated frame independent of rigid body motions. Therefore, no
numerical quadrature is involved, and no shape function ever needs to be evaluated
in a practical implementation.

In 1990, CRISFIELD [41] was the first to provide a beam-theory-independent, con-
sistent, three-dimensional CR formulation for two-node elements with three trans-
lational and three rotational DOFs each. His method is employed here to compute
the elastic forces and moments of beam elements undergoing arbitrarily large rota-
tions. Before the CR transformation is specified further below, a few technicalities
regarding the parameterization of orientation in space are in order.

Quaternion representation of the COSSERAT directors

To avoid the gimbal lock in parametric representations of large rotations using three
angles, such as those of EULER, auxiliary nodal unit quaternions

qn =

[
q0

q̃

]
=


q0

q1

q2

q3

 ∈ R4 (3.45)

are used, with a scalar part q0 and a vectorial part q̃ = [q1, q2, q3]T. Each of them
defines the nodal unit trihedron An = [a1, a2, a3], which holds the COSSERAT directors
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introduced in Section 2.2.1, through

An =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

, (3.46)

thus specifying the nodal orientation in space. SPURRIER’s algorithm [207] can be
used to perform the inverse operation of equation (3.46), i.e., to convert a unit
trihedron An = [Aij] back to a normalized quaternion. Let

Amax = max{tr(An), A11, A22, A33}. (3.47)

If Amax = tr(An), then the quaternion components are

q0 =
√

1 + Amax/2, (3.48a)
qi = (Akj − Ajk)/4q0, i = 1, 2, 3, (3.48b)

where i, j, k are the cyclic permutation of 1, 2, 3. If, on the other hand, Amax = Aii,
then

qi =
√
Amax/2 + (1− tr(An))/4, (3.49a)

q0 = (Akj − Ajk)/4qi, (3.49b)
ql = (Ali + Ail)/4qi, l = j, k. (3.49c)

To initialize the nodal quaternions from a set of mesh nodes {xn}, the following
procedure can be applied. For each element e, let [dx, dy, dz]

T = x2 − x1 denote the
vector connecting its two nodes, and let lz =

√
d2
x + d2

y . Assuming zero initial axial
rotation, the direction cosine matrix

Re =

dx/ae −dy/lz −dxdz/lzaedy/ae dx/lz −dydz/lzae
dz/ae 0 lz/ae

 (3.50)

if lz/ae > 0, and

Re =

 0 0 − sgn dz
0 1 0

sgn dz 0 0

 (3.51)

otherwise, specifies the element’s orientation in space. The initial nodal trihedra
{An} are computed from {Re} in the following way. If e is the only element con-
nected to node n (i.e., n is a boundary node), one can set An = Re, which corresponds
to zero momentum at free boundary nodes. If however two elements e1 and e2 meet
at node n, it makes sense to use the “average” orientation of the elements as initial
guess for the nodal orientation, An = Ã(Re2 ,Re2), as detailed below. In the simplest
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case of a straight rod, all elements of the reference configuration are parallel to the
global x-axis, which yields identity matrices An = I at all nodes.

The “average” orientation Ã of two unit trihedra A1 and A2 can generally be
approximated with the following efficient algorithm [41, 42], if the magnitude of
the pseudo-vector between the two is smaller than π. Calculate the quaternion
q = [q0, q̃T]T corresponding to the differential trihedron A2A

T
1 using equations (3.47)

to (3.49). Obtain the differential pseudo-vector

ω = [ω1, ω2, ω3]T =
q̃

q0

(3.52)

with magnitude ω = ‖ω‖. If ω < ε, where ε is a small numerical tolerance value, the
two trihedra are identical and the procedure terminates with Ã = A1. Otherwise,
proceed by defining the half tangent-scaled pseudo-vector

ω̃ = tan

[
1

2
tan−1(ω)

]
ω

ω
(3.53)

and rotate A1 by these half angles to obtain [4]

Ã = A1 +
2

1 + ω̃ · ω̃
[
S(ω̃) + S2(ω̃)

]
A1, (3.54)

where

S(ω) =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (3.55)

is the skew-symmetric cross product operator.

What remains to be specified is the update operation for the quaternions, to
determine how the COSSERAT directors evolve as the beam deforms. From a small
increment to the generalized nodal deformations in equation (3.30),

∆un = [∆un, ∆vn, ∆wn, ∆ϕn, ∆ψn, ∆θn]T, (3.56)

the corresponding “incremental” unit quaternions

∆qn =

[
∆q0

∆q̃

]
=


cos ∆ϕn

2
cos ∆θn

2
cos ∆ψn

2
+ sin ∆ϕn

2
sin ∆θn

2
sin ∆ψn

2

sin ∆ϕn

2
cos ∆θn

2
cos ∆ψn

2
− cos ∆ϕn

2
sin ∆θn

2
sin ∆ψn

2

cos ∆ϕn

2
sin ∆θn

2
cos ∆ψn

2
+ sin ∆ϕn

2
cos ∆θn

2
sin ∆ψn

2

cos ∆ϕn

2
cos ∆θn

2
sin ∆ψn

2
− sin ∆ϕn

2
sin ∆θn

2
cos ∆ψn

2

. (3.57)

are computed, and the quaternions are updated by applying the non-commutative
HAMILTON product

qn ←∆qn qn =

[
∆q0 q0 −∆q̃ · q̃

∆q0 q̃ + q0 ∆q̃ + ∆q̃× q̃

]
. (3.58)

Finally, they are renormalized (qn ← qn/‖qn‖) after each update to avoid numerical
drift away from unit length.
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Figure 3.5: Visualization of the corotated beam element. In an initially straight con-
figuration (left), each element carries canonical trihedra Ee = A1 = A2 = I (the
identity matrix). After deformation (right), the seven local element DOFs (bearing
a hat) are found with the help of the trihedra A1 (red) and A2 (blue) storing the
nodal orientations, via the corotated element frame Ee (green) encoding the element
orientation.

Internal force computation

With the prerequisites for large rotations established, CRISFIELD’s arguments [41, 42]
allow to uncouple the rigid body motion from the local, small deformation of each
finite beam element e. Given the nodal unit trihedra A1 and A2 of the element’s
nodes, their average

Re = [r1, r2, r3] = Ã(A1,A2) (3.59)
is estimated using equations (3.52) to (3.55) from the quaternion belonging to A2A

T
1 .

A corotated frame Ee = [e1, e2, e3] is then assigned to the element in the corotational
formulation, in such a way that it represents its orientation in space. The first column
is given by the vector connecting the two element nodes,

e1 =
x2 − x1

‖x2 − x1‖
. (3.60)

The second and third vectors are obtained from rotating r1 onto e1, yielding

ei = ri −
e1 · ri

1 + e1 · r1

(e1 + r1), i = 2, 3. (3.61)

The global element DOFs ue from equation (3.30) are then expressed with respect
to Ee. In the following, all variables carrying a hat refer to this local element frame.
Note that this renders the small error in Re, resulting from the approximation in
equation (3.53) due to non-additivity of pseudo-vectors, irrelevant for physical cor-
rectness of the method. By construction of e1 in equation (3.60), the transverse
deflections vanish identically:

v̂1 = v̂2 = ŵ1 = ŵ2 = 0. (3.62)

Moreover, the displacement variables u1, u2 can be reduced to a single axial deflection
û12 = ‖x2 − x1‖ − ae. The remaining six local rotational DOFs with respect to Ee can
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be computed as

ϕ̂n = sin−1

[
1

2
(a2 · e3 − a3 · e2)

]
− ϕ̂int

n , (3.63a)

ψ̂n = sin−1

[
1

2
(a1 · e2 − a2 · e1)

]
− ψ̂int

n , (3.63b)

θ̂n = sin−1

[
1

2
(a1 · e3 − a3 · e1)

]
− θ̂int

n , (3.63c)

for both nodes n = 1, 2 connected to element e, each using their respective trihedron
An = [a1, a2, a3]. The angles ϕ̂int, ψ̂int and θ̂int allow to furnish the filament with
intrinsic twist or curvature, i.e., twist or curvature that remains in absence of external
loads or moments. They are initialized to hold the sin−1(·) values of the undeformed
configuration. Explicitly, local intrinsic twist of ∂ϕ/∂s and intrinsic curvature κy (κz)
in the xz (xy) plane are achieved by setting

−ϕ̂int
1 = ϕ̂int

2 =
ae
2

∂ϕ

∂s
, (3.64a)

−ψ̂int
1 = ψ̂int

2 =
ae
2
κz, (3.64b)

−θ̂int
1 = θ̂int

2 =
ae
2
κy. (3.64c)

This defines the seven local deformation DOFs

ûe = [ϕ̂1, ψ̂1, θ̂1, û12, ϕ̂2, ψ̂2, θ̂2]T (3.65)

from which the rigid body motion has been completely detached, and which are
shown together with the trihedra in Fig. 3.5. The corresponding local element stiff-
ness matrix K̂e is easily devised from equation (3.36) using the definition of the
corotated frame as

K̂e =



kϕ 0 0 0 −kϕ 0 0
kψ 0 0 0 kψψ 0

kθ 0 0 0 kθθ
ku 0 0 0

kϕ 0 0
symm. kψ 0

kθ


, (3.66)

which yields the corotated internal forces and moments through

f̂
int

e = K̂eûe. (3.67)

To complete the corotational formulation, an element transformation matrix
Te ∈ R12×7 is required that maps the local forces and moments to the global coordi-
nate system according to

f int
e = Tef̂

int

e = TeK̂eûe. (3.68)
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In CRISFIELD’s formalism, it takes the form [41, 42]

Te = [t1, t2, t3, t4, t5, t6, t7] (3.69)

where

2 cos ϕ̂1t1 = [0T, (a2 × e3 − a3 × e2)T, 0T, 0T]T + L(r3)a2 − L(r2)a3, (3.70a)
2 cos ψ̂1t2 = [(Ja2)T, (a1 × e2 − a2 × e1)T, −(Ja2)T, 0T]T + L(r2)a1, (3.70b)
2 cos θ̂1t3 = [(Ja3)T, (a1 × e3 − a3 × e1)T, −(Ja3)T, 0T]T + L(r3)a1, (3.70c)

t4 = [−eT
1 , 0T, eT

1 , 0T]T, (3.70d)
2 cos ϕ̂2t5 = [0T, 0T, 0T, (a2 × e3 − a3 × e2)T]T + L(r3)a2 − L(r2)a3, (3.70e)
2 cos ψ̂2t6 = [(Ja2)T, 0T, −(Ja2)T, (a2 × e3 − a3 × e2)T]T + L(r2)a1, (3.70f)
2 cos θ̂2t7 = [(Ja3)T, 0T, −(Ja3)T, (a2 × e3 − a3 × e2)T]T + L(r3)a1, (3.70g)

with

LT =
[
LT

1 , LT
2 , −LT

1 , LT
2

]
, (3.71a)

LT
1 (ri) =

ri · e1

2
J +

1

2
Jri(e1 + r1)T, (3.71b)

LT
2 (ri) =

1

2
S(ri)−

ri · e1

4
S(r1)− 1

4
S(ri)e1(e1 + r1)T, (3.71c)

J =
1

‖x2 − x1‖
(
I− e1e

T
1

)
. (3.71d)

I denotes the three-dimensional identity matrix and S(·) is the cross-product ma-
trix defined in equation (3.55). In the transformation responsible for the first node
(equations (3.70a) to (3.70c)), the first trihedron A1 = [a1, a2, a3] is used, whereas
equations (3.70e) to (3.70g) operate with A2 = [a1, a2, a3].

The procedure outlined in equations (3.59) to (3.71) is repeated for each element,
and the global internal force vector f int is assembled from the elemental contribu-
tions in equation (3.68) as usual in the FEM. The discretization of beam masses will
be covered in Section 3.4.

3.3 Contact model

A crucial feature of packing problems is mutual volumetric exclusion of the packed
objects, as it geometrically constrains the room available for further deformations
and rearrangements. The rigorous treatment of contact mechanics in a continuum
setting dates back to the pioneering works of HERTZ published in 1882 [89]. When
two non-adhesive frictionless elastic bodies come into contact, they exchange repul-
sive normal forces distributed over a common interface that result from a focused
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stress distribution in the interior of the bodies. For the type of packing problems
studied here, the local body deformations that yield this finite contact interface are
of no more than subordinate importance and are hence neglected. HERTZ’ consid-
erations nevertheless allow for a consistent, physically sound treatment of elastic
contacts by providing the net normal force resulting from an effective virtual depth
by which the two bodies overlap.

The computational challenge lies in the efficient detection of contacting ele-
ments. It can be decomposed into two steps: First, pairs of spatially close elements
need to be identified in a way that reduces the algorithmic complexity of the naive
approach, O(N2), where N stands for the total number of finite elements, to a
bearableO(N). Second, the points of closest approach on the two shapes must be
found to evaluate the gap function and eventually determine if their volumes indeed
overlap. Since the number of element pairs in contact grows like the square of the
packing density in the uncorrelated thin rod limit in 3D [167], an efficient treatment
of these pairs is crucial for performance. These two purely geometrical problems
are addressed in the next subsection in reverse order, subsequently followed by a
description of the exchanged forces upon detected contact.

3.3.1 Contact detection

Finding the closest points of approach

Assume, for the moment being, that a valid pair of beam or shell finite elements has
been identified, which potentially overlap. The remaining algorithmic challenge is to
locate the points of closest approach on their respective disjunct parametric center-
lines or middle surfaces, c1 6= c2, from which the mutual indentation is determined
by its depth

d =


h− ‖c12‖, shell-shell contact
2r − ‖c12‖, wire-wire contact
r + h/2− ‖c12‖, wire-shell contact

(3.72)

and direction n = c12/‖c12‖, where c12 = c1 − c2. If d ≥ 0, the two body parts are
in contact. Consider first the case where both of them are subdivision surface shell
elements. ci, i = 1, 2, are found when their barycentric coordinates (ξi, ηi) are known,
thanks to STAM who provided a direct way to evaluate the physical surface at any
barycentric point on each triangle [208], even arbitrarily close to irregular nodes. On
regular elements, the solution is just the shape function interpolant

ci(ξi, ηi) =
12∑
I=1

xINI(ξi, ηi), i = 1, 2 (3.73)
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with NI from equation (3.27). Let ξ = [ξ1, η1, ξ2, η2]T for short-hand notation, and
define the squared gap function

f(ξ) = ‖c2(ξ2, η2)− c1(ξ1, η1)‖2. (3.74)

The task is then to solve the following four-dimensional nonlinear optimization
problem with linear inequality constraints. Find ξ∗ = [ξ∗1 , η

∗
1, ξ
∗
2 , η
∗
2]T such that

f(ξ∗) = min{f(ξ) | Aξ ≥ b}, (3.75a)

A =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
−1 −1 0 0
0 0 −1 −1

, b =


0
0
0
0
−1
−1

. (3.75b)

The problem statement for wire-wire contacts follows the same lines: Let ξ =
[ξ1, ξ2]T and

f(ξ) = ‖c2(ξ2)− c1(ξ1)‖2. (3.76)

To obtain the deformed element centerline in isoparametric form, the cubic HERMITE
splines of equation (3.33) are stretched by the axial strain, twisted by the torsion
angle, and affinely transformed to real space using the nodal positions x1, x2 and
the mean element orientation Ee from equations (3.60) and (3.61), resulting in

ci(ξi) = x1 + Ee Rx

(
[ξi − 1/2]ϕ̂12

) ξi‖x2 − x1‖∑2
I=1 ψ̂INI+2(ξi)∑2
I=1 θ̂INI+2(ξi)

, i = 1, 2, (3.77)

where ϕ̂12 = ϕ̂2 − ϕ̂1 denotes the change of twist angle over the element, and the
twisting matrix is given by

Rx(ϕ) =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

. (3.78)

The wire-wire contact problem is thus recast to finding ξ∗ = [ξ∗1 , ξ
∗
2 ]T such that

f(ξ∗) = min{f(ξ) | Aξ ≥ b}, (3.79a)

A =


1 0
0 1
−1 0
0 −1

, b =


0
0
−1
−1

. (3.79b)
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It is straightforward to combine equations (3.73) to (3.79) to formulate wire-
shell contacts in analogous form as a nonlinear constrained optimization problem
with three parameters ξ = [ξ1, ξ2, η2]T. Equations (3.75) and (3.79) can be solved
with, e.g., ROSEN’s projected gradient method [187], the NEWTON–RAPHSON method
with penalized constraint violations [121, 122], or any other scheme dedicated to such
problems. The projected gradient method has been implemented in the present work
with ARMIJO inexact backtracking line search [158] for guaranteed global convergence
[51], which is an important feature because the problem of locating the closest points
of approach is non-convex and often discontinuous in time (see Fig. 3.6).

This solution procedure, however, proved to be too computationally costly in
practice for the dense packings faced in Chapters 4 and 5. At large contact numbers,
the computing time consumed for contact problems can easily take the upper hand
over all other computations. A more economical approach is found by linearizing the
centerlines and middle surfaces, i.e., applying collision detection on the faceted finite
element meshes instead. This way, the contact points are just linearly interpolated
between the element vertices according to

ci(ξi, ηi) = x1 + ξi(x2 − x1) + ηi(x3 − x1), i = 1, 2 (3.80)

for thin shells and
ci(ξi) = x1 + ξi(x2 − x1), i = 1, 2 (3.81)

for thin filaments. In the shell-shell case, the problem consequently boils down to
evaluating the distance between all nine edge-edge pairs and six vertex-triangle
pairs belonging to the two triangular shell elements in question [20]. In wire-wire
contact, only a single edge-edge test is needed, whereas mixed contacts require
three edge-edge checks and two vertex-triangle checks. The closest points on edge-
edge pairs are calculated here using the quadric algorithm by SUNDAY [218], which
provides an efficient implementation based on a note by EBERLY [54, 55], with the
modification that the centerline segments are normalized to unit length to fix the
faulty detection of short parallel segments in SUNDAY’s algorithm. ERICSON’s robust
method [58] is used for the vertex-triangle pairs.

All possible types of inter-element contact are covered by this unified description,
be it between parallel elements, or at any angle. It also inherently handles the
cases where the contact points lie on boundary edges or nodes, in which case these
boundaries are treated as rounded off like indicated in Fig. 3.7.

The linearization in equations (3.80) and (3.81) comes at the cost of artificial fric-
tion due to ratcheting [2]. Simulations have shown, however, that this discretization
side effect can be reduced to a negligible amount by using reasonably fine compu-
tational meshes, while still being more computationally efficient than solving the
original piecewise smooth problems in equations (3.75) and (3.79). As a compromise,
one could consider to linearize the elements after adaptive local refinement of the
smooth interpolated surfaces, like has been done in ref. [81].
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Figure 3.6: Linearized filament-filament contact model. All contact elements are
effectively cylindrical in shape with hemispherical caps. (a) Closest points of approach
(blue). The repulsion force (red) is distributed to the four involved nodes. (b,c) A small
change of element displacements can cause the contact parameters ξ1, ξ2 to jump.

Identification of potentially contacting element pairs

A hierarchical spatial decomposition is used to identify nearby finite elements as
contact pair candidates, similarly to ref. [81]. Since the procedure is essentially very
akin to that utilized in the preceding work by STOOP [215], it is only briefly sketched
here. The concept is based on linked cell lists, which have been a standard technique
in many-body problems with short-range interactions since more than 40 years [173],
for its power to reduce the computational complexity from squared to linear in the
total number of elements.

On the coarsest level, all elements are placed into an array of cubic axis-aligned
cells of size α, which span the whole spatial domain of interest, as follows, and as
visually summarized in Fig. 3.7. Compute the axis-aligned boundary boxes (AABBs)
of each element’s middle surface or centerline. In each of its six Cartesian directions,
extend it by the half structure thickness

δ =

{
r for thin filaments
h/2 for thin shells

(3.82)

and additionally by a small margin ε > 0. Store a reference to the element in each
cell its AABB overlaps with. Each pair of elements sharing at least one cell and
whose geodesic distance on the manifold is larger than 2δ (see ref. [215] for details)
enters the mid-level check where their AABBs (without ε) are tested for overlap. If
they do, the closest points of approach are finally computed on the finest level of
the hierarchy as outlined earlier in this section. The purpose of the margin ε is to
avoid the cost of rebuilding the linked cells after each time step. They need to be
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Figure 3.7: Hierarchic contact detection on the example of a shell and a wire element.
Three cells (green) contain the extended AABBs (gray) of both elements. The AABBs
are therefore tested for overlap, with positive result. In the third step, the primitive
tests yield the barycentric coordinates ξ∗1 = 0.3, ξ∗2 = 1, η∗2 = 0 of the closest points
of approach c1 and c2 (blue).

recomputed only when the contained objects have moved farther than ε. A good
general choice turned out to be α = 3a, ε = 0.05a, where a represents the average
edge length of the involved computational meshes.

Determining the element AABBs is easy and cheap for the linearized contact
handling described above, but very non-trivial if the actual curved element shape
is used. This holds in particular for irregular subdivision surface elements, where
the limit surface can be evaluated only point-wise. A simple pragmatic remedy is
to use the AABB of the faceted element nonetheless but extend it by an estimated
maximum deformation length, at the cost of more fine-grained contact pair tests.

3.3.2 Volumetric exclusion

Once a pair of contacting elements has been found with positive indentation depth
d > 0, normal direction n and the isoparametric locations ξ∗ of the contact points on
the respective middle surfaces or centerlines, volumetric exclusion of the two elastic
bodies is weakly imposed by exchange of repulsive normals forces f⊥ inspired by
Hertzian theory. The exact kind of the applied force law turns out to be of negligible
importance for the present packing model, in agreement with the findings in the
closely related preceding project [215]. It is set to

f⊥ = E∗Amd/h (3.83)
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for contacts of the shell-shell type, where Am is the surface area of the smaller
element, and

f⊥ = E∗amdπ/4 (3.84)
in case of wire-wire or wire-membrane contacts, in which am denotes the length of
the shorter wire element. The force in Equation (3.84) is that of a Hertzian contact
between two parallel cylinders [99]. E∗ combines the elastic material parameters of
the touching objects, (E1, ν1) and (E2, ν2), according to

1

E∗
=

1− ν2
1

E1

+
1− ν2

2

E2

. (3.85)

Since the normal force f⊥n may act on any point on the element surfaces, it is linearly
distributed to the involved nodal translational DOFs using the nodal weights natu-
rally implied by the barycentric contact coordinates ξ∗ (see the exemplary Fig. 3.6).

Rigid cavities

A first step in the gradual departure from previous thin object packing studies in rigid
confinement with ideal spherical symmetry will be made in Chapter 5 by considering
the effect of confinement asphericity. To this end, a simple model for the nodal
contact between an elastic body element and the interior wall of a rigid aspherical
cavity is outlined here. Although specifically carried through for general ellipsoidal
containers, the basic idea applies straightforwardly for other shapes such as boxes,
cylinders etc. with only minor modifications, and even easily translates to contacts
with external obstacles by flipping the orientation of the rigid shape inside out.

The calculation of the shortest distance between an exact ellipsoid and a point
in space is equivalent to the problem of finding the roots of a sixth order polynomial
[88], for which no analytical solution is known. Thus, the exact indentation depth d
can only be found numerically, which is very inconvenient. Instead, a closed-form
approximation is developed here. Consider an ellipsoidal cavity, axis-aligned and
centered at the spatial origin without loss of generality, defined by(

x

Rx

)2

+

(
y

Ry

)2

+

(
z

Rz

)2

= 1. (3.86)

For reasonably shaped ellipsoids not too far away from a sphere, i.e., for Rx ≈ Ry ≈
Rz � r, h, a cavity contact is assumed if ∆ ≥ 0 in the implicit formula of an effective
ellipsoid

Eeff(xn) =

(
x

Rx − δ

)2

+

(
y

Ry − δ

)2

+

(
z

Rz − δ

)2

= 1 + ∆, (3.87)

given the nodal position xn = [x, y, z]T = xn + un. δ is the half thickness of the
thin object under consideration as defined in equation (3.82). Since the Hertzian
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force outgrows the internal forces of the slender body even for small indentations d
when compared to its length scales, the force magnitude is far less important than
its direction. Therefore, d can legitimately be approximated using

(R̃− δ + d)2 ≈ x2 + y2 + z2 ≈ (R̃− δ)2(1 + ∆), (3.88)

where R̃ = (Rx +Ry +Rz)/3 averages the ellipsoidal radii. Taking the square root
yields the sought approximation for d as a function of the surface isovalue 1 + ∆:

d ≈ (R̃− δ)
(√

1 + ∆− 1
)
. (3.89)

A consistent approximation of the outer surface normal vector n assuming that
∆� 1 is found by normalizing the gradient of the effective ellipsoid:

n ≈ ∇Eeff(xn)

‖∇Eeff(xn)‖
=:

x̃n
‖x̃n‖

. (3.90)

The effective direction x̃n can be compactly written as x̃n = 2 R−2xn with a 3 × 3
diagonal matrix

R = diag(Rx − δ, Ry − δ, Rz − δ). (3.91)

The impact of the approximations in equations (3.89) and (3.90) is twofold. First,
the magnitude of the Hertzian contact force is subject to an error that grows with
the disparity ofRx, Ry, Rz . Since the Hertzian contact model used here is itself only a
crude approximation, this has no negative consequence in practice. The sole purpose
is to keep the packed body inside the confining container. Second, the effective
ellipsoid has slightly deformed aspect ratios compared to the desired cavity. This
defect is also minor for Rx ≈ Ry ≈ Rz and vanishes for arbitrary Rx, Ry, Rz in the
slender body limit δ/R̃→ 0. All approximations above become exact under spherical
symmetry (Rx = Ry = Rz).

In the event that the sphere with radius δ around a node n indents the cavity
wall by a depth d > 0 in direction of n as computed above, the normal force−f⊥n is
applied to the three translational DOFs of the penetrating node. The force modulus
f⊥ is calculated from equations (3.83) and (3.84) with the modification that Am

stands for the mean surface area of all shell elements connected to node n, while am

analogously denotes the mean adjacent wire edge length. For the calculation of E∗
in equation (3.85), the elastic properties of the fixed wall are set to (E2, ν2) = (∞, 0).
Alternative models such as the Hertzian force between a sphere and a half-space,
where the force is not linearly proportional to d, may be used instead if desired.

3.3.3 COULOMB friction

Many practical materials resist tangential sliding by exchange of frictional forces—
even DNA does so [69, 110, 164]. To arrive at a simple macroscopic model of dry
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friction that includes the stick-slip phenomenon but at the same time retains low
parametric dimensionality, COULOMB’s law is assumed between any two contacting
surfaces, in accordance with a suggestion for condensed DNA [159]. Sophisticated
computational models for the frictional contact between two wire segments and
between a wire and a surface are available in the literature [156, 243]. They include
the exchange of angular momentum resulting from the tangential contact force
components, at the cost of enormous modeling complexity. Here, a simplified model
is employed that reduces the action of tangential contact forces to the translational
displacement field, neglecting bending moments and torques on the filament. This
is justified by the fact that in dense packing problems, twist and bending angles
are strongly constrained at both ends of contacting wire segments through their
geometrical coupling with the translational DOFs, which in turn are highly confined
by normal contact forces. Thus, if all simulations are carried out close to the static
equilibrium, frictional forces will be mediated to the rotational filament variables
indirectly via the translational ones with sufficient accuracy.

COULOMB’s friction model bounds the tangential forces f‖ proportionally to the
normal ones according to f‖ ≤ µf⊥. For a broad class of materials, the isotropic
friction coefficient µ ≥ 0 takes a marginally larger value when the contacting bodies
are at relative rest than when they slide [62], giving rise to the stick-slip phenomenon.
The coefficients of static and dynamic friction are henceforth denoted by µs and µd,
respectively. The model is implemented for all types of contact mentioned earlier,
following the efficient element-by-element approach proposed by MARGOLIS [140],
which goes as follows. Given f⊥ and n of a detected contact, as well as the velocity
vector of the second element with respect to the Lagrangian frame of the first,
v12 = v2 − v1, compute the relative tangential velocity vt = v12 − (v12 · n)n. If
‖vt‖ ≥ vs, where vs > 0 is a small predefined constant speed below which the bodies
are considered to be at rest, dynamic friction is applied by adding the tangential
force

f t = −µdf⊥
vt

‖vt‖+ vε
. (3.92)

vε > 0 is a small tolerance speed to avoid the singularity in the direction vector at
rest, and is set to vε = 10−8vs here. If ‖vt‖ < vs on the other hand, static friction
is imposed by coupling the two bodies with an auxiliary viscoelastic spring made
of a KELVIN–VOIGT material with stiffness k and dynamic viscosity η. A convenient
choice for the spring parameters is k = δE∗, η = τE∗, where δ is the characteristic
structural thickness from equation (3.82), and τ is a short viscous time scale to damp
high-frequency oscillations. This then yields the tangential force

f t = −kus − τkvt. (3.93)

For a smooth transition from the dynamic to the static case, the spring deflection
vector us is initialized such that equations (3.92) and (3.93) are balanced, resulting in

us =

(
µdf⊥

k(‖vt‖+ vε)
− τ
)

vt. (3.94)
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As soon as the elastic spring force violates COULOMB’s law, f‖ = ‖f t‖ > µsf⊥, the
static spring is removed and dynamic friction is applied according to equation (3.92).
Likewise, the spring is removed upon separation of the elements. To avoid accidental
loss of the static friction spring when the indentation depth numerically oscillates
about zero without actual separation of the two bodies, a tolerated separation is used
below which the spring is maintained anyway. A tolerance of 0.1δ proved to work
well in all simulated settings. Finally, all normal forces mentioned in Section 3.3.2 are
augmented by the same viscous dashpot as the auxiliary spring so as to diminish
high-frequency oscillations also in normal direction.

3.4 Time integration

NEWTON’s hyperbolic nonlinear equations of motion

Mü(t) + Du̇(t) + f int(u(t)) = f ext(u(t), t) (3.95)

are integrated in time to track the dynamic evolution of deformations, where u(t) is
the displacement vector containing the nodal DOF coefficients uI at time t, M is the
mass matrix assembled from element contributions, and D is a viscous damping
matrix for equilibration, to be specified at the end of this section. As usual, a super-
scribed dot denotes the derivative with respect to time. f int and f ext hold the internal
elastic out-of-equilibrium forces (equations (3.13b) and (3.67)) and external loads and
contact forces, respectively.

NEWMARK’s family of integration methods [157] is one of a few schemes widely
used in structural dynamics to solve equation (3.95) numerically [94, 179, 244]. Let
ut ≈ u(t), vt ≈ u̇(t) and at ≈ ü(t) be the discretized approximations of the displace-
ment vector and its time derivatives. For fixed NEWMARK scheme parameters β and
γ, they are integrated according to

ut+∆t = ut + ∆tvt +
(∆t)2

2

[
(1− 2β)at + 2β at+∆t

]
, (3.96a)

vt+∆t = vt + ∆t
[
(1− γ)at + γ at+∆t

]
, (3.96b)

where ∆t denotes the finite time step, and the nodal accelerations at time t are given
by

at = M−1
[
f ext(ut, t)− f int(ut)−Dvt

]
. (3.97)

Depending on the choice of parameters, the method becomes implicit or ex-
plicit. A general advantage of implicit integration in time over explicit schemes
is the ability to cope with larger time steps without losing numerical stability. In
many applications including the present large deformation model, however, this
benefit is compromised by significantly more time-consuming computations per
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time step. A preliminary computational analysis [234] revealed that the potential
energy landscape of dense thin-body packing problems is too rough to be efficiently
traversed with an implicit integrator. Further difficulties include the discontinuous
nature of contacts sketched in Section 3.3, a significantly more involved numeri-
cal implementation as well as increased inter-process communication overhead in
parallelization.

For the sum of these reasons, the unconditionally stable constant average acceler-
ation method, that is obtained by setting β = 1/4 and γ = 1/2, is applied in this work
in form of a single-step predictor-corrector scheme of second order. It is particularly
well suited because very simple a posteriori local error estimators are available in
publications by ZIENKIEWICZ and XIE [244, 247]. The prediction step is obtained from
the explicit part of equation (3.96):

ũt+∆t = ut + ∆tvt +
(∆t)2

2
(1− 2β)at, (3.98a)

ṽt+∆t = vt + ∆t (1− γ)at, (3.98b)
ãt+∆t = M−1

[
f ext(ũt+∆t, t+ ∆t)− f int(ũt+∆t)−Dṽt+∆t

]
. (3.98c)

Based on the predicted accelerations ãt+∆t, the displacements and velocities are
corrected by the previously omitted implicit part:

ut+∆t = ũt+∆t + (∆t)2β ãt+∆t, (3.99a)
vt+∆t = ṽt+∆t + ∆t γ ãt+∆t. (3.99b)

A simple estimator for the relative local error made by performing such a step is
given by

εt+∆t =

∣∣∣∣β − 1

6

∣∣∣∣ (∆t)2

uref

‖ãt+∆t − at‖∞, β 6= 1

6
, (3.100)

where ‖·‖∞ denotes the maximum norm, which is chosen here to induce a conserva-
tive metric. uref is a characteristic reference length (or angle for rotational DOFs) for
normalization, and is set to the structure semi-thickness δ from equation (3.82) for
the translational variables and to π/8 for the beam rotations, which yielded the best
balance between the different DOF types in typical simulations. Ideally, the tradeoff
between large time step and small error is dealt with in such a way that the local
error is approximately constant over time. ZIENKIEWICZ and XIE found that this can
be efficiently achieved by applying the following adaptive time stepping rules, given
a desired target value ε for the relative local error, a maximum tolerance εmax > ε,
and a lower bound εmin < ε above which the time step is considered large enough:

• If εt+∆t ∈ [εmin, εmax], accept the time step without modifying ∆t.
• If εt+∆t < εmin, accept the time step and continue with ∆t← (ε/εt+∆t)

1/3 ∆t.
• If εt+∆t > εmax, reject the time step and repeat with ∆t← (ε/εt+∆t)

1/3 ∆t.

A variety of simulation scenarios revealed that a good generic choice that maximizes
computational efficiency while maintaining stability of the method is εmin = 5×10−5,
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Figure 3.8: Lumping of masses and moments of inertia. Half of the mass and mo-
ment of inertia of each beam element is assigned to each node (blue). The masses
are concentrated in points, while for the calculation of the nodal moment of inertia
J , they are uniformly distributed in a sphere of radius r.

εmax = 10εmin and a target error which is the geometric mean of the two bounds,
ε =
√
εmin εmax.

In order to avoid the relatively expensive matrix inversion M−1 in equation (3.98c),
all masses are lumped such that M becomes diagonal. Several mass lumping meth-
ods are in common use in finite element analysis [94]. A straightforward approach is
direct mass lumping [231], which is employed here for the filament. M is assembled
from nodal contributions

Mn = diag(mn,mn,mn, Jn, Jn, Jn) (3.101)

with nodal point masses mn = Aanρ, where A = πr2 is the cross-section area of
the tubular filament, ρ denotes its mass density, and an = (a1 + a2)/2 averages the
reference lengths of the elements connected to node n. For the nodal moments of
inertia Jn, the masses mn are uniformly distributed within balls of the same radius
as the filament, resulting in Jn = 2

5
mnr

2 (see Fig. 3.8). For the mass contributions of
the thin shell, equation (3.8) lends itself to row-sum lumping [177], MI =

∑
IMIJ .

On a final note on dynamics, the damping matrix is likewise chosen in diagonal
form according to D = M/τ with a viscous relaxation time τ that is set large enough
for damping to be subcritical in all relevant modes, depending on the simulated time
scales.

3.5 Verification and numerical benchmarks

A physical computer simulation is only as good as its correct functioning has been
verified. In this final section of the technical part, a series of standard test prob-
lems are solved for verification and benchmarking purposes as well as to pinpoint
model limitations, before the focus will be turned to the practical application to
morphological studies in the next chapter.
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A standard verification obstacle course for thin shell deformations in the geo-
metrically linear regime with subdivision surface elements can be found in ref. [38].
Although the present implementation has been verified using such examples, the
details are omitted here, as the focus is on large deformations with geometric non-
linearity. A few tests of nonlinear subdivision shells are available in refs. [35, 36] for
different constitutive material models.

Verifying and benchmarking nonlinear beam implementations can be done by
comparison to various published static examples (e.g. in ref. [9]). One of the most
popular and significant ones is reiterated here to conclude the obstacle course. More
benchmarks, including a comparison to exact bending solutions and a convergence
assessment, can be found in the author’s Master’s thesis [234].

3.5.1 Patch test

Passing IRONS’ patch test [60, 94] is a fundamental requirement for a finite element
to correctly represent the local stress distribution on the element level. It assesses
the element’s completeness and should therefore be carried out to complement
convergence tests. It also often serves as a simple tool to verify new finite element
implementations.

In their original papers [36, 38], C IRAK et al. did not report on patch test perfor-
mance of the triangular LOOP subdivision surface finite elements, which is why it is
carried out here. Subdivision surfaces of the LOOP type are affine covariant (i.e., affine
transformations of the limit surface are obtained by applying the same transforma-
tion to the control mesh), a property that is essential for passing patch tests [93].
Nevertheless, it is demonstrated here that they pass the test only for regular patches,
i.e., patches exclusively consisting of ordinary nodes with valence 6. To illustrate this,
consider a square shell in the xy plane experiencing a uniform uniaxial CAUCHY strain
εx = ∂u/∂x ≡ 1. When the corresponding displacement field u ≡ x is imposed on
the boundary nodes of a patch while leaving the interior DOFs unconstrained, the
patch test is said to be passed only if the strains are likewise constant across the
interior elements of the patch. From Fig. 3.9 it is evident that this is the case for a
regular patch, but not otherwise. The error can be diminished by using a quadrature
of higher order, but apparently not completely eliminated. LOOP subdivision surfaces
cannot be exactly integrated on irregular elements using Gaussian quadrature, an
observation that can be understood by recalling the special recursive limit surface
evaluation needed for irregular elements [208]. Irregular patches thus fail the patch
test when Gaussian quadrature is applied. Interestingly, IRONS et al. originally initi-
ated the patch test by observing (albeit in the context of non-conforming elements
instead of subdivision shape functions) that node connectivity can be decisive for
correct element behavior [12, 95], as is the case here.
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Figure 3.9: Displacement patch test. (a) Distorted triangular tiling of the square,
consisting of regular elements only. The tested patch is marked in light gray. (b)
Irregular mesh with one extraordinary node in the center (valence 8) and 8 irregular
elements marked in dark gray. (c) Measured axial strain profile along the dashed line
in (b), for both meshes and various GAUSS quadrature orders.

In conclusion, it should be kept in mind that meshes with extraordinary vertices
should be avoided for high-precision measurements of stress distributions on the
element level with LOOP subdivision elements. In this sense, it is desirable to use
(distorted) triangular tilings of the surface domain, which consist of ordinary vertices
only, where topologically possible, in particular for surfaces with a vanishing EULER
characteristic. On irregular elements, a high-order numerical quadrature should be
used.

3.5.2 Numerical locking

As the presented thin shell model is an extension of the KICHHOFF–LOVE shell with
the displacement field as the only unknown, shear locking and POISSON thickness
locking are pathologies that lie out of the model’s scope and need not be addressed
here. Membrane locking [211, 212], however, has been shown to occur in thin shells
independently of the smoothness of the approximation space [30, 31], unless dedi-
cated counter-measures are taken. This type of numerical locking occurs in situations
where pure bending is not inhibited in the limit of vanishing structural thickness,
i.e., where the geometric, loading and boundary conditions allow for a deformed
state without stretching/compression. It is an over-stiff response of the finite ele-
ment solution resulting from the fact that some pure bending deformations cannot
be represented by piecewise polynomials on curved elements without additionally
stretching/compressing the structure. When a thin shell finite element is imple-
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Figure 3.10: Partly clamped hyperbolic paraboloid. A 16×16 triangulation of the mid-
dle surface is shown.

Thickness h Displacement wref Elastic energy Uref

10−2 −9.3355×10−5 1.6790×10−3

10−3 −6.3941×10−3 1.1013×10−2

10−4 −5.2988×10−1 8.9867×10−2

Table 3.1: Reference solution of the clamped hyperbolic paraboloid, computed using
48×48 MITC shell elements in ref. [10].

mented for general purposes like in the present work, it is important to understand
under which circumstances membrane locking must be expected. The following
two touchstone problems are dedicated to this task.

Figure 3.10 shows the “partly clamped hyperbolic paraboloid” benchmark, which
has been advocated as a sophisticated test for membrane locking [30]. The paramet-
ric middle surface is defined by

z = x2 − y2, x, y ∈ [−L/2, L/2]. (3.102)

The shell is clamped along its boundary at x = −L/2 and it is loaded by self-weight.
The material properties are set to approximately mimic steel: E = 2×1011, ν = 0.3
and ρ = 8,000. A unit gravitational acceleration is applied, and L = 1. This choice of
parameters is motivated by comparability to a reference solution computed numeri-
cally with elements of the mixed interpolation of tensorial components (MITC) type
[10]. Table 3.1 lists the reference vertical displacement wref at (x, y, z) = (L/2, 0, L/4)
and the reference total strain energy Uref , which are used in Fig. 3.11 to normalize the
results obtained here with subdivision elements. Considerable membrane locking is
observed below a relative shell thickness of h/L ≈ 10−3.



56 Chapter 3. NUMERICAL IMPLEMENTATION

0 20 40 60

0

0.2

0.4

0.6

0.8

1

Number of elements

Ve
rt

ic
al

di
sp

la
ce

m
en

tw
/w

re
f

h/L = 10−2

h/L = 10−3

h/L = 10−4

0 20 40 60

0

0.2

0.4

0.6

0.8

1

Number of elements
El

as
tic

en
er

gy
U
/U

re
f

h/L = 10−2

h/L = 10−3

h/L = 10−4

Figure 3.11: Results of the partly clamped hyperbolic paraboloid. Vertical displace-
ment at (x, y, z) = (L/2, 0, L/4) and total elastic energy for various shell thicknesses
and mesh resolutions.

Thickness h Pressure p0 Displacement wref Elastic energy Uref

10−2 102 5.9776929×10−4 1.8779789×10−1

10−3 10−1 5.9422579×10−4 1.8668157×10−4

10−4 10−5 5.9310827×10−4 1.8616845×10−7

Table 3.2: Exact solution of the periodically pressurized free cylinder, computed from
the analytical solution in ref. [169].

Another numerical benchmark that has been proposed to investigate membrane
locking is the “periodically pressurized free cylinder” [30] shown in Fig. 3.12. An open
cylinder with radius R, length L = 2R and unconstrained edges is loaded with a
periodic pressure distribution given by p = p0 cos(2ϕ), where ϕ is the angle about
the cylinder axis and p0 is a small pressure amplitude. The exact solution of the
linearized problem is available in the literature. For E = 2×1011, ν = 1/3, R = 1
and p0 = 108(h/R)3, the vertical displacement wref at (x, y, z) = (0, 0, R) and the
total elastic energy Uref , as computed from the analytical TAYLOR series expansion in
ref. [169], are listed in Table 3.1. (Note that the scaling factors given there are off by a
factor (1−ν2) for the displacement and 2(1−ν2)2 for the energy, however.) In Fig. 3.13,
the relative errors of the numerical solution obtained with subdivision elements
are plotted. Membrane locking is much less severe than in the first benchmark,
but traces of moderate locking are nonetheless in evidence from the non-uniform
convergence rates.

These numerical tests indicate that membrane locking becomes prominent above
a slenderness of L/h & 103. All benchmarks carried out in the following subsections
are either far away from the vanishing thickness limit or inhibit pure bending, such
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Figure 3.12: Periodically pressurized free cylinder. A triangulation of the middle sur-
face with 8 elements in axial direction is shown with a fourth of the pressure distri-
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Figure 3.13: Results of the periodically pressurized free cylinder. The radial displace-
ment at (x, y, z) = (0, 0, R) and the total elastic energy converge non-uniformly with
increasing mesh resolution for different shell thicknesses.
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that effects from membrane locking should be very small or completely absent.
Moreover, the thin sheet applications presented in Chapters 4 and 5 are nowhere
near the pure bending regime and hence they should be unaffected by membrane
locking, which justifies the use of plain LOOP subdivision surface shape functions for
these purposes.

3.5.3 Inflation and isotropic growth of a sphere

Only few geometrically nonlinear problems are amenable to analytical solution.
The inflation of a sphere is one of them [76]. For simplicity, the bending rigidity in
equation (2.20) is set to D = 0 in this example, i.e., a change in energy is assumed
purely due to stretching. Since a spherical shell has no boundary, this example is
perfect for verifying both the pure response to large membrane stresses, and uniform
in-plane growth, in a single scenario. Consider a growth tensor

Fg = diag[1 + g, 1 + g, 1] (3.103)

with respect to the local tangent basis {a1/‖a1‖, a2/‖a2‖, a3}, where g is a positive
growth factor. The sphere with initial radius R is then trivially expected to grow
uniformly according toR/R = 1+g. On the other hand, in the absence of bifurcations
away from the spherical symmetry [153], the pressure p needed to inflate a sphere
obeying the KOITER energy density W in equation (2.19) from radius R to R ≥ R is
easily found by balancing internal and external forces:

p =
∂W

∂R
. (3.104)

W = W (R,R) is found using local symmetry on the GREEN strains

Eαβ =
1

2
(λ2 − 1)δβα, (3.105)

where λ = R/R ≥ 1 is the principal stretch. The energy density of the inflated
spherical membrane is thus

W (R,R) = K
(1 + ν)

4

(
λ2 − 1

)2
, (3.106)

yielding the pressure relation

p =
Eh

R(1− ν)
(λ3 − λ) ≥ 0. (3.107)

The meshes used for this example are shown in Fig. 3.14. They are constructed by
recursive quadrisection of the faces of a regular icosahedron, followed by a radial
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Figure 3.14: Icosa-spherical meshes for the inflated and growing spherical shell. From
left to right, refinement recursions 0 to 3 are shown, which yield 20, 80, 320 and
1,280 triangles (36, 126, 486 and 1,926 DOFs).
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Figure 3.15: Change of radius of a spherical shell.

projection of the newly created vertices onto the bounding sphere on each level of
recursion. The employed recursion depths are 1, 2 and 3, yielding triangulated spheres
with 80, 320 and 1,280 equilateral elements, respectively. The relevant simulation
parameters are R = 1, h = 10−3, E = 1, ν = 0.3.

In Fig. 3.15, the growth-expansion and pressure-expansion curves are juxtaposed,
demonstrating the high accuracy and convergence to the analytical solutions in both
cases. Relatively coarse meshes are sufficient for high accuracy even at extremely
large deformations.
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Figure 3.16: Hemispherical shell subject to point loads. Left: Undeformed reference
configuration reduced to the first quadrant exploiting symmetry. The 8×8 control
mesh is shown. Right: Final state of the 16×16 mesh at maximum load P = 100. The
color encodes the bending energy per unit area.

3.5.4 Pinched hemisphere

Next, two numerical examples without growth are considered, for verification of the
linearly elastic, geometrically nonlinear shell with coupled stretching and bending.
The pinched hemisphere is a widely used benchmark for “an element’s ability to
represent inextensional modes” and “rigid body rotations about normals of the shell
surface” [14]. In its nonlinear regime, it is a test recommended by the National Agency
for Finite Element Methods and Standards (NAFEMS, test no. 3DNLG-9) [1]. The
geometrical setup is shown in Fig. 3.16. A hemispherical shell with an 18° open pole
and free boundaries is pinched by four equally strong, pairwise opposite diametrical
point loads P acting on the equator. The shell radius isR = 10, its thickness h = 0.04,
and the elastic moduli are determined by E = 6.825×107, ν = 0.3.

In order to minimize the impact originating from the specific choice of boundary
constraints, the whole hemisphere is simulated without exploiting symmetry, and
GREEN’s method is used for the free boundaries, i.e., they are unconstrained. In
Fig. 3.17, the displacements of points A and B on the limit surface are plotted against
the applied loads for three mesh resolutions, together with some NAFEMS reference
results obtained with the Abaqus FEA software [1, 220]. In the spirit of Abaqus, the
subdivision shell finite elements with one-point integration are denoted by SD3R for
brevity. Much more reference data for other nonlinear finite elements can be found
e.g. in refs. [1, 154, 240] and references therein. The employed meshes are obtained
by regularly discretizing the quarter hemisphere along the angles of inclination
and the azimuth, resulting in 128, 512, and 2,048 triangles per quarter hemisphere,
respectively. In Fig. 3.16, the 16×16 mesh with 512 triangles per quarter, that is also
used in the NAFEMS results, is shown on the right.

The load-displacement curves for subdivision surface elements are almost identi-
cal to those of Abaqus S4R elements. High precision is obtained with SD3R at much
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Figure 3.17: Load-displacement curves for the pinched hemispherical shell. The
NAFEMS reference values were obtained with Abaqus.

less DOFs, mainly because subdivision shell elements go without rotational variables,
unlike all other shown elements.

3.5.5 Stretched cylinder with free ends

The next example is another standard loading test, consisting of a cylindrical shell
with free boundaries that is stretched transversally by two equally strong, opposite
diametrical point loads P acting on the middle of the cylinder length. This test case
has found vast attention in the literature. For an overview, see e.g. refs. [154, 240]
and references therein. Its peculiar usefulness is due to its ability to examine two
different response regimes, one after the other. At small loads, the large deformation
results from low bending stiffness, while at large loads, further deformations require
the stiff shell to be stretched primarily. The geometrical setup is shown in Fig. 3.18.
The cylinder radius is R = 4.953, its length L = 10.35, its thickness h = 0.094,
and the elastic moduli are determined by E = 10.5×106, ν = 0.3125. Like in the
previous example, the full shell is simulated neglecting present symmetries, and no
constraints are applied to the boundaries.

In Fig. 3.19, the resulting load-displacement curves for the points A, B and C are
compared to Abaqus S4R element data from ref. [220]. In the bending regime at
moderate loads, the data from 351 DOFs almost coincides with that of S4R elements
using 5,550 DOFs, again demonstrating the outstanding computational efficiency of
subdivision shells. In the stretching regime at large loads, SD3R elements are slightly
less stiff than S4R and elements found in other literature mentioned above. Those
displacements, however, are quite sensitive to changes in the mesh structure. Other
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Figure 3.18: Cylindrical shell subject to point loads. Left: Undeformed reference con-
figuration reduced to one eighth of the geometry exploiting symmetry. A 4×8
control mesh is shown. Middle: Buckled state of the 16×24 mesh at maximum load
P = 4×104. Right: Limit surface of the same configuration, with the stretching
energy per unit area on a logarithmic color scale.

meshes than that shown in Fig. 3.18 lead to marginally shifted displacements at large
loads.

Correctly capturing the snap-through transition near P ≈ 20,840 has posed
a tough challenge to various finite shell elements in the past. Some even fail to
correctly feature it at moderate mesh resolutions [19, 83, 192]. With the subdivision
shell elements, such problems are not observed here, not even for meshes much
coarser than those mentioned in Fig. 3.19.
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Figure 3.20: 45° bend cantilever benchmark. An 8-element cantilever beam with
square cross-sectionA and intrinsic radius of curvatureRint is subjected to transverse
end loads P .

3.5.6 45-degree bend

This final numerical example is dedicated to the beam model. NAFEMS recommends
the “45-degree bend” as a demanding nonlinear beam benchmark (test no. 3DNLG-5)
[1]. It involves a clamped cantilever with square cross-section A, non-zero intrinsic
rotation variables

∣∣θ̂int
n

∣∣ = a/2Rint, n = 0, . . . , N , and uniform nodal spacing a =
2Rint sin(π/8N), where N is the number of finite elements. Initially straight with
length L = Na, it is released to form an eighth of a circle with radius Rint due to the
intrinsic curvature, as depicted in Fig. 3.20. It is subsequently subjected to transverse
end loads P leading to a three-dimensional nonlinear response that couples all
element degrees of freedom. The resulting tip positions are listed in Table 3.3 for
Rint = 100, N = 8, A = 1 × 1, E = 107, ν = 0, showing excellent agreement with
other implementations. Since the order of the beam theory has almost no effect
on such a thin rod, results for thickness 10 are also given, revealing the improved
precision of corotated third-order beam theory (CR-RBT) over the first-order EULER–
BERNOULLI counterpart (CR-EBT) at large transverse shear stresses.

With these favorable findings the technical part of this thesis is concluded. In
the chapters to follow, the developed numerical tools are applied to explore growth,
packing and interaction of thin deformable bodies.
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A = 1× 1 P = 300 P = 450 P = 600

CR-RBT (present) (58.77, 40.25, 22.28) (52.21, 48.59, 18.55) (47.11, 53.58, 15.73)
CR-EBT (present) (58.77, 40.25, 22.28) (52.21, 48.58, 18.55) (47.11, 53.57, 15.73)
LI [118] (58.78, 40.15, 22.28) (52.24, 48.46, 18.56) (47.15, 53.43, 15.74)
LEUNG at al. [117] (58.51, 40.46, 22.23) (51.92, 48.69, 18.53) (46.82, 53.6 , 15.76)
RHIM at al. [182] (58.58, 40.31, 22.16) — (47.07, 53.46, 15.59)
LO [126] (58.8 , 40.1 , 22.3 ) (52.3 , 48.4 , 18.6 ) (47.2 , 53.4 , 15.8 )
CRISFIELD [41] (58.53, 40.53, 22.16) (51.93, 48.79, 18.43) (46.84, 53.71, 15.61)
SANDHU et al. [191] (58.85, 40.04, 22.36) (52.33, 48.40, 18.54) (47.27, 53.34, 15.88)
CARDONA et al. [25] (58.64, 40.35, 22.14) (52.11, 48.59, 18.38) (47.04, 53.50, 15.55)
SIMO et al. [203] (58.84, 40.08, 22.33) (52.32, 48.39, 18.62) (47.23, 53.37, 15.79)
BATHE at al. [9] (59.2 , 39.5 , 22.5 ) — (47.2 , 53.4 , 15.9 )

A = 10× 10 P = 3×106 P = 4.5×106 P = 6×106

CR-RBT (present) (58.25, 41.49, 22.03) (51.54, 49.98, 18.26) (46.35, 55.09, 15.43)
CR-EBT (present) (58.38, 41.22, 22.09) (51.70, 49.67, 18.32) (46.54, 54.75, 15.48)

Table 3.3: 45° bend benchmark. Comparison of centerline tip positions at different
end loads and beam thicknesses. Initially (P = 0), it is (70.71, 0.0, 29.29).



Chapter 4

Growing thin sheets

An organism is so complex a thing, and growth so complex a phenomenon,
that for growth to be so uniform and constant in all the parts as to keep
the whole shape unchanged would indeed be an unlikely and an unusual
circumstance. Rates vary, proportions change, and the whole configuration
alters accordingly.

– D’ARCY WENTWORTH THOMPSON, On Growth and Form (1917)

Before the growth evolution and interplay of both kinds of thin elastic bodies is
studied together in Chapter 5, it is expedient for a number of reasons to immerse in
the application-oriented part of this work by considering them separately first. In
this chapter, growth of thin shells is addressed in a series of three different settings
inspired by related real-world processes. To start off, the simplest sort of volumetric
growth one can imagine—uniform, homogeneous and isotropic—is applied to a
confined sheet, shedding light on the well-known sheet crumpling problem from
a very different viewpoint. In the spirit of THOMPSON’s perception quoted above,
the growth field is then complicated to orthotropic differential extension in order
to allow for complex shapes to emerge in absence of spatial confinement. As an
example, spontaneous wrinkle formation at free edges of thin sheets is simulated,
elucidating the effect of the type of growth, the involved length scales as well as
geometrical constraints to morphogenesis and symmetry breaking.

4.1 Uniform growth and crumpling in rigid confinement

Take a piece of paper or foil, crumple it with your hands and then unfold it again.
What you are left with is a highly complex network of scars showing where exactly
the sheet buckled and folded. A similar—and in some sense converse—situation

65
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is encountered in Nature by the millions each spring: Flower blossoms and leaves
grow in tight enclosure by bud scales to eventually unfold and take a more or less
flat and undamaged shape when they open. The results of these two processes are
clearly different, and so one might conclude that the pathways cannot be the same
either. But the comparison is unfair: Scars are owed to irreversible damage on the
crumpled paper, while live plant tissue typically possesses the ability to self-heal
(e.g., [96]). The question whether a membrane uniformly growing inside of a fixed
confinement (like a bud, approximately) will crumple equivalently to an invariant
membrane in shrinking confinement (as formed by our hands, approximately) must
therefore rest upon the assumption of equal microscopic and macroscopic material
properties. Even in this case the answer is not a priori obvious, and it was previously
conjectured to be negative [215]. Here, strong numerical evidence is given against
this belief.

A thin, isotropic, linearly elastic disk with radius R is placed inside of a rigid
spherical container with the same radius R = R. In the first setup, the container
is slowly shrunk, and consequently, the disk crumples into a ball of the size of the
container, developing the ridge network known from previous computer simulations
[112, 124, 222, 223, 235]. In the second setup, the opposite happens, i.e., the container
sustains its size while the elastic disk is subjected to a constant isotropic growth
rate, both in plane and in thickness. The only relevant simulation parameter is the
sheet’s slenderness which is set to R/h = 100 here, yielding a FÖPPL–VON KÁRMÁN
number [119, 128] of

γ̃ = 12(1− ν2)

(
R

h

)2

≈ 105, (4.1)

a geometrical measure for a thin sheet’s tendency to bend rather than stretch. POIS-
SON’s ratio is fixed to ν = 1/3. To obtain equivalent time scales in the two problems,
the confining sphere is shrunk in the first setup according to R(t) = R/(1 + g(t)),
where g(t) = Λt is the in-plane growth factor of the growing shell in the second
setup, yielding in the growth tensor

Fg = diag[1 + g(t), 1 + g(t), 1 + g(t)]. (4.2)

Its third (normal) component is realized within the KIRCHHOFF–LOVE theory by in-
creasing the shell thickness according to h(t) = h(0)(1 + g(t)). The growth rate Λ
is chosen small enough for the system to remain close to static equilibrium at all
times and in both scenarios, and damping is subcritical. To break the initial planar
symmetry, a small random transverse displacement is imposed on the disk.

No evidence is found indicating that the two processes are different. During early
stages, both shells buckle to form a developable cone (d-cone) with a single vertex,
where most curvature and bending energy is concentrated. Around R/R ≈ 0.53, the
apex starts to nucleate, and more vertices subsequently emerge, leading to the very
same ridge network as illustrated in Fig. 4.1. In the third column, the dimensionless
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Figure 4.1: Comparison between crumpling in shrinking confinement and confined
growth. A crumpled shell and a growing shell in spherical confinement deform
equivalently. Network vertices are numbered for easy identification.

rescaled mean curvature

κ̃ = R
k1 + k2

2
(4.3)

is projected onto the unfolded disk, where k1 and k2 are the principal curvatures of
the middle surface. The cross correlation of the mean curvature ridge patterns is
c = 0.89, a very high value when compared to recent similar measurements [222].
The fourth column displays the dimensionless rescaled bending energy density

Ũb = βαβH
αβγδβγδ R

2
(
R(t)

R(0)

)2

. (4.4)

No qualitative or quantitative disparity, going beyond minor local shifts resulting
from the finite element size and slow but finite dynamics, is observed. This indicates
that the two crumpling processes are in fact equivalent.
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(a)

(b)

(c)

(d)

(e)

Figure 4.2: Buckling cascades in torn plastic sheets and beet leaves. Torn plastic (a)
and beet leave (b) reproduced from ref. [198] and adapted with permission of Nature
Publishing Group. (c) Reproduced with permission from ref. [138]. Copyright 2007,
American Institute of Physics. (d) Photograph courtesy of E. SHARON, reproduced
from ref. [196]. (e) Present computer simulation.

4.2 Wrinkling cascades in torn plastic sheets and plant
leaves

A common buckling instability observed in plant growth is the occurrence of beauti-
ful wrinkles along free tissue boundaries, such as the edges of flowers and leaves [7,
136–138, 197, 198] (Fig. 4.2). The exact nature of these wavy patterns depends on the
membrane thickness and the details of growth, but it is obvious that only differential
growth can produce them from an initially flat configuration under free boundary
conditions without external loading or inelastic effects. Large planar stresses from
compression due to differential in-plane growth are traded for out-of-plane bending
as a result of the thin tissue’s low bending rigidity. Astoundingly, the emerging
buckling cascades are very similar to the shape of torn plastic sheets. Empirical mea-
surements revealed that both phenomena are characterized by a plastic differential
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Figure 4.3: Self-similar sheet boundary after orthotropic differential growth accord-
ing to equation (4.6). (a) Projection of the grown edge onto the xy-plane. (b) 60°
FIBONACCI word fractal. (c) KOCH snowflake.

metric profile
g(z) =

1

1 + z/l
, (4.5)

where l > 0 is a characteristic length scale and z ≥ 0 is the in-plane coordinate
perpendicular to the growing free edge (or the yielded edge in the tearing case).
The developing undulation pattern has been reported to be self-similar with an odd
integer scaling factor that is mostly 3 and sometimes close to 5 in experiments [7,
198]—a result that AUDOLY and BOUDAUD were able to confirm [6] by solving the
FÖPPL–VON KÁRMÁN equations on the edge of a free rectangular sheet with growth
profiles of the form of equation (4.5). The FÖPPL–VON KÁRMÁN equations are, however,
geometrically limited in that they don’t allow reentrancy, which has precluded them
from examining the fractal properties of the boundary. The present nonlinear KOITER
shell model with growth, on the other hand, enables a numerical solution of the
problem with its full geometric nonlinearity taken into account. Consider a flat
rectangular sheet of thickness h = 10−4, length L = 4, and width W = 1, initially
lying in the xz-plane. The long edge at z = W is clamped and the short edges are
constrained to stay at x = ±L/2 so as to mimic the compressive effect of an even
longer strip, while leaving them free to move in other directions. Growth is imposed
by setting the growth tensor to

Fg = diag[1 + g(z), 1, 1] (4.6)

in Cartesian coordinates (x, y, z), and the characteristic length for the growth field is
set to l = 40h in this example. Figures 4.2 and 4.3 show the resulting equilibrated
configuration after growth (or tearing). The self-similarity of the reentrant free
edge at z = 0 is apparent, clearly resembling the wrinkling cascades observed in
experiments [138, 196, 198].

The fractal dimension of the grown edge, computed using the box counting
method [64] and the self-similarity method [134], is depicted in Fig. 4.4. In the former,
the curve length Lin contained in a cubic box is determined as a function of the edge
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Figure 4.4: Fractal dimension of the edge at z = 0 of a thin sheet grown according
to equation (4.6), measured with two standard methods.

lengthLbox of the box. A fractal curve is expected to scale asLin ∼ LDf
box. Such scaling

is indeed observed with fractal dimension Df = 1.15± 0.01 (Fig. 4.4a). The scaling
breaks down due to the influence of the clamped opposite edge, which introduces
a global straightening effect when the box size is large (Lbox ≈ W ). The second
method is more robust to global orientation and is thus better suited here. The
length Ls of a piecewise linear path along the curve with segment size s is measured
and expected to scale as Ls ∼ s1−D. A self-similarity dimension D = 1.196± 0.005
is evident from Fig. 4.4b, which is very close to the HAUSDORFF dimension of a 60-
degree FIBONACCI word fractal (Fig. 4.3b), DH = 1.2083 [148], and a bit lower than
that of a triadic KOCH curve (Fig. 4.3c), DH = 1.2619 [135].

4.3 Unimodal wrinkling of growing cylinders

The metric profile in equation (4.5) from the previous example is not the only one
yielding wrinkled edges. When it comes to wavy flowers like certain orchids for
instance, single-wavelength undulations instead of self-similar edges are not uncom-
mon. The feature responsible for wrinkle cascades is the presence of a non-constant
geometric length scale defined by lgeo(z) = −g(z)/g′(z) [197]. Similar boundary
instabilities are hence produced by the following generalized families of growth
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metrics:

gp(z) ∝
(

1 +
z

p l

)−p
, (l > 0, p > 0, z ≥ 0), (4.7)

gp(z) ∝
(

1− z

p l

)p
, (l > 0, p > 1, 0 ≤ z ≤ p l), (4.8)

On the other hand, an exponential growth field

g(z) ∝ exp
(
−z
l

)
, (l > 0, z ≥ 0) (4.9)

yields only a single wavelength [44, 136] because lgeo(z) ≡ l is constant in this
case. On some flowers, these undulations may be forced to integral wavenumbers
n by angular periodicity of a single petal. Let’s hence significantly increase the
characteristic length l and thickness h such that only a single wavelength λ prevails
even for growth in the form of equations (4.7) and (4.8), and consider a cylinder with
height H and radius R instead of a flat plate, growing according to

Fg = diag[1, 1 + g(z), 1] (4.10)

with respect to the canonical basis of cylindrical coordinates (r, ϕ, z). This change
in geometry delivers dramatic consequences: A thin cylindrical sheet growing in
circumferential direction according to g(z), where z is the cylinder axis, only breaks its
axisymmetry if growth leads to a circumference that changes faster than the sheet’s
metric can account for [137]. Such configurations have been experimentally obtained
in the lab by dipping thin polyacrylamide gel tubes into water, which lets them swell,
or into acetone, with lets them shrink [196] (see Fig. 4.5). A direct consequence of
the GAUSS–BONNET theorem is that the continuous axisymmetry is preserved (in the
vanishing thickness limit) as long as∣∣∣∣R dg

dz
(z)

∣∣∣∣ ≤ 1, 0 ≤ z ≤ H, (4.11)

and broken otherwise. The origin for this instability is the (non)existence of em-
beddings of the surface: According to GAUSS’s Theorema Egregium, the creation or
elimination of Gaussian curvature must be accompanied by in-plane stretching or
compression, which is traded for out-of-plane buckling if the sheet is sufficiently
thin.

Three instances of this kind of orthotropic differential growth are juxtaposed in
Fig. 4.6 with snapshots before, at the onset, and far beyond the buckling threshold.
The linear case p = 1 excluded in equation (4.8) produces the excess cone (e-cone)
[43, 151, 216] in the limit R→ 0, which is a developable surface that doesn’t wrinkle
at the boundary as shown in the top row of Fig. 4.6, because g′′1(z) ≡ 0. Unimodal
wrinkling is observed in superlinear growth (bottom rows), where the axisymmetry
is spontaneously broken to n-fold rotational symmetry Cn. A relatively short cylinder
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Figure 4.5: Boundary instability of a swollen gel cylinder. Left and middle: Dipping
polyacrylamide gel tubes into water grows their metric profile. If the immersion
depth is confined to a narrow boundary layer (short l, large metric gradient), the
continuous axisymmetry is broken into a discrete one. Photographs courtesy of
E. SHARON, M. MARDER and H. L. SWINNEY, reproduced from ref. [196]. Right: Com-
puter simulation with differential growth of the form of equation (4.8).
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rows), the axisymmetry is spontaneously broken to discrete rotational symmetry Cn.
From left to right, the proportionality prefactor is increased. The rescaled bending en-
ergy density is shown in color, revealing the buckling threshold where equation (4.11)
holds equally. The simulation parameters are H/R = 4, l/R = 1, h/R = 0.01.
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(small H/l) with free boundaries can also buckle at the opposite edge if the metric
grows large enough, breaking Cn symmetry further to C2 (bottom right image).

How does the number n of boundary waves scale with l, h, R when axisymmetry
is broken, and is it universal for all positive, monotonically decreasing and strictly
convex growth profiles satisfying

lim
z→0

lgeo(z) = l ? (4.12)

Since the preferred wavelength λ is a local feature independent of global geometry
and topology (independent of H and R), the only involved length scales are h and
lgeo, so one may use the ansatz [197]

λ ∼ hα l1−αgeo , i.e.,
λ

h
∼
(
lgeo

h

)1−α

. (4.13)

On the other hand, geometry implies that

λ =
2πR

n
(1 + g(0)). (4.14)

since z = 0 is where equation (4.11) is violated at the buckling threshold, given that
g′ < 0 and g′′ > 0. After combining equations (4.11) to (4.14), one thus finds a scaling
for the number of wrinkles

n ∼
(

1 +
R

l

)(
l

h

)α
. (4.15)

Up to the first term, which accounts for the mean curvature of the cylinder, this
coincides with the scaling law reported in ref. [6] for the wrinkling hierarchies in
initially flat sheets, where α = 2/5 has been found for the family in equation (4.5).
The present numerical data, which best fits equation (4.15) with α = 0.39 ± 0.02,
shows that the wrinkles studied here fall in the same category, see Fig. 4.7. Moreover,
the data collapse of all employed growth profiles on a single line indicates that the
scaling is universal in this respect.

To summarize this chapter, different growth concepts were applied to thin shells,
breeding fundamentally different shape transformations. Uniform isotropic swelling
doesn’t alter the sheet’s equilibrium form, letting it crumple in a container exactly
as if the latter was shrinking. Differential growth on the other hand explains the
boundary instabilities found in torn plastic foils and thin plant tissue based purely on
mechanical principles, i.e., as a “dead” process. As simulations showed, the growth
profile previously observed empirically leads to a self-similar free boundary with
a fractal dimension that doesn’t seem to coincide with that of any other known
fractal curve. Finally, a universal scaling function for the number of spontaneously
emerging wrinkles was derived for a general class of growth metrics on thin cylinders,
illustrating the effect of competing length scales on growth instabilities.
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metastable (data points lying significantly above or below the straight line).

Thin sheets are quasi-two-dimensional. Their two principal tangential directions
offer much room for multifarious morphogenesis due to in-plane anisotropy. In thin
filaments, whose tangent space is quasi-one-dimensional, this degree of freedom
is absent, essentially leaving only two kinds of tangential growth: uniform and
non-uniform. These will be addressed in the next chapter in the context of filament
packing with a focus the mechanical interaction between thin elastic bodies.



Chapter 5

Filament packing and growth in spatial
confinement

[...] while growth is a somewhat vague word for a very complex matter [...],
it deserves to be studied in relation to form: whether it proceed by simple
increase of size without obvious alteration of form, or whether it so proceed
as to bring about a gradual change of form and the slow development of a
more or less complicated structure.

– D’ARCY WENTWORTH THOMPSON, On Growth and Form (1917)

In this main chapter, the previously developed concepts and methods culmi-
nate in the study of filament growth and packing in flexible shells. The problem
is approached in a gradual fashion, starting from the well-understood case of a
rigid container with spherical symmetry into which an elastic thread is radially in-
jected through a small opening. A natural question to ask is how stable the packing
processes and morphologies observed in spherical cavities are with respect to per-
turbations to the global shape dictated by the rigid confinement, and so the first
step toward more general, deformable cavities is to consider spheroids with an
eccentricity in Section 5.1. As argued in Chapter 1, many related biological and medi-
cal examples of filament packing occur within confinements that—in one way or
another—conform to the shape assumed by the packed threads, thus giving them
more freedom to release residual stresses. Generalizing the type of container to
an elastic thin shell therefore constitutes the next natural step, which is made in
Section 5.2 only to find the role of friction redefined. Finally, in Section 5.3, a change
in topology of the filament from an open thread to a closed ring delivers a very
comprehensive, novel view on the problem of strongly interacting thin sheets and
wires, as the full morphological phase space is quantitatively uncovered.

75
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5.1 Dense packing in rigid containers

When a thin elastic filament is forced into a rigid hollow sphere, its morphogenesis is
mainly determined by the amount of contained torsion. This was previously shown
by considering two different packing scenarios [152, 214]. In the first, an intrinsically
curved wire was injected. If the larger two of the three inherent length scales—
the cavity radius R and the equilibrium radius of curvature of the pre-curved wire
Rint—are incompatible, torsion can be minimized only at the expense of further
bending, which induces frequent reorientations in the coils as well as large residual
twist, giving rise to very disordered packings. In the second setup, the elastic thread
was intrinsically straight, which removed this degree of freedom coupling. It was
furthermore allowed to rotate about its own axis at the insertion point such that all
torsional elastic energy could dissipate out of the packed system, yielding an ordered
structure made of layered coils. While the size of the confining sphere was found to
strongly affect the required injection force in the disordered morphology, no account
was given on the specific choice of confinement shape.

The goal of the simulation series presented in the following is to investigate the
packing patterns and energy levels arising purely from imposed global asphericity,
and to demonstrate that spherical coils are not naturally found in conforming con-
finements. To this end, the same two packing conditions (intrinsic curvature vs. free
axial rotation) are simulated in rigid isochoric ellipsoids at different aspect ratios
(Rx:Ry:Rz , where x is the filament injection axis). The set of cavities comprises a
sphere (1 : 1 : 1), two oblate spheroids (1 : 2 : 2 and 2 : 2 : 1), two prolate spheroids
(1 : 1 : 3 and 3 : 1 : 1), and three scalene ellipsoids (1 : 3 : 2, 2 : 1 : 3 and 3 : 2 : 1) so as to
capture also the influence of different insertion directions.

Since POISSON’s ratio plays only a minor role in thin filament packings, it is fixed
to ν = 1/3 here. Similar to the preceding study on spherical confinements [214],
the filament is pre-curved with intrinsic radius 1/κint = Rint = 2R in the first setup,
where R = (RxRyRz)

1/3 denotes the equivalent spherical confinement size. Aside
from the ellipsoidal eccentricities, this leaves the ratio q = R/r as the only geomet-
ric parameter. COULOMB friction is assumed between any two contacting surfaces
(filament-filament and filament-cavity) with a static friction coefficient, µs = 0.2,
and a slightly lower dynamic friction coefficient, µd = 0.9µs, like was found to match
well experiments on nylon cords in ref. [214]. Generally, frictional forces have no
significant morphological influence on this kind of packings in rigid containers, as
was verified in various test simulations. The filament is radially inserted at a constant
speed, which is set slow enough to make inertial effects negligible on the outcome.
Its axisymmetry is broken by imposing a small random initial transverse deflection
on the two foremost nodes, which also serves as a convenient method to obtain sta-
tistically independent realizations of the same setup. As the filament is injected into
the cavity, the computational mesh is gradually extended with additional elements.
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Figure 5.1: Influence of confinement shape on coiling and crumpling. A selection
of simulated isochoric ellipsoidal cavities with volume V = 4

3
πR3 is shown, where

R = (RxRyRz)
1/3 = 50r is the equivalent sphere radius. The color represents the

rescaled elastic curvature. All images to scale, except that the wire radius is halved
to reveal the inner structures. The packing densities are φ = 40% (sphere), φ = 33%
(prolate), φ = 35% (oblate, intrinsic curvature), φ = 48% (oblate, free rotation) and
φ = 37% (scalene).

5.1.1 Energetics and order

Figure 5.1 shows a selection of the resulting densely packed isochoric ellipsoids at
q = 50. An exact spherical geometry imposes no preferential orientation to the
packed filament, leaving it fully exposed to the effect of coupled or uncoupled bend-
ing and torsion, eventually yielding the already known disordered packings and
regular layered coils. But the situation changes dramatically when the rotational
invariance is broken: Prolate spheroids, for instance, dictate the filament arrange-
ment in early stages through their limited spatial extent perpendicular to the long
axis of revolution. In an attempt to minimize large bending stresses, the packed
thread coils primarily along the major axis, tilted such that the apical region of high
curvature is avoided, which is particularly apparent in Fig. 5.1b. Such inclined coils
are indeed found in the slightly elongated hagfish gland thread cells (see Fig. 1.2). As
more thread gets injected, the central part of the cavity is filled with a coiling pattern
similar that of spheres, because the elongated tip has been filled already, restoring
more or less isotropic geometrical constraints in the middle. Further filament inser-
tion finally leads to crumpling: Since there is almost no more room to fill, the bulk
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Figure 5.2: Bending energy for different isochoric ellipsoidal cavities. Error bars de-
note standard errors from 8− 9 independent simulations at q = 40. The fitted curves
correspond to the analytical approximation in equation (5.7), which holds only for
the setup without intrinsic curvature in spheres and oblate spheroids.

structure is axially compressed by the pushing filament. In turn, succeeding thread
segments tightly curve under the action of bulk pressure.

Not surprisingly, oblate spheroids (Fig. 5.1c,g) exhibit a very different packing
process. The preferred winding direction imposed by the single short principal axis
leads to a highly ordered coil early on, largely independent of the (moderate) filament
pre-curvature. Only at larger densities, when the coiling radius starts to compete
with the transverse length scale Rx, loop reorientations let the coiling behavior
known from spherical confinement be retrieved. The final morphology is thus split
into an ordered coil at the outer rim and an inner part with the same characteristics
as in a sphere. Scalene ellipsoids lie somewhat in between these two extremes,
blurring the aforementioned effects. The typical trait at moderate aspect ratios is a
figure-eight coil when intrinsic curvature is absent (Fig. 5.1h).

Owing to their slenderness, packed thin filaments favor bending deformations
over compression, tension or twist, letting the bending energy Ub dominate all
other elastic energy contributions. In order to compare the energetics in different
packing geometries, it is hence sufficient to consider Ub only. Figure 5.2 shows the
dimensionless bending energy for all simulated configurations as a function of the
volume density

φ =
AL

4/3 πRxRyRz

=
3

4q3

L

r
, (5.1)
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Figure 5.3: Cross section of wire coils in oblate spheroids. Left: PUROHIT hoop model
with its geometric parameters. Right: Simulation snapshot of the 1:2 :2 oblate.

which is perhaps the most natural measure of the packing progress. Here, L =
∫

Γ
ds

represents the injected filament length and A = πr2 is its cross section area. It is evi-
dent that prolate spheroids are the energetically least favorable shapes, independent
of whether the thread is slightly pre-curved or not. When crumpling sets in at large
packing density, the bending energy transitions to a linear increase Ub ∼ φ. The
competitive position of scalene ellipsoids strongly varies with the axis along which
the filament is injected—only if it points in the direction of least cavity extent (as
in 1:3 :2), scalene shapes can keep up with spheres. As intuitively expected, oblate
spheroids win the race from beginning to end.

The ordered coils observed in packed spheres or oblate spheroids with Rx ≤
Ry = Rz can be approximated analytically following the ideas of PUROHIT et al. [172].
Their geometrical model, which was originally devised for the description of DNA
strands in viral capsids, has been successfully applied to ordered coiling in spherical
wire packings [214] and is generalized here for oblate cavities. It is based on the
approximation that thin filaments coil such that their binormal vectors are always
parallel to the feeding axis x, and that their radius of curvature about this axis is
maximal, resulting in an empty cylindrical region about x as sketched in Fig. 5.3. Let
Rin be the radius of this empty column, and H its half height, which is determined
by

H2(Rin) = R2
x −

(
Rin

Rx

Ry

)2

(5.2)

for an oblate spheroid. Assuming that the centerlines of individual strands in the coil
are separated by d(φ) ≥ 2r on average, the number of windings along the height is
given by

ω(Rin) =
2H(Rin)

d(φ)
. (5.3)

The total filament length L and bending energy Ub are now approximated by replac-
ing the sum over a discrete set of closed hoops by integrals over the packed volume,
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leading to

L(Rin) =
2√

3d(φ)

∫ Ry

Rin

2πyω(y) dy, (5.4)

Ub(Rin) =
2√

3d(φ)

∫ Ry

Rin

πEI

y
ω(y) dy, (5.5)

where the prefactor 2/
√

3d(φ) stems from the further assumption of hexagonal
packing with spacing d(φ) in any cross section perpendicular to the coil. By recalling
the definition of the packing density from equation (5.1),

φ(Rin) =
3r2L(Rin)

4RxR2
y

, (5.6)

the auxiliary inner radius Rin in equations (5.4) and (5.5) can be substituted for φ.
Evaluating these integrals then results in the sought approximation for the total
bending energy:

Ub(φ) =
4π√

3

RxEI

d2(φ)

(
log

[
1 + k(φ)√
1− k2(φ)

]
− k(φ)

)
(5.7)

where

k3(φ) =
2
√

3φ

π

(
d(φ)

2r

)2

. (5.8)

Note in particular thatUb ∼ Rx independent ofRy (at fixed φ and assuming constant
d), i.e., the thinner the oblate cavity, the lower the bending energy of the packed
coil. The only remaining unknown variable is the segment distance d(φ), that is in
general a function of the packing density. Motivated by the observation that the
density dependence of d is very weak in the spherical limit [214], it is used here as
a constant parameter to fit equation (5.7) to the numerical data plotted in Fig. 5.2,
with excellent agreement in all cases.

From the bending energy in equation (5.7), one can deduce the elastic force F
required to inject the wire as the derivative with respect to the wire length L, which,
after some algebra, reduces to the remarkably simple form

F (φ) =
dUb(φ)

dL
=
EI

R2
y

1

2(1− k2(φ))
. (5.9)

A beautiful property of this analytical model is that both the bending energy and
the insertion force diverge as k(φ)→ 1, which is the case when the packing density
reaches its theoretical maximum

φmax = k−1(1) =
π

2
√

3

(
2r

d

)2

. (5.10)
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Figure 5.4: Total curvature for different isochoric ellipsoidal cavities. Error bars de-
note standard errors from 8− 9 independent simulations. The fitted curves corre-
spond to the analytical approximation in equation (5.11).

For d → 2r, this corresponds to hexagonal close-packing of the circular wire cross
sections (φmax ≈ 0.9069).

Following the same lines, one can determine the total curvatureK of the inserted
wire as

K(φ) =

∫ L(Rin)

0

1

Rin(s)
ds

=
4π√

3

RxRy

d2(φ)

(
sin−1[k(φ)]− k(φ)

√
1− k2(φ)

) (5.11)

for φ ≤ φmax, in which the local radius of curvature 1/κ(s) = Rin(s) is the inverse of
equation (5.4). Numerical measurements of the total filament curvature are plotted
in Fig. 5.4 for all eight ellipsoidal cavities and for the configurations with and without
intrinsic curvature. Equation (5.11) approximates the data with excellent agreement
in oblate spheroids and spheres. In accordance with the previous observation on
bending energy, the total curvature is more affected by confinement asphericity
than by pre-curvature, and also the fit parameters d are consistent. Likewise, the
crumpling regime in prolate cavities can be recognized by a linear trend K ∼ φ.

As proposed in ref. [215], the radius of gyration of the filament,

R2
g =

1

M

∫
V

‖r− r‖2ρ dV, r =
1

M

∫
V

rρ dV, M =

∫
V

ρ dV, (5.12)
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Figure 5.5: Radius of gyration for different isochoric ellipsoidal cavities. Error bars
denote standard errors from 8− 9 independent simulations. The fitted curves corre-
spond to the analytical approximation in equation (5.14).

can be used to further quantify the packing morphology. In the analytical hoop
model it is approximated as

R2
g =

1

M

∫ Ry

Rin

∫ H(y)

−H(y)

2πy(x2 + y2)ρ dx dy, (5.13a)

M =

∫ Ry

Rin

∫ H(y)

−H(y)

2πyρ dx dy. (5.13b)

By writing Rin(φ) = Ry

√
1− k2(φ), one thus easily finds

R2
g(φ) =

1

5

(
k2(φ)R2

x +
[
5− 3k2(φ)

]
R2
y

)
, (5.14)

which nicely converges to the radius of gyration of a solid ellipsoid with uniform
spatial mass distribution,

R2
g(φmax) =

1

5

(
R2
x +R2

y +R2
z

)
. (5.15)

As demonstrated in Fig. 5.5, equation (5.14) is a reasonable approximation to the
effectively observed data. It is no surprise that during early stages (φ . 0.1), the
analytical model is an overestimation, because it takes a few windings for the coil to
mask the effect of the short piece that has just entered and is therefore still located
close to the center. Once again, confinement shape is more determinant for the
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packing process than the imposed intrinsic curvature. An apparent morphological
feature of prolate packings that can be read off Fig. 5.5 is that the radius of gyration
drops well below its theoretical bulk value at full packing, indicating that the filament
fills the elongated container very inhomogeneously, avoiding the outer regions near
the tip. This quantitatively confirms the impression one gets from Fig. 5.1b,f.

5.1.2 Entanglement

Thinking about how easily an earphone cord gets tangled up in one’s pockets, it
is natural to ask how much a thin thread will do the same when injected into a
container in the present, more controlled environment. Does it form knots, which will
prevent one from pulling it out again? This question is particularly relevant for DNA
packing in capsids, where a deadlock would have fatal consequences. Entanglement
of a space curve Γ: s 7→ x(s) can be quantified in a multitude of ways. Among the
most common measures is the linking number

LN =
1

4π

∫
s∈Γ

∫
s′∈Γ

(x(s)− x(s′)) · (dx(s)× dx(s′))

‖x(s)− x(s′)‖3 (5.16)

that dates back to the famous works of GAUSS [68]. It counts the number of (signed)
filament crossings averaged over all vantage points, and is an integral number for
closed Γ. Albeit it is most frequently and fruitfully employed in the theory of knots,
which are embeddings of closed circles in Euclidean space, nothing prevents one
from calculating the linking number also for filaments with open ends, such as the
ones injected into cavities here, as it conveys morphological information on how the
filament coils or crumples. The linking number is a chiral property, meaning that its
sign is coincidental here and on average it will cancel out. The quantity of interest is
thus its magnitude |LN|.

A closely related measure of entanglement is the average crossing number [67]

ACN =
1

4π

∫
s∈Γ

∫
s′∈Γ

|(x(s)− x(s′)) · (dx(s)× dx(s′))|
‖x(s)− x(s′)‖3 (5.17)

whose only distinction from LN is that it neglects the type (sign) of the crossings,
making it an achiral invariant. ACN has been used for instance to characterize the
spontaneous knotting of open strings agitated in spatial confinement [176]. Only
recently its relationship with the total curvature has been rigorously established [22,
59]. The average crossing number of a knot is bounded by the total curvature K and
the normalized filament length l = L/R as

ACN ≤ cK
√
l (5.18)

where c is a constant independent of the knot. In Fig. 5.6 it is shown that this
upper bound does not apply in the present thread packing problem. Instead, the
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relationship
ACN ≈ cKl (5.19)

is empirically observed, independent of the ellipsoidal shape. For random circles in
a sphere, it is known that ACN ∼ l2 [21]. K is superlinear in l here (recall Fig. 5.4),
however, and indeed the measured ACN deviates accordingly from the quadratic
scaling l2. Although ACN is merely an estimate of entanglement, the violation of
equation (5.18) is a clear indication that the packed filaments are not knotted. Pre-
liminary simulations in which the threads could be pulled out of their confinement
again without blockage confirmed this conjecture (data not shown).

Unlike ACN, LN is strongly dependent on the imposed global geometry and
intrinsic curvature. In ordered coils, its absolute value scales linearly with the packing
density, |LN| ∼ l ∼ φ (at fixed q). The frequent loop reorientations in disordered
morphologies, on the other hand, let LN fluctuate about zero and its magnitude con-
sequently shows no clear functional relationship with l. The kink of |LN| in Fig. 5.6b
reveals the point where the pre-curved wire changes its inner coiling orientation for
the first time in an oblate spheroid, as displayed in Fig. 5.1c.

In summary of Section 5.1, the systematic variation of ellipsoidal aspect ratios
unveiled how geometric restrictions imposed by the container shape dictate how an
injected thread coils and crumples. Oblate shapes offer a clear energetic advantage
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over spheres or more elongated confinements, leaving no doubt that a sufficiently
deformable cavity will not naturally take a spherical form when filled with a thin
thread. This fundamental finding suggests that recently acquired knowledge on
filament packings in rigid spheres [152, 214] could be of limited applicability to bio-
logical or medical applications where the confining hull is conforming in one way or
another, like in the surgical occlusion of cerebral aneurysms. There is hence a strong
motivation to generalize the rigid cavities to flexible shells, which is the main subject
of Sections 5.2 and 5.3.

5.2 Dense packing in flexible containers

As a consequence of the numerical and analytical considerations in the previous sec-
tion, an obloid configuration suggests itself as the equilibrium shape of a deformable
membrane a thin wire is forced into. In fact, similar forms have been experimentally
obtained by enclosing elastic nanotubes and nanowires with polymer shells and
emulsion droplets, which were then intentionally contracted [32, 33, 242]—a tech-
nique that has been advocated as a way to store and deploy mechanical work on
the nano- to microscale through spatial confinement. Monte Carlo simulations at
finite temperature have likewise indicated [66, 139] that soft vesicles deform into
obloids when enclosing a fluctuating polymer chain whose persistence length grows
much larger than the vesicle diameter. These studies, however, were limited in a
combination of the following ways:

• Thermal fluctuations masked the ground state configurations in MC simula-
tions, bounding their direct significance to the molecular scale.
• The exact equilibrium confinement shape wasn’t quantitatively measured.
• Friction was disregarded.
• The effects of either in-plane shearing, stretching or bending of the flexible

hull were disregarded.

In the following, these restrictions are all eliminated. The goal of this section is to
identify the inherent macroscopic parameters that govern morphogenesis of a long,
slender filament as it is fed into a flexible shell, to quantitatively characterize the
emerging forms and packing patterns, and to emphasize on the differences to the
packing process in rigid cavities.

Figure 5.7 shows a cutout of the computational model with all essential con-
trol parameters. Both filament and sheet are characterized by three homogeneous
isotropic material parameters, henceforth labelled with subscripts f and s for easy
distinction between the two elastic bodies: the YOUNG’s modulus E, POISSON’s ratio
ν , and the mass density ρ. POISSON’s ratios are fixed to νf = νs = 1/3. COULOMB’s law
is assumed for dry stick-slip friction between any two contacting surfaces (filament-
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FÖPPL–VON KÁRMÁN number γ = (R/h)2
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Figure 5.7: Schematic of the interaction model. Both the filament and the confining
spherical sheet are characterized by a YOUNG’s modulus E, POISSON’s ratio ν and
mass density ρ. Stick-slip COULOMB friction between any contacting surfaces is
assumed. The morphogenesis is governed by only four dimensionless numbers: q, γ,
f and µ.

filament, filament-shell, shell-shell) with µs = 0.9µd as before, which is adequate for
a broad class of materials [62]. To simplify the parameter space further, the same
coefficients are used for all three contact types. An intrinsically straight thread is
radially injected into a thin shell whose unstrained equilibrium configuration is a
sphere with radius R and thickness h as shown in the figure. Like in the previous
section, the feeding velocity is kept constant and small enough to let the system con-
tinuously relax close to static equilibrium at all times, and a small random transverse
deflection is initially added to the wire to break the rotational symmetry about the
feeding axis. The confining shell is held in place by imposing zero displacement on a
narrow rim about the small opening through which the thread is injected.

A key result from the computer simulations is that this morphogenesis is con-
trolled by four independent dimensionless non-negative quantities,

q =
R

r
, γ =

(
R

h

)2

, f =
Ef

Es

, µ = µs, (5.20)

if inertial effects are negligible. Up to an irrelevant prefactor, γ is the FÖPPL–VON
KÁRMÁN number as defined in equation (4.1). f is the relative filament rigidity, which
conversely may also be thought of as the confinement flexibility. γ and f generalize
the previously studied rigid cavities, which are attained in the limits γ → 0 and
f → 0. Together with γ, expressing the nominal system size by the non-dimensional
ratio q renders the problem scale-invariant, which attests to the wide applicability of
the results from microscopic to macroscopic scales. Since the volume enclosed by
the flexible shell is not constant, the packing density φ as defined in equation (5.1)
is no longer proportional to the inserted filament length L, and can well be non-
monotonic. l = L/R instead of φ therefore lends itself as a suitable measure for the
packing progress.
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Figure 5.8: Packing evolution in flexible confinement. Series of simulation snapshots
at µ = 0 (top row) producing aligned coils, and at µ = 0.5 (bottom row) producing
disordered space-filling packings. The remaining parameters are q = 20, γ = 2002,
f = 100. All images to scale.

5.2.1 Morphological phases

The typical packing evolution obtained in very elastic or very thin shells is displayed
in Fig. 5.8. At weak frictional forces, a highly ordered packing pattern is observed
in which the filament bundles into a tight circular coil that continues to grow and
stretch the confining shell as more thread is injected. Eventually, both upper and
lower faces of the membrane are fully flattened by the stretch, turning it into the
convex hull of the enclosed coil. When friction is activated, however, the situation is
dramatically changed: Tangential sliding is hampered, which lets the wire tip poke
the surrounding shell significantly. The compressive forces acting on the inserted
thread are much higher in consequence, and soon let it buckle out of the coiling
plane to form a more three-dimensional packing process. Clearly, only sufficiently
flexible shells allow for this kind of spontaneous loop reorientation. As more and
more wire is fed in, the reorientation process is frequently repeated, yielding a
crumpled structure that tends toward an approximately spherical bulk shape—a
feature that previous works didn’t capture [66, 139]. Due to the thin shell’s tensile
flexibility, frictional forces between the two thin objects let the pushing filament
locally drag its confinement along a small distance, making static friction much more
relevant in deformable than in rigid confinements. This unique feature explains the
main observation reported here: unlike in rigid cavities, frictional forces become
a key player for filament morphogenesis in deformable shells. This characteristic
crumpling behavior is easy to reproduce manually in table-top experiments, an
example of which is shown in Fig. 5.9. Note the manifest resemblance between the
experimentally obtained structure and the computer simulation in the lower right
panel of Fig. 5.8.
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Figure 5.9: Experimental realization of the crumpled morphology. A polycaprolac-
tam wire (r = 0.5 mm), manually fed into a customary inflatable balloon made of
natural rubber (R = 27 mm, h = 0.25 mm), spontaneously crumples due to friction.

(a) (b)

0

1

2

≥3
Rκ

Figure 5.10: Packing morphologies in flexible confinement. (a) Toroidal coiling at
weak friction (µ = 0). (b) Space-filling crumpling at strong friction (µ = 0.5). The
further relevant simulation parameters are q = 20, γ = 102, f = 103, and the packed
filament length is l = 800. In color, the rescaled filament curvature is shown. Images
to scale, except that the wire radius is halved to reveal the inner structure.

In the remainder of Section 5.2, these two distinct morphologies and the transi-
tion between them are quantitatively analyzed. For simplicity, the system parameters
are fixed to q = 20, γ = 102, f = 103, µ = 0, 0.5—a choice for which the morphologi-
cal characteristics of the two phases are pronounced most clearly. Fig. 5.10 provides
insight into the inner packing structure for these two settings.
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Figure 5.11: Cross section of a coiled wire in a flexible shell at low friction. Top: PURO-
HIT hoop model with its geometric parameters. Bottom: Simulation snapshot at
l = 800 with superposed ellipses.

5.2.2 Energetics and order

An intriguing feature in the frictionless case is that the long, flexibly confined fila-
ment coils into a dense circular bundle whose cross section is very well approximated
by two half ellipses. The central portion of the cavity is left unoccupied just like in
rigid oblate spheroids (see Section 5.1) as a result of the wire’s tendency to minimize
its dominant elastic energy contribution, the bending energy. A typical cross section
of the coil with fully stretched lateral faces of the thin shell is displayed in Fig. 5.11
in support of this statement. It is thus an easy task to generalize PUROHIT’s hoop
model, that proved to capture the energetic and structural properties of ordered
coiling in rigid oblates extremely well, to the present flexible cavities. Aside from
the filament spacing d(L), the unknown cross-sectional parameters are the major
radius of the toroidal coil, Rt, and its two minor radii Rx, Ry , as labeled in the upper
panel of Fig. 5.11. The evolution of these three radii with the packed thread length
depends on the system parameters q, γ, f , but the common typical functional form
is well approximated by a power-law scaling

Rt

R
∼ lα,

Rx

R
∼ lβ,

Ry

R
∼ lγ (5.21)

within a certain range of the rescaled thread length l = L/R, as demonstrated in
Fig. 5.12. The best fits for q = 20, γ = 102, f = 103 are α = 0.04±0.01, β = 0.35±0.01,
γ = 0.46± 0.01, indicating that while the minor radii grow quickly, the major radius
Rt remains approximately constant. α ≈ 0 is indeed expected for very flexible
cavities, since 1/Rt is the maximum curvature in the coil, the square of which is
minimized according to the principle of minimum energy.
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Figure 5.12: Scaling of the shape of the filament coil in flexible confinement. Data
obtained by fitting semi-ellipses to the cross sections of a numerical simulation at
q = 20, γ = 102, f = 103, µ = 0, as shown in Fig. 5.11.

Carrying on in the derivation of an analytical model for the toroidal coil, in place
of equation (5.4), the packed thread length follows as

L =
2√

3d(L)

∫ Ry

0

2π(Rt + y)ω(y) dy

=
4π√

3

RxR
2
y

d2(L)

(
2

3
+
π

2
%

) (5.22)

where % = Rt/Ry and the number of windings ω is given by equations (5.2) and (5.3).
This fixes the average strand separation d(L) given that L,Rt, Rx, Ry are known.
Analogously, one can calculate the volume V enclosed by the deformed shell as the
sum of the unoccupied cylinder and the packed toroidal rim, which yields

V (L) = 2πRxR
2
t +

∫ Ry

0

∫ H(y)

−H(y)

2π(Rt + y) dx dy

= 2πRxR
2
t

(
2

3
+
π

2
%
[
%+

π

2

])
.

(5.23)

As shown in Fig. 5.13a, equation (5.23) approximates the effective measured
volume quite well, except at the early stage where the wire is not yet stretching
the confining thin shell to a convex hull. In contrast, the enclosed volume of the
crumpled morphology at µ = 0.5 increases linearly with l—a direct consequence of
the uniform disorder in the system.
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Figure 5.13: Filament packing progress in flexible confinement. For normalization,
the initial volume V0 = 4π(R−h/2)3/3 is used. The dashed analytical curves forµ = 0
are obtained by plugging the power law fits of equation (5.21) into equation (5.23).

From the volume, one can derive the volume packing density φ = AL/V , whereA
is the cross-sectional area of the filament. It is plotted against l in Fig. 5.13b together
with the linear relationship for rigid cavities (f = 0), to demonstrate that the packing
process of thin wires in flexible containers can typically be divided into two regimes:
Early on, the shell is stretched such that φ(f > 0) > φ(f = 0), but upon further
packing, the shell expands such that φ(f > 0) � φ(f = 0). Not surprisingly, the
power-law scaling of the coil dimensions in equation (5.21) sets in only after the
crossover point φ(f > 0) = φ(f = 0) has been passed.

The toroidal analog of equation (5.7) for the filament bending energy in flexible
shells reads

Ub(L) =
2√

3d(L)

∫ Ry

0

πEfI

Rt + y
ω(y) dy

=
4π√

3

RxEfI

d2(L)

(√
1− %2 log

[
1 +

√
1− %2

%

]
+
π

2
%− 1

)
.

(5.24)

Using equation (5.22), the unknown d(L) can be eliminated to yield the final expres-
sion

Ub(L) =
LEfI

R2
y

(√
1− %2 log

[
1 +

√
1− %2

%

]
+
π

2
%− 1

)/(
2

3
+
π

2
%

)
. (5.25)

Note that equation (5.25) is real-valued even for % > 1. Ub is monotonically decreasing
in %, and thus the filament favors toroidal configurations with large major radius Rt

but small minor radii Rx, Ry . This tendency of the filament competes with the shell
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Figure 5.14: Filament energetics in flexible confinement. The dashed line in (a) cor-
responds to the analytical approximation in equation (5.25) with the fitted power
laws from equation (5.21) plugged in. In (b), best-fitting log-normal distributions are
represented by solid lines.

deformations necessary to adopt such a shape. In Fig. 5.14a, the rescaled bending
energies of both morphologies are compared. The numerically measured bending
energy of the coiled morphology is very well approximated by Eq. 5.25, with only a
slight overestimation at low packing. The crumpled morphology at µ = 0.5, on the
other hand, exhibits a clear power-law trend

Ubr
2

REfI
∼ l1.19, (5.26)

with exponent 1.192± 0.006, which hints at a hierarchic inner packing structure: The
more filament is injected, the more spatial freedom is limited, resulting in higher
bending curvature in the newly formed loops. The bulges visible in Fig. 5.9 provide
some intuition on this phenomenon. Generally, the packing structure in flexible
shells is much more stable than in rigid cavities. Once a certain filament segment
has taken position, the enclosing membrane fits the structure so tightly that it won’t
reorient much later on.

In rigid spheres, the distribution of bending energies in disordered wire packings
is well fit by a log-normal probability density, with the exception of a larger tail
toward low values [214]. The same holds here for the crumpled morphology in elastic
shells, albeit with quite a different origin. In rigid spheres, such hierarchic disorder
needed to be introduced by artificially pre-curving the wire, whereas tight membrane
confinement induces this hierarchy naturally even with straight threads. Figure 5.14b
shows that the logarithm of the normalized local squared curvature follows a normal
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Figure 5.15: Number of filament self-contacts in flexible confinement. Low friction
leads to dense filament alignment with hexagonal packing, henceNc ∼ l once a few
coil windings are established. The hierarchic crumpling pattern at strong friction
manifests itself in a power law for the number of wire-wire contacts with exponent
1.40± 0.01 at µ = 0.5.

distribution,
log

(
κ2

〈κ2〉

)
∼ N (µ, σ2) (5.27)

with probability density function

f(x) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]
. (5.28)

Equation (5.28) is best fit by the mean and standard deviation values µ = −0.29, σ =
0.83 for the crumpled morphology. In contrast to what the well-defined geometry
of the hoop model (Fig. 5.11) suggests, the distribution of bending energies in the
toroidal coil at low friction is also relatively close to a log-normal probability density
(albeit much more narrow), with a slight tendency toward lower values in the tails.
The best fit is obtained with µ = −0.07, σ = 0.41.

The hierarchic nature of the crumpled morphology is manifest also in the number
of contacts observed between filament segments, Nc, as Fig. 5.15 shows. After the
two morphological phases have bifurcated, Nc follows a superlinear power law with
exponent 1.40± 0.01 at µ = 0.5:

Nc ∼ l1.40. (5.29)

On the contrary, low friction leads to dense filament alignment with hexagonal pack-
ing in the coiled morphology, hence Nc ∼ l once a few coil windings are established.
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Figure 5.16: Entanglement in flexible confinement. The dashed line in (a) represents
to the analytical model of equation (5.30) with the power laws from equation (5.21)
plugged in. ACN scales with the injected thread length with an exponent of less
than two in the coiled morphology (b), unlike in the disordered phase at strong
friction.

5.2.3 Entanglement

In Section 5.1.2, filament entanglement in undeformable containers was measured in
terms of the average crossing number ACN, defined in equation (5.17), to empirically
find the approximate relationship ACN ≈ cKl. Since the total curvature K was
superlinear in l, ACN grew quicker than l2, which is the theoretical scaling for random
circles in a sphere. This behavior breaks down in flexible cavities, as is demonstrated
here. In the hoop model for the coiled phase, the total curvature reads

K(L) =
2√

3d(L)

∫ Ry

0

2πω(y) dy

=
L

Rt + 4Ry/3π
,

(5.30)

where the strand distance d(L) was eliminated using equation (5.22). Just like the
bending energy, this excellently approximates the effective measurement with a
slight initial overestimation, which is shown in Fig. 5.16a. Consistently with the
energetics (equation (5.26)), a superlinear power law with exponent 1.083± 0.004 is
found for the total curvature in the hierarchic crumpled morphology:

K ∼ l1.08. (5.31)

Nonetheless, Fig. 5.16b shows that there is no apparent simple functional relationship
between ACN and l in the crumpled phase. The frictionless toroidal coil, on the
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other hand, exhibits a scaling that is consistent with a power law with exponent
δ < 2,

ACN ∼ lδ. (5.32)

δ = 1.83± 0.01 fits the present numerical data best. The origin of this exponent is
not precisely clear at this point—it must be put into context with analytically known
values in related systems. For random circles in a sphere, it is known that δ = 2, while
free coils of rope have δ = 4/3 [21]. The ordered coiling in flexible frictionless shells
lies in between these two well-understood cornerstones.

5.2.4 Coiling-to-crumpling transition

To complete the quantitative characterization of the two morphological phases
discussed above, an order parameter is required that discriminates them rigorously.
Intuitively, what defines the order of the filament coil at low friction is alignment
between the individual loops. All thread segments turn in the same direction about
the toroidal axis of revolution. The hierarchic packing pattern in the crumpled
morphology emerges due to frequent three-dimensional loop reorientations, which
break this alignment. Denote by n ∈ R3 the unit vector pointing in direction of the
filament’s principal axis of minimal moment of inertia. Then the curvature of the
filament about n reads

κ(s) = n ·
(
∂x

∂s
× ∂2x

∂s2

)
(s) (5.33)

and the sign of the rescaled quantity rκ(s) indicates its turning direction about the
main coiling axis. Consequently, its average value

T = 〈sgn(rκ)〉 =
1

L

∫ L

0

sgn
(
rκ(s)

)
ds ∈ [−1, 1] (5.34)

measures the fraction of the filament turning in either direction about that axis.
While a balance between left- and right-turning wire segments yields T = 0, T takes
one of its extreme values±1 if and only if the wire coil never changes its orientation.
Since this coiling direction is initially selected at random by imperfections of the
material and geometrical setup, or by a random initial perturbation to the displace-
ment field in numerical simulations, the sample average of T vanishes. The decisive
non-trivial quantity is thus its absolute value |T |. The quantity

D = 1− |T | (5.35)

can serve as an order parameter to discriminate the ordered coiling at low friction
from the disordered crumpling at high friction. As shown in Fig. 5.17, D vanishes
exactly in the coiled phase, whereas it takes a finite value in the crumpled phase.
D = 1 is attained only if the loops are perfectly isotropically distributed. Evidently, the
phase transition is continuous and occurs at very low values of the friction coefficient
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Figure 5.17: Order parameter for the coiling-to-crumpling transition. The transition
is continuous and occurs at µ ≈ 0.12. The inset shows a magnification about the
transition point. Error bars indicate standard errors from 10 independent simulations
at q = 20, γ = 102, f = 103. The solid gray line is used as a guide to the eye. Data
maximized over l ∈ [5, 50].

(already µ = 0.2 is sufficient to inhibit perfect alignment), which accentuates the
fundamental difference between rigid and flexible confinements once again.

To summarize Section 5.2, the generalization from infinitely stiff to more flexi-
ble containers brought along a dramatic change in the packing of long filaments.
Rigid cavities dictate the coiling process through their inviolable geometrical con-
straints, making friction a component of subordinate importance. Elastic shells,
however, conform to the preferred shape of the packed thread, embracing it tightly.
At weak frictional forces, this leads to a high degree of alignment through dense
bundling, whereas even moderate friction between the elastic objects lets the shell
get dragged along with the pushing filament, leading to higher compressive forces.
Consequently, filament loops frequently reorient in space, leading to a hierarchic,
disordered packing process. The role of friction is completely redefined in strongly
deformable cavities.

A point that has not been addressed so far is the transition between rigid and
flexible cavities. In particular, three out of four control parameters (q, γ, f ) were fixed.
How stiff is “rigid”? At which slenderness will a confining thin shell become flexible
enough to alter morphogenesis of a contained long thread? Among others, these
questions are pursued in the next section.
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5.3 Growing rings in flexible containers

So far, the packing problem in deformable cavities was tackled for the particular case
of radial injection of a linear filament through a small opening from outside. From a
viewpoint of biological systems—especially if a cell wall or lipid bilayer acts as the
confining membrane—another frequently encountered scenario is the growth of a
filamentous structure within a closed hull, or the shrinkage of said hull. These fully
enclosed strings may be linear, or as in the case of DNA in a wealth of organisms, of
circular topology [174, and referenced therein]. Microtubules confined by erythrocytes
[39, 155] and actin/filamin networks in giant vesicles [91, 123] are known for their
capability to spontaneously take a ring-like shape, even though they aren’t typically
closed circles by construction. With these real-world problems in mind, a change of
filament topology is in order. In the remainder of this chapter, the buckling, folding,
bundling and coiling of a growing elastic circular thread is studied as it results from
mechanical interaction with a confining flexible shell.

The initial condition at time t = 0 consists of a ring filament with length L(0) =
L and cross-sectional radius r, surrounded by a close-fitting spherical shell with
thickness h, whose middle surface has radius R. Since the system is made of the
same two thin bodies as in Section 5.2 (except for the filament topology), it is fully
characterized by the four dimensionless control parameters of equation (5.20): q,
γ, f and µ. A tiny random perturbative deflection is imposed on the elastic ring to
allow it to break the system’s initial reflective and rotational symmetries by buckling
and to allow for independent repetitions of the simulations. The filament is grown
uniformly in length according to

λ =
L(t)

L(0)
= exp(Λt). (5.36)

The growth rate Λ is set sufficiently small for inertial effects to have a negligible
effect on the outcome. Uniform filament extension stands in sharp contrast to
the packing problems addressed in Sections 5.1 and 5.2, where the feeding of more
thread into the cavity could be considered as growth that is localized to the point of
insertion. The difference between these two extreme cases of growth distributions
is discussed toward the end of this section.

As the filament grows, it bears against the confining wall until the critical buck-
ling load is exceeded and it buckles out of plane with harmonic mode n. Excited
modes n > 2 are unstable in the quasi-static frictionless limit [87], but the simula-
tions show that they can be observed when inertia is not negligible (i.e., large mass
densities, fast growth or viscous overdamping) and in the presence of significant
friction. The ground state buckling mode n = 2, which is most relevant in practice,
develops a saddle shape until two filament segment pairs touch. This first contact
occurs at

λ = λ∗ ≈ 2.127 (5.37)
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Figure 5.18: Scaling of the point of first contact in flexible confinement for fixed
q = 30, γ = 802. At these values, λ∗(f = 0) = 2.095, and the best fit for a power-law
exponent is 0.51± 0.02.

for rigid spherical cavities (f = 0) in the theoretical thin filament limit q →∞ [87].
The scaling of this point of first contact in finite systems is well approximated by
λ∗(f)−λ∗(0) ∼

√
f , as Fig. 5.18 shows. Growth beyond λ∗ with real self-avoiding ma-

terials has never been explored to date. The simulations and experiments presented
below dispel this limitation, showing that four distinct morphologies emerge by
bifurcation as the filament grows longer, which are illustrated in Fig. 5.19. They shall
be denominated spiral, classical, folded and warped, motivated by their characteristics
as detailed in the following.
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Figure 5.19: Packing evolution depending on friction and confinement rigidity. A
confined growing ring buckles to a saddle shape (mode n = 2, middle). Beyond the
point of first contact λ = λ∗, four distinct morphologies can emerge. The folding at
low friction in flexible confinement is repeated during growth: Filament bundles
refold self-similarly, each time tripling the number of bundle strands (ω = 3k).
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(a)

Rf

θ

(b) (c)

D

D

Figure 5.20: Geometrical approximation of the spiral morphology. (a) Before self-
contact, the ring filament follows the rim of an e-cone. After contact, the filament
can be divided into three parts: a coil with inclination θ (b) and two S-shaped curves
(c).

5.3.1 The spiral phase

The packing in frictionless rigid spheres can serve as a reference model for less ideal-
ized systems. The limit f, µ→ 0 is therefore considered first here. When λ > λ∗, a
spiral (depicted in Fig. 5.19, top left, and Fig. 5.20b,c) develops analogous to uncon-
fined excess cones e-cones [216]. In the spirit of refs. [18, 213], this configuration is here
referred to as the spiral phase. Already D’ARCY THOMPSON postulated the existence
of spiral packing patterns in the context of linearly growing spicules confined to
ellipsoidal cell walls [227, page 676], albeit he didn’t quantify his arguments.

The bending energyUb of the filament before the first self-contact occurs (λ < λ∗)
can be approximated analytically by integrating the square FRENET curvature over
the centerline:

UbRf

EfI
=

1

2

∫ 2πl

0

[
κ2

g(s) + 1
]

ds (5.38)

where

Rf =
L

2π
= R− h

2
− r (5.39)

is the initial filament radius and κg(s) is the geodesic curvature of the rim of a unit
e-cone given by [151]

κg(s) = 2Q
√
m sn(sQ | −m), (5.40a)

Q =
4n

2πλ
K(−m). (5.40b)

K(m) denotes the complete elliptic integral of the first kind, while sn(u | m) is the
sine of the JACOBI amplitude am(u | m), and the elliptic parameterm ≥ 0 is found by
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solving

2π =
J2 − 2C

2JQ
Π

[
4m

Q2

J2
; am(2πλQ | −m) | −m

]
− Jπλ, (5.41a)

J2 = C2 + 4mQ4, (5.41b)
C = 1 + (m− 1)Q2 (5.41c)

numerically [86], in which Π[η;ϕ | m] stands for the incomplete elliptic integral of
the third kind.

Beyond the point of first contact (λ > λ∗), frictionless rigid spherical confine-
ments give rise to chiral surface-covering filament packings consisting of a dense
coil and two spiral S-curves located at the poles (Fig. 5.20). This high degree of order
grants access to an approximate closed-form solution of the predominant elastic
contribution, the bending energy of the confined filament. The length Lcoil of the
coiled part can be estimated by summing up coplanar rings over an equatorial band
on the surface of a sphere with radiusRf . The angular width of the band is 2θ, where
θ is the inclination of the coil as depicted in Fig. 5.20, yielding

Lcoil ≈ 1

2r

∫ θ

−θ

∫ 2π

0

R2
f cos θ′ dϕ dθ′

= 2π
R2

f

r
sin θ.

(5.42)

Like in the hoop model developed in Sections 5.1 and 5.2, the helical pitch of the coil
is disregarded. A noteworthy difference between the present spiral coil and those in
the earlier packing problems is that the equilibrium strand spacing d always attains
its minimum value d = 2r here, i.e., the spiral coil is always tight. There is hence no
fitting parameter in this analytical model. The bending energy of the coil follows as

U coil
b ≈ 1

2r

∫ θ

−θ

∫ 2π

0

EfIRf

2Rf cos θ′
dϕ dθ′

= π
EfI

r
log

[
1 +

2

cot(θ/2)− 1

]
.

(5.43)

The relative error resulting from the neglected pitch is |1− (1 + [r/πRf ]
2)−2|, which

is as low as 0.1% already for filaments as thick as Rf/r = 14. A rough estimate for
the contribution from the two central spiral patterns is given by four semicircles with
a diameter of D = Rf(π/2 − θ). (An alternative estimate can be found in ref. [18].)
Adding these contributions up, one finds the total filament length L ≈ Lcoil + 2πD
and its total bending energy Ub ≈ U coil

b + 4πEfI/D, such that

UbRf

EfI
≈ π

Rf

r
log

[
1 +

2

cot(θ/2)− 1

]
+

4π

π/2− θ
. (5.44)
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Figure 5.21: Analytical approximation to the spiral filament after self-contact. (a) In-
clination of the spiral coil as shown in Fig. 5.20, obtained through numerical solution
of equation (5.45). For very thin filaments (Rf/r → ∞), it is θ = sin−1(λr/Rf). (b)
The bending energy after the first contact (equation (5.44)) transitions from an early
linear regime (λr/Rf � 1) to divergence at full surface coverage (λ→ Rf/r →∞).

To obtain the bending energy as a function of the normalized filament length λ, the
coil inclination θ can be eliminated from equation (5.44) by numerically solving

λ =
L

2πRf

≈ Rf

r
sin θ + π/2− θ (5.45)

for θ. The number of windings in the coil is given by ω = θRf/r. In Fig. 5.21 the
numerical solutions for θ and Ub are plotted as a function of how much of the
spherical surface is covered with filament.

In Fig. 5.22a it is shown that both analytical descriptions before and after con-
tact, equations (5.38) and (5.44), are in excellent agreement with the numerical
measurements. The measured energy after contact weakly oscillates because the
coil is slightly bent by the S-curves. These oscillations increase for larger q. As the
surface gets fully covered with a single layer of filament (i.e., as λ approaches Rf/r),
the growing filament eventually buckles inward to release a large amount of elastic
energy, and the packing process continues in a less ordered fashion much like some
DNA molecules in phage capsids [5, 104].
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Figure 5.22: Comparison of energetics. (a) Filament bending energy in the spiral
(blue) and classical (green) morphology at q = 20. (b) Folded morphology at q = 20,
γ = 202, f = 104, µ = 0. The predominant elastic energy contribution alternates
between the filament bending energy Ub and the membrane energy Um (stretching
term of equation (2.23)). A cascade of four self-similar folds can be recognized by the
repeated power law regions.

5.3.2 Morphological phases and phase transitions

A crucial requirement for a growing filament to coil is tangential sliding, giving rise
to the high degree of order in the spiral morphology by continuous rearrangements.
The presence of friction induces locality by limiting rearrangements to the local
neighborhood, inhibiting relaxations to lower global energy conformations, thus
trapping growing filaments in a disordered state (Fig. 5.19, bottom left). Figure 5.22a
clearly shows that the bending energy of a growing ring filament with friction is
bounded from below by the spiral phase. A similar situation is encountered in flat
two-dimensional wire packings [213], from where the term classical phase is adopted.
There, friction was found to account for a morphological phase transition from a
spiral to a hierarchic loop pattern due to locality, as depicted in Fig. 5.23. The same
phenomenon is observed here on the inner wall of a rigid spherical cavity. To quan-
tify the spontaneous breaking of spiral symmetry with increasing µ, the following
order parameter is proposed in analogy to the coiling-to-crumpling transition in Sec-
tion 5.2.4. Define the signed coiling curvature κ(s) as in equation (5.33) and extend it
periodically such that κ(s) = κ(s+ L). Then, the circular convolution

c(s′) =
1

L

∫ L

0

sgn

[(
s− L

2

)
κ(s+ s′)

]
ds ∈ [0, 1] (5.46)
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Figure 5.23: Morphologies of elastic wires in flat rigid confinement. Steel wires
forced into flat rigid circles exhibit morphologies that share their essential features
with the spiral and classical phases reported in the present work. Photographs by
N. B. STOOP and F. K. WITTEL, reprinted with permission from ref. [213]. Copyright
(2008) by the American Physical Society.

is a natural measure for the degree of order of the filament when cut in half at s = s′

and s = s′ + L/2. If the two halves equally contain right- and left-turning segments,
one has c(s′) = 0. Conversely, only if one half turns only left and the other half only
right, one has c(s′) = 1. Thus, if one accounts for the periodic nature of the ring
filament by maximizing over all bisection points s′, the turning disorder

D = 1−max{c(s′) | s′ ∈ [0, L]}, (5.47)

which is the analog of equation (5.35) for a ring-like thread, can serve as an order
parameter to discriminate the spiral from the classical phase. It is evident from
Fig. 5.28a that the transition occurs near µ ≈ 0.5, with a slight dependence on the
system size q. In stiff confinement, friction must thus be fairly strong to introduce
local order, which contributes to explaining why viral DNA is often condensed into
layered spools [28, 53, 98, 160].

The surface-covering spiral and classical morphologies bear resemblance to liquid
crystals, an analogy that has already been drawn in the context of DNA packing in
viral capsids [100]. Define a loop by an area surrounded by a filament segment with
only one inner point of contact [11, 213]. The spiral phase has only four such loops (two
at each pole), while the classical phase is characterized by a broader spatial distribu-
tion of loops. At very high surface packing (λ→ Rf/r), classical loops are compressed
to point singularities with strength±1/2 delimiting line disclinations known from
nematic liquid crystals [29] (see Fig. 5.24). The spiral phase is in turn reminiscent
of spherical smectic liquid crystals with two closely bound disclinations ending at
two 1/2-singularities at each pole [97]. The total disclination strength of a spherical
liquid crystal is always two, which is a direct consequence of the GAUSS–BONNET
theorem. Indeed, this identity holds for growing ring filaments for all q, µ in the spiral
and classical phases. The number of topologically nontrivial loops is always four, but
the classical phase can exhibit an arbitrary additional number of topologically trivial



104 Chapter 5. FILAMENT PACKING AND GROWTH IN SPATIAL CONFINEMENT

15 µm

Figure 5.24: Relationship of the classical morphology to 2D nematic liquid crystals.
Left: Active liquid crystals confined to fluid interfaces feature disclination defects
with charge +1/2 (red arrow) and −1/2 (yellow arrow). Picture reproduced from
ref. [190] and adapted with permission of Nature Publishing Group. Right: The same
topological defects occur in the classical morphology of growing ring filaments in
rigid confinement.

loops. However, it is stressed here that the existence of topologically trivial loops is
sufficient, but not necessary for D > 0, and is thus not an order parameter.

The spiral and classical morphologies are highly metastable as the filament
inevitably buckles away from the rigid wall. A qualitative stability condition was
derived in ref. [100] and translates to λ� q2 in the present terms, suggesting that
dense single-layered surface packings (λ close to q) are found only in sufficiently
small cavities, such as the one depicted in Fig. 5.24. This explains why they are not
common in biophysical environments with very thin confined threads. Instead, such
systems gain ultimate stability from weak or flexible confinement. In the computer
simulations, the parameters γ and f were increased to discover a completely altered
morphogenesis beyond a certain transition. As the confining sheet is elasticized
or thinned, suddenly, the filament folds on itself as illustrated in the top right of
Fig. 5.19 instead of coiling at low friction. Bundles of ω subthreads are formed similar
to actin/filamin rings and microtubules in vesicles [91, 123, 168]. The same principle
has found its way into everyday appliances: Pop-up tents or laundry baskets (Fig. 5.25)
can be folded in the same fashion to save space [150]. This is hence referred to as
the folded morphology. The folding process is repeated as the filament continues to
grow. The winding number ω obeys

ω =
∏
k

(2nk − 1), (5.48)

where nk ∈ {2, 3, 4, . . . } is the buckling mode (nk = 0, 1 are out of play because they
represent rigid body movements) and k = 0, 1, 2, . . . is the number of folds in the
cascade. The ground state (nk ≡ 2) energy is plotted in Fig. 5.22b, revealing a series of
self-similar folds that define the folded phase. Prior to buckling, the circular filament
bundle with effective average radius Rb linearly expands to release bending energy
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Figure 5.25: Examples of the folded morphology in daily life. Folded elastic rings
confined by thin sheets occur in daily-life items like pop-up tents, kids’ soccer goals
and laundry baskets (pictured, from left to right). All images show the unfolded
state (λ < λ∗) which can be folded into n = 3 loops to save space. Reproduced from
ref. [150] and adapted with permission of Nature Publishing Group.

according to
UbRf

EfI
∼ Rf

Rb

∼ λ−1, (5.49)

stretching the circumjacent sheet until a critical radius Rc is reached where the
bundle buckles. The critical force Fc exerted by the shell onto the filament at the
point of buckling (Rb = Rc) can be calculated by balancing the internal and external
energies. For a circular single-fiber ring with buckling mode n, it is given by [230]

Fc = 2π(n2 − 1)
EfI

R2
c

. (5.50)

After the bundle has folded onto itself, it again assumes a linearly growing toroidal
shape that is governed by equation (5.49) until Rb = Rc, and the buckling repeats in
this fashion (Fig. 5.26f). Numerical simulations show that the long-term trend of the
bending energy at the buckling points is

UbRf

EfI
∼ λα (5.51)

with an exponent that is at least bounded by 0 < α < 1. For the set of parameters in
Fig. 5.22b, α = 0.80± 0.02. By supposing that

Ub ≈ ωπ
EfI

Rc

∼ EfI

Rf

λ

(
Rf

Rc

)2

(5.52)

because λ ≈ ωRc/Rf , the critical radius is expected to slowly increase according to

Rc

Rf

∼ λβ, β = (1− α)/2, (5.53)
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Figure 5.26: Self-similarity of the folded morphology. Power-law scaling of the fil-
ament bending energy (a), critical buckling radius (b), number of subthreads (c),
compressive force (d) and compressive energy (e) with the relative filament length at
the buckling points Rb = Rc. (f) Typical evolution of the bundle shape in the folded
morphology (n = 2, k = 2, ω = 9).

and accordingly, the ground state winding number should scale as

ω ∼ λγ, γ = (1 + α)/2. (5.54)

This simple reasoning is indeed very well matched by the numerical data (see
Fig. 5.26), which is best fit by β = 0.10 ± 0.01 and γ = 0.89 ± 0.01. As the buck-
ling radiusRc slowly increases, the compressive force Fc experienced by the filament
weakens (Fig. 5.26d). The associated compression energy Ut, while starting off at the
same order of magnitude at λ = 1 as the bending energy, shows a pronounced decay
with exponent ≈ −1 in Fig. 5.26e. This reveals an intriguing property of filament
growth in flexible confinement that can’t be found in rigid containers. By folding into
bundles, the filament experiences an ever weakening compression and thus further
stabilizes while growing longer, even though the confining shell is progressively
stretched. This striking refolding of bundled rings provides a purely mechanical
explanation for the spontaneous bundling of flexibly confined filaments such as
actin networks [91, 123] (Fig. 5.27) and marginal microtubule bands in developing ery-
throcytes [39, 155] as a result of membrane or shell enclosure instead of cross-linkage.
Only sufficiently deformable containers conform to pushing filaments, allowing
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(a)

10 µm

(b)

5 µm

(c)

(d)

(e)

5 µm

Figure 5.27: Spontaneous bundling of actin networks in giant vesicles. Actin/α-
actinin networks spontaneously bundle in giant vesicles when quenched (a) or if the
vesicle diameter is relatively small (b). (c-e) Ring-like actin/filamin bundles buckle to
the characteristic saddle rim shape if the coil radius is larger than the vesicle radius.
All micrographs reprinted with permission from ref. [123]. Copyright (2002) by the
American Physical Society.

them to pass one another to fold into energetically more favorable bundle configura-
tions. This might also provide a paradigm to explain layered slime thread bundling
in hagfish gland thread cells [239], where the cell membrane deforms under high
packing pressure. The presented findings suggest that such thread bundle packings
may be obtained only in systems where frictional forces are rather small. Other
biological systems in which filament bundling provides a mechanism of mechanical
stabilization in membrane confinement include filopodial protrusion [125, 147, 219].

Remarkably, the gain in mechanical stability in flexible cavities goes hand in
hand with the loss of chirality. Denote by p(s) = x(s)− 〈x〉, s ∈ [0, L], the position
of the filament centerline relative to its own center of mass, 〈x〉. A convenient
order parameter describing the transition from the spiral to the folded phase is the
geometric chirality coefficient

χ = 1−max
{
o
(
p, p̃(a)

)
| a ∈ S2

}
∈ [0, 1] (5.55)

where S2 = {a ∈ R3 | ‖a‖ = 1} is the set of vectors on the unit 2-sphere,

p̃(a) = p− 2
p · a
a · a

a (5.56)

is the reflection of the filament centerline p on the plane perpendicular to a and

o(p, p̃) =
1

L

∫ L

0

H

(
1− min

s∈[0,L]

{
‖p(s)− p̃(s′)‖

2r

})
ds′ (5.57)

gives the fraction of overlap between the filaments described by p and p̃. In equa-
tion (5.57), H(·) = (1 + sgn(·))/2 denotes the HEAVISIDE step function. If and only if
all spheres with radius r along the thread centerline overlap with the volume of the
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thread mirrored on the plane perpendicular to a, one has o(p, p̃) = 1. Conversely, if
and only if the thread volumes are disjunct, o(p, p̃) = 0. By maximizing the overlap
over all mirror images in equation (5.55), the chiral dissimilarity of the filament and
its own mirror image, χ, can thus be obtained. A very similar measure [70, 144] is
rooted in the pattern recognition community [188] and has also been applied in
chemistry to compare the structure of molecules [24]. In Fig. 5.28b, a pronounced
discontinuity in χ is in evidence, suggesting that the phase transition between the
spiral and the folded morphology is of first order.

Chirality of confined rods is know to play a key role in morphogenesis of Es-
cherichia coli cells for instance, where the bacterial rod grows into a helical spiral,
guided by proteins [237]. The present data provide evidence that, conversely, fil-
ament chirality can emerge as a purely mechanical consequence of non-flexible
confinement.
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Figure 5.28: Order parameters for the morphological phase transitions. (a) Half of
the spiral filament turns right and half of it left, which is not the case in the classical
phase (f = 0, λ = 10). (b) The dissimilarity between the filament and its own mirror
image is strictly positive in the chiral spiral phase, but vanishes in the achiral folded
phase (γ = 104, µ = 0, λ = 5). (c) The fraction of the sheet surface in contact with
itself vanishes when the warped phase transitions to the classical phase (γ = 104,
µ = 1.4, data maximized over λ ∈ [1, 10]). (d) The amount of twist quantifies the
transition from the folded to the warped phase (γ = f = 104, λ = 5). Error bars
represent standard errors from 6− 10 independent realizations.
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Figure 5.29: Breakdown of energy scaling in the spiral-to-folded transition. Data
from simulations at fixed q = 20, µ = 0. Filled symbols are prior to the first filament
contact (λ = 2), open ones are post contact (λ = 3.5). The solid lines correspond to
best power-law fits in the spiral phase.

The shape of the spiral filament is almost unaltered by changes in f and γ, given
that these control parameters are lower than their critical values where the system
transitions to the folded phase. The filament bending energy Ub is hence approxi-
mately constant (for fixed l and q) within the spiral phase, while the energetics of
the shell strongly vary with f and γ. In the spiral phase, the elastic membrane energy
Um scales according to

Um

Ub

∼ fγ3/4, (5.58)

as is demonstrated in Fig. 5.29—a result which may appear counter-intuitive at first
glance, because one might expect Um/Ub ∼ f−1 by definition of f in equation (5.20).
Such intuition is misguided by the false assumption of equal straining of the two slen-
der objects. Instead, as f and γ are increased, the shell is increasingly strained. The
scaling equation (5.58) breaks down at the transition to the folded phase (Fig. 5.29),
which comes as no surprise since that is where the filament bending energy deviates
significantly from that of the spiral phase (see also Fig. 5.22).

If growing filaments are inclined to form highly ordered bundles inside of de-
formable membrane cavities (without friction), the question naturally arises whether
purely mechanical material properties can also give rise to disordered patterns with
strongly warped or tangled filaments. Developing vertebrate intestines, where the
gut tube grows into the body cavity at a different rate than the adhering mesenteric
sheet, are in fact one example [193] (Fig. 5.30). Here, this particular result can be
put in a broader, more general framework by controlling friction. As µ is increased,
the thin flexible sheet grabs hold of the pushing filament, tightly wrapping around
it. Just like in the classical phase, and similarly to the crumpled morphology in
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2 mm

Figure 5.30: Example of the warped morphology in biology. Growing gut tubes of
various vertebrates develop loop patterns as a result of differential growth rates,
similar to the warped morphology at large frictional forces, pictured on the right. Left
image reproduced from ref. [193] and adapted with permission of Nature Publishing
Group. From left to right: chick, quail, finch and mouse.

Section 5.2, friction enforces locality: The filament can no longer just freely fold up
inside, and further growth causes it to locally twist in frustration, leading to a warped
morphology (depicted in Fig. 5.19, bottom right, and in Fig. 5.30, right). For γ, µ→∞,
this behavior is reminiscent of the EULER–PLATEAU problem [71] but significantly more
complex due to the crucial role of twist and volumetric exclusion. The transition
from the folded to the warped phase is accompanied by the breaking of torsional
symmetry. As order parameter the non-dimensional torsional energy〈

ϑ2
1

〉
L2 =

2LUt

GJ
(5.59)

may be used with ϑ1 from equation (2.33), since it vanishes in the folded phase for
q →∞ and takes a significant, finite value in the warped phase. As can be recognized
from Fig. 5.28d, the exact value of the corresponding critical friction coefficient, while
depending on the system size q, is generally very low, implying that the warped phase
is relevant even in systems with moderate friction. This is in striking agreement with
the case where a long thread is injected from outside, see Section 5.2.4. Within the
warped phase, the stored torsional energy quickly levels off. These measurements
thus provide a tight lower bound for the amount of twist in vertebrate guts [193].

The direct transition from the classical to the warped morphology is less obvi-
ous. A large portion of the phase space is occupied by mixed states in which the
confinement is not stiff enough to keep the filament from buckling into the sphere,
but at the same time not flexible enough to wrap around it and force it to twist.
Such configurations are prevalent, e.g., in brain aneurysms occluded by detachable
coils (see e.g. ref. [185]). It is nonetheless possible to define a sharp phase boundary
by considering as an order parameter the area fraction of the membrane that is in
contact with itself, |Ωc|/|Ω| (where |Ω| =

∫
Ω

dΩ), because it is non-zero only in the
warped phase, as shown in Fig. 5.28c.
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5.3.3 Full phase diagram

For the design and optimization of new materials and structures, e.g. in nano-
robotics or endovascular coiling, reliably predicting the packing behavior is essential.
Here, computer simulations are used to acquire a quantitative image of the morpho-
logical phase space, allowing one to accurately predict morphogenesis depending
on the geometry and material parameters. In the low friction regime (upper half of
Fig. 5.31), the spiral and folded phases are separated by a smooth phase boundary.
Evidently, if the confining sheet is thin enough, filaments don’t need to be substan-
tially more rigid to fold instead of coiling. Bigger systems (larger q) favor the spiral
morphology as the phase boundary is shifted toward flexible confinements (large γ,
f ). Very close to the phase boundary, mixed configurations such as the one shown in
Fig. 5.31e occur when the filament folds at only one of the two contact points, which
is a dynamic effect.

A cut through the phase space at fixed q and γ unveils its full complexity (lower
half of Fig. 5.31). All phase boundaries are q-dependent. Perhaps most intriguingly,
straight single-parameter lines are found along which all morphologies are traversed,
including the mixed region (uncolored area). An example is the line along the f -axis,
at q = 40, γ = 104, µ = 0.5. This shows how delicate the choice of parameters
is for targeting a specific morphology—possibly too delicate for Nature to rely on
this selection in some parameter regions. Another striking feature is reentrancy of
the warped phase in small systems with strong friction (Fig. 5.31 at q = 20, γ = 104,
f ≈ 102−103, µ ≈ 1.2), where the folded phase extends far into the large-µ region. In
its low-µ end near the boundary to the folded phase, the warped morphology is just
a temporary interstate. The filament first warps (including the characteristic twist
and shell-shell contact), but upon further growth, some sliding allows it to rearrange
and fold nevertheless, defining a region in phase space where the warped and folded
phases coexist, which is illustrated by a color gradient in the phase diagram. The
individual simulation runs that gave rise to this quantitative image of the phase
space are documented in Appendix A.

The four morphologies discussed here are almost as easy to reproduce in table-
top experiments as the crumpled configuration of Fig. 5.9. In the experiments shown
in Fig. 5.31b,c, straight steel pipes were tangentially attached to rigid polystyrene
spheres and polyurethane wires were manually fed from both sides at equal speed
through the pipes into the spheres. Starting from an initially preset loop inside, the
wire then developed into the spiral or classical morphology depending on friction,
which was controlled with a silicone lubricant. For the morphologies in flexible
confinement (Fig. 5.31a,d), stiffer polycaprolactam wires and customary stretchable
balloons made of natural rubber were used, into which the wires were tangentially
pushed by hand.



5.3. GROWING RINGS IN FLEXIBLE CONTAINERS 113

102

103

104

105

106

spiralFÖ
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Figure 5.31: Morphological phase diagram. The lines represent least-squares-fitted
phase boundaries. (b,c) Polyurethane wires (r = 1 mm) tangentially fed from oppo-
site directions into rigid polystyrene spheres (R = 24 mm, h = 1 mm). (a,d) Polycapro-
lactam wires (r = 0.75 mm) in natural rubber balloons (R = 27 mm, h = 0.25 mm).
(e-i) Simulation snapshots at q = 30, λ = 4. (e) An exemplary mixed configuration
close to the phase boundary. (f) Very thin confinements exhibit tension wrinkles [27].
(g) Very flexible confinements are stretched similar to lipid vesicles [114]. Warped
filaments typically first crumple the sheet (h, λ = 2) before strongly twisting (i,
λ = 4).
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The presented morphological phase diagram is independent of how growth is
realized in detail. In the simulations the filament was grown uniformly everywhere,
whereas the tangential injection of an invariant wire in the experiments corresponds
to concentrated growth at the point of insertion. These two extremes are exactly
equivalent in the low friction phases owing to global rearrangements, and they
similarly produce the high-friction morphologies with the exception that reorganiza-
tion is somewhat condensed to a neighborhood about the localized growth zones if
growth is non-uniform.

In Section 4.1 it was found that sheet growth in invariant confinement and crum-
pling in shrinking confinement are equivalent in the elastic limit. This begs the
question to which degree the same analogy applies to the filament morphogen-
esis described in this chapter. Simulations (not shown) revealed that an invariant
filament getting gradually compressed by a shrinking shell yields the same mor-
phologies as reported here for a growing filament. The only difference is that q
(and possibly γ) decrease over time and the phase diagram must be interpreted
accordingly. All presented analytical and scaling arguments hold also for this case
without modification (where Rf is no longer constant, and λ = L/2πRf ).
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Figure 5.32: Folding of a loop filament in weak confinements. The folding behavior
of growing filament loops strongly depends on the type of confinement. The number
of windings ω scales exponentially with the number of folds k in thin elastic sheets,
and linearly in polar attractive force fields.

5.3.4 Comparison with another type of weak confinement

The exponential scaling of the winding number ω = (2n − 1)k in the folded mor-
phology is a particular feature of the type of flexible confinement considered here.
By replacing the confining thin shell by an attractive polar force field with potential
Φ(r) ∼ rp, p ≥ 1, where r is the distance from the center, a cascade of folds emerges
with winding number ω = 2k − 1 for the stable buckling mode n = 2 (Fig. 5.32)
similar to phantom rings confined to the surface of a sphere [87]. This dramatic
difference in scaling stems from the anisotropic spatial confinement exerted by a
flexible membrane: In a polar field, the single strands in the buckling rope have
room to separate and disentangle during the transition to a higher winding number,
resulting in the low energy modes ω = 2k − 1. This is prevented by the interaction
with an elastic thin shell, which wraps around the folded strands, enforcing the
exponential law by keeping the bundle together.

Note that spatial confinement is not the only way of obtaining the saddle shape
shown in Fig. 5.32 from a buckled single-stranded ring. The necessary excess cur-
vature can also be imposed by creasing an annulus or by attaching two open ends
of a ring at an excess angle [150]. Without the flexible confinement exerted by an
enclosing thin sheet, however, the cascade of self-similar folds that is observed here
in the folded phase has not been reported before. An unconstrained over-curved ring
or annulus will just wind ω = 2k − 1 times.

With this comprehensive insight into the morphological phase space of growth,
packing and interaction of thin elastic bodies, the main part of this thesis is con-
cluded. In the final part that starts with the next chapter, possible extensions are
discussed, which are mainly focused on a computationally efficient stress resultant
implementation of material nonlinearity in the form of elasto-plasticity.



116 Chapter 5. FILAMENT PACKING AND GROWTH IN SPATIAL CONFINEMENT



Chapter 6

Plasticity in thin filaments

[...] when the engineer talks of repeated loading, of elastic fatigue, of hystere-
sis, and other phenomena associated with plasticity and strain, the physio-
logical analogues of these physical phenomena are perhaps not far away.

– D’ARCY WENTWORTH THOMPSON, On Growth and Form (1917)

Apart from permanent deformations imposed by growth, Chapters 2 to 5 consid-
ered thin body mechanics under the hypothesis of linear elasticity. The wire packing
problem in 2D, however, is known to strongly depend on plastic yielding [213], and a
preliminary experiment briefly mentioned in ref. [72], which appears to be the only
attempt made so far at investigating the packing of ductile wires in 3D, suggests
a similar dependency for the 3D counterpart. Plasticity in thin sheets, on the other
hand, has been included in recent numeric studies on crumpling [124, 223], but was
found to have a somewhat less dramatic effect than for wires, presumably due to
the reduced spatial freedom. The computational models cited above were strongly
limited in the simplistic way they approximated the irreversible, three-dimensional
material response under yield: the degrees of freedom were decoupled in the nonlin-
ear constitutive modeling, and one-dimensional elasto-plasticity was implemented
in a subset of them.

Coupled three-dimensional elasto-plasticity is a notoriously difficult problem
to solve in the context of thin beams and shells, especially in combination with
strain hardening. The concept is fundamentally inconsistent with the assumptions
made to develop reduced-dimensionality models using stress resultants. In the
elastic regime, all material points across the structural thickness obey the same
elastic field equations, allowing them to be integrated analytically in the thickness
direction under given kinematic assumptions to yield resultant fields. The same
does not hold in elasto-plasticity, where different points in the cross section are in
different elastic or plastic states. Even the definition of a consistent yield surface in

117
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stress resultant space under the assumption of ideal plasticity, i.e. without strain
hardening, is a very non-trivial task for thin shells [23, 183], let alone cases that
include hardening. A serious amount of literature is available on how to cope with
these difficulties in a number of different ways, including techniques to capture the
variation across the thickness by numerical integration or partition into a layered
“sandwich”, and iterative return mapping procedures. For a concise overview, see e.g.
refs. [8, 52, 111] and references therein. Needless to say, such methods typically come
with substantial computational costs.

Here, a simplification is proposed for thin elasto-plastic filaments, based on the
concept of plastic hinges, that sidesteps the aforementioned difficulties by employing
a particularly convenient ellipsoidal approximation of the yield surface in coupled
stress resultant space. Together with linearized hardening laws, this enables a direct
solution of the return mapping problem without iterative procedures and without
the need to distinguish different cases near creases of multi-surface yield functions.
The focus is on simplicity and computational efficiency, without decoupling the
degrees of freedom, in line with the assumptions of the underlying kinematic theory.
Specifically, the plasticity model is characterized by the following assumptions:

• Yield condition. – The VON MISES yield surface is approximated in stress resul-
tant space.
• Hardening law. – Linear strain hardening is assumed, which is essential for

non-iterative return to the admissible region. To account for the BAUSCHINGER
effect, isotropic hardening is complemented by kinematic hardening.
• Flow rule. – A rate-independent associative flow rule is assumed. For viscoplas-

tic regularization, it is trivial to extend the algorithm by introducing a relaxation
time in the return mapping in Section 6.1.3 [202].

6.1 A stress resultant plasticity model for thin filaments

6.1.1 One-dimensional constitutive laws

In a first step, each of the four beam degrees of freedom (torsion, bending in two
directions and axial compression/tension) is considered separately to determine
the respective plastic resultants, i.e., the stress resultants at which the plastic hinge
yields under unidirectional deformation purely in the respective mode. Suppose
linear strain hardening at each material point in any beam cross section with isotropic
hardening modulus H iso and kinematic hardening modulus Hkin. The stress-strain
curve at each of these points is then given by a linear elastic regime with slope E,
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and a linear hardening regime with slope SE < E, where [202]

S =
Hkin +H iso

E +Hkin +H iso
. (6.1)

Let x be the axis perpendicular to the cross section under consideration. The torque
T about x resulting from pure torsion τ reads

T =

∫
A

σ13(r′)r′ dA =

∫ 2π

0

∫ r

0

σ13(r′)r′2 dr′ dϕ (6.2)

where σ13(r′) = Gr′τ is the torsional stress at distance r′ from the centerline (see
equation (2.37b)). Denote by σY the yield stress of the isotropic material in uniaxial
tension. The circular cross section is divided into a circular inner elastic region
0 ≤ r′ ≤ rY, where 6σ13(r′)2 ≤ σ2

Y in VON MISES plasticity, and an outer plastic rim
rY < r′ ≤ r, where all material points have yielded, as shown in Fig. 6.1a. The yield
radius rY is defined by 6σ2

13(rY) = σ2
Y:

rY(τ) =
σY√
6Gτ

. (6.3)

Conversely, the torsion required to let the cross section yield at radius r′ = rY is

τY(r′) =
σY√
6Gr′

. (6.4)

Using the point-wise bilinear stress-strain relationship with equation (6.1), the torque
as a function of torsion can be integrated over the two regions, according to

T (τ) = 2π

∫ min{r,rY}

0

Gr′3τ dr′ + 2π

∫ r

min{r,rY}

σY√
6
r′2 + SGr′3

[
τ − τY(r′)

]
dr′

= SGJτ + (1− S)Gτ
π

2

[
min{r, rY}4 +

4

3

(
r3 −min{r, rY}3)rY

]
.

(6.5)

This is the exact nonlinear torque-torsion relationship for linear hardening, and it is
plotted in Fig. 6.1c. For computational reasons mentioned in the introductory part of
Chapter 6, it is replaced here by its optimal bilinear approximation in stress resultant
space,

T2(τ) =

{
GJτ if τ ≤ λτY(r)

GJ
(
λτY(r) + S

[
τ − λτY(r)

])
otherwise

. (6.6)

The only remaining unknown is the effective average yield multiplier λ, which can
be determined by imposing correct asymptotics. In the limit of a fully plastic cross
section, the bilinear approximation must coincide with the exact nonlinear torque-
torsion relationship:

lim
τ→∞

T (τ)

T2(τ)
= 1. (6.7)
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Figure 6.1: Stress resultant plasticity model. Elasto-plastic filament cross section in
pure twist (a) and uniaxial bending (b). The gray regions are plastic, while the inner
white region is elastic. Exact stress-strain relationship for linear hardening in stress
resultant space for pure torsion (c) and uniaxial bending (d) (thick line) and their
optimal bilinear approximations T2 and M2 (thin lines).

Substituting equations (6.5) and (6.6) into this condition yields the sought λ = 4/3,
which is a purely geometric factor independent of the material properties. The yield
point of the plastic hinge in torsion is thus given by the plastic torque

TY = T2

(
λτY(r)

)
= λ

σYJ√
6r

=
2π

3
√

6
σYr

3. (6.8)

To arrive at the plastic moment in uniaxial bending, the procedure is analogous.
Bending with centerline curvature κy about the y-axis yields a moment of

My =

∫
A

zσ11(z) dA (6.9)

where σ11(z) = −Ezκy is the bending stress distribution across the beam thickness
in EULER–BERNOULLI theory (see equation (2.37c)). Similar to torsion, the wire cross
section consists of two parts, an central elastic region 0 ≤ |z| ≤ zY, where σ11(z) ≤
σY, and an inner/outer plastic lid zY < |z| ≤ r, where all material points have yielded,
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as illustrated in Fig. 6.1b. The yield height zY is defined by σ2
11(zY) = σ2

Y:

zY(κy) =
σY

Eκy
. (6.10)

Conversely, the curvature required to let the cross section yield at height±z = zY is

κY(z) =
σY

Ez
. (6.11)

The exact nonlinear moment-curvature relationship for linear hardening hence fol-
lows by integration over the cross section as

|My(κy)| = 4

∫ zm

0

∫ √r2−z2
0

Ez2κy dy dz + 4

∫ r

zm

∫ √r2−z2
0

σYz + SEz2
[
κy − κY(z)

]
dy dz

= SEIκy + (1− S)Eκy

[
r4

2
tan−1

(
zm

ym

)
+ zmym

(
z2

m −
r2

2

)
+

4

3
y3

mzY

]
(6.12)

where zm = min{r, zY} and ym =
√
r2 − z2

m are used for shorthand notation. Equa-
tion (6.12) is plotted in Fig. 6.1d. Analogous to equation (6.6), a bilinear approximation
of the form

|M2(κ)| =

{
EIκ if κ ≤ λκY(r)

EI
(
λκY(r) + S

[
κ− λκY(r)

])
otherwise

(6.13)

is used. Substituting equation (6.12) and equation (6.13) into the asymptotic conver-
gence condition

lim
κy→∞

My(κy)

M2(κy)
= 1 (6.14)

yields λ = 16/3π, so that the sought plastic bending moment for the hinge reads

MY =
∣∣M2

(
λκY(r)

)∣∣ = λ
σYI

r
=

4

3
σYr

3. (6.15)

For the fourth and final internal degree of freedom, axial tension or compression,
the situation simplifies substantially, as the stress resultant of equation (2.37a),

N =

∫
A

σ11 dA = EAζ, (6.16)

is constant across the beam cross section, and thus all points yield simultaneously,
implying that the exact stress-strain relationship for linear hardening is bilinear also
in stress resultant space. Therefore λ = 1, and the plastic force is given by

NY = λσYA = πσYr
2. (6.17)
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6.1.2 Yield condition

Various stress resultant yield criteria have been proposed as approximations to the
VON MISES yield surface. A very common one is [170, 189]√(

T

TY

)2

+

(
Mz

MY

)2

+

(
My

MY

)2

+

(
N

NY

)2

− 1 = 0 (6.18)

where, for the moment being, the hardening variables and plastic strains are omitted.
The computational disadvantage of this choice is that return mapping with work
hardening requires costly iterative techniques. A simple and expedient alternative,
that permits a single-step return to the admissible region even in combination with
hardening, is obtained by not taking the square root in equation (6.18), which renders
the yield surface an ellipsoidal approximation in four-dimensional resultant space.
Clearly this overestimates the yield point in combined traction and torsion/bending,
but for packing problems with very thin filaments such as in Chapter 5, the beam
can be considered almost inextensible (N ≈ 0), so that the square root becomes
irrelevant and equation (6.18) is retrieved in close approximation.

In order to apply the standard direct radial return mapping procedure [202], all
four degrees of freedom are rescaled to effective strains εeff such that the yield stress
is given by the YOUNG’s modulus times the effective strain at yield,

σY = Eεeff
Y . (6.19)

By recalling from equation (6.8) that the torque at the effective yield point of the
plastic hinge reads TY = GJτ one immediately finds that equation (6.19) holds with

εeff =
G

λE
rτ =

3
√

6

8(1 + ν)
rτ =: ατ. (6.20)

The analogous calculation carried out on equation (6.15) gives the effective bending
strain

εeff =
1

λ
rκy =

3π

16
rκy =: βκy, (6.21)

and by virtue of equation (6.17) the trivial identity

εeff = ζ (6.22)

follows for the fourth variable, axial strain. In this transformed stress-strain space,
the approximate ellipsoidal VON MISES yield condition is recast into the convenient
spherical form

σeff

σY

− 1 = 0 (6.23)

in which

σeff = Eεeff , εeff =
∥∥εeff

∥∥, εeff = [ατ, βκz, βκy, ζ]T, (6.24)

according to equations (6.20) to (6.22).
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Figure 6.2: Effective one-dimensional plasticity model with combined linear kine-
matic and isotropic hardening, visualized for an example of cyclic loading. The plastic
strain εp, the kinematic back strain εkin and the isotropic hardening strain εiso are
labeled for point 1 , at the beginning of unloading.

6.1.3 Return mapping

With the yield condition established in equation (6.23), it becomes straightforward
to implement elasto-plastic beams with linear hardening efficiently by means of the
standard radial return algorithm [202]. The full step-by-step procedure is given here
for completeness. Up to nine additional internal variables are required per beam
element to store the current plastic state:

• Four plastic strains εp = [εp
1, ε

p
2, ε

p
3, ε

p
4]T which hold the residual deformations

after complete unloading
• Four kinematic back strains εkin =

[
εkin

1 , εkin
2 , εkin

3 , εkin
4

]T that represent the cen-
ter of the elastic domain, which moves in the transformed strain space due to
kinematic hardening
• A non-negative isotropic strain εiso ≥ 0 that stores the increase of the elastic

domain due to isotropic hardening

All of them vanish in the initial, stress-free configuration. A one-dimensional projec-
tion of the work hardening model and its internal variables is visualized in Fig. 6.2
for convenience. Given a new trial state in the corotated frame for element e,
ûe = [ϕ̂1, ψ̂1, θ̂1, û12, ϕ̂2, ψ̂2, θ̂2]T, rescale it to obtain the effective strains along the
element,

εeff =

[
α
ϕ̂1 − ϕ̂2

ae
, β

ψ̂1 − ψ̂2

ae
, β

θ̂1 − θ̂2

ae
,
û12

ae

]T
. (6.25)

Subtract the plastic and kinematic strains:

ε = εeff − εp − εkin. (6.26)
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Evaluate the yield condition:

f = ‖ε‖ − εeff
Y − εiso, (6.27)

where εY is the effective yield strain from equation (6.19). If f > 0, the current
trial state lies outside of the admissible domain, and is hence projected onto its
boundary by performing the following steps. Compute the change in the consistency
parameter associated with the projection,

∆γ =
Ef

E +Hkin +H iso
, (6.28)

and the direction vector
n =

ε

‖ε‖
. (6.29)

Update the internal variables according to

εp ← εp + ∆γn, (6.30a)

εkin ← εkin + ∆γ
Hkin

E
n, (6.30b)

εiso ← εiso + ∆γ
H iso

E
, (6.30c)

which results in f = 0. Finally, independent of whether the plastic variables needed
to be updated or not, subtract the plastic strains from the element DOFs to obtain
the purely elastic part, which is then used to compute the forces and moments in
equation (3.67):

ûe ← ûe −
[
ae
2α
εp

1,
ae
2β
εp

2,
ae
2β
εp

3, aeε
p
4, −

ae
2α
εp

1, −
ae
2β
εp

2, −
ae
2β
εp

3

]T
. (6.31)

6.2 The effect of plasticity on filament packing

In two-dimensional systems, wire ductility is known to act as a local stabilizer in
dense packings, leading to more curvature in the inner regions of the cavity [213].
Due to the missing third dimension, spatial constriction can essentially be skirted
only by bending in a single direction, which is why plastic bending soon governs local
arrangements. In three dimensions, on the other hand, more spatial alternatives
are available to bypass states of high stress by lateral evasion. Consequently, it
seems reasonable to assume that plasticity affects filament packing processes less
dramatically in 3D than in 2D. As already mentioned in the introductory part of this
chapter, however, quantitative arguments in this direction are still missing to date,
with the exception of a single experimental realization presented by GOMES et al.
[72], which is shown in Fig. 6.3.
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Figure 6.3: Three-dimensional packing of a ductile wire in a rigid sphere. The wire is
made of a tin/lead alloy and was fed from opposite sides into a rigid hollow sphere
of size q = 50, of which only the lower half is pictured. Photograph from ref. [72],
published under a Creative Commons license CC BY-NC.

In this final section, a first step toward a more systematic study of ductile filament
packings in three-dimensional spatial confinement is made by employing the elasto-
plastic constitutive model developed in Section 6.1. The results obtained so far are of
merely preliminary character and are presented below to provide a starting point for
further research on the subject.

In a series of computer simulations, an intrinsically straight wire was perpendicu-
larly injected into a rigid spherical cavity. The relevant simulation parameters were
fixed to an effective system size of q = R/r = 50, a static COULOMB friction coefficient
of µs = 0.3 (µd = 0.9µs as before), a kinematic hardening modulus of Hkin/E = 5%,
and no isotropic hardening. The dimensionless yield strength εY = σY/E was varied
systematically to explore how it affects the packing process. For inertial effects to
be insignificant for the result, the injection speed had to be slowed down up to ten
times compared to the purely elastic simulations carried out in Sections 5.1 and 5.2.

As the ductile wire is fed in, it coils up along the inner wall of the cavity, where
the radius of curvature is largest, very much like in the elastic limit (recall Fig. 5.1).
This stands in sharp contrast to the two-dimensional case, where helical coils are
inhibited because the filament is forced to stay planar, making a frequent alternation
between clockwise and counter-clockwise bending necessary, which eventually gives
rise to a characteristic loop pattern at sufficiently low plastic moments. In 3D, no
such reorientation is observed at moderate packing densities, no matter how small
the yield strength. Figures 6.4 and 6.5 reveal three regimes along the axis of varying
yield points, that are very similar in morphology, but vastly different in energetics.
Plasticity kicks in below a yield curvature of κY = εY/β ≈ 2.5/R, with β from
equation (6.21). This corresponds to the maximum curvature encountered on the
juvenile piece of wire that has just entered the container but is not yet part of the coil.

http://creativecommons.org/licenses/by-nc/3.0/
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Figure 6.4: Influence of the yield point on filament packing energetics. Both the
filament bending energy (a) and the pressure exerted on the spherical container (b)
take a minimum at εY ≈ 0.002, independent of the packing densities examined here
(φ ≤ 10%). Arrows indicate the snapshot positions of Fig. 6.5.

As the yield strength is further decreased, the total elastic bending energy rapidly
drops, indicating that more and more of the local wire curvature κ = κe + κp is due
to a permanent plastic deformation

κp =
1

β

√
(εp

2)2 + (εp
3)2. (6.32)

Not surprisingly, the pressure p exerted by the packed filament on the cavity wall
sharply decreases accordingly. At a yield strain of εY ≈ 0.002 (corresponding to
κY ≈ 1/6R), a minimum is attained in which the bending energy and bulk pressure
almost vanish. Figure 6.5 shows why this is the case: Early plastic yielding allows
the juvenile filament part to permanently bend with higher curvature than dictated
by the cavity radius, at no energetic penalty. Consequently, the plastic coil does not
bear strongly against the confining wall and packing is focused more on the interior
regions. εY = 0.002 is a typical value for, e.g., various copper alloys such as brass. As
the yield strain is lowered even further to the regime of more ductile materials like
aluminium or tin (εY ≈ 0.0002), the yield curvature is exceeded nearly everywhere in
the packing, letting the packing process be governed by the hardening law almost
entirely. Since linear work hardening is assumed here, the constitutive relationship
therefore becomes effectively linear again and the ordered coiling of high εY recurs
at low εY, which is evident from Fig. 6.5. Aligned coiling at minimum curvature is
thus a reentrant feature in this regard. Consequently, the bending energy increases
again to level off at a value determined by the hardening modulus (Fig. 6.4a) and
the bulk pressure exhibits a similar behavior (Fig. 6.4b).

Although the packing morphologies at very low and high yield strengths are
visually indistinguishable, their internal stress states differ fundamentally. At low



6.2. THE EFFECT OF PLASTICITY ON FILAMENT PACKING 127

εY = 2×10−4 εY = 2×10−3 εY = 2×10−2

0

0.5

1

1.5

2
Rκp

Figure 6.5: Influence of the yield point on filament packing morphology. The coiling
morphology of thin wires with very low yield strength (left) is almost indistinguish-
able to that of nearly elastic wires (right). In between (middle), a regime exists where
coils of higher curvature are formed, allowing the wire to detach from the inner wall.
Simulation snapshots for Fig. 6.4 at a packing density of φ ≈ 10%. The dimensionless
plastic curvature is shown in color.

εY, the plastic curvature is close to the value preferred by the local geometrical
environment (1/(R−r) in the outermost layer), whereas it naturally approaches zero
as εY gets closer to the elastic limit. This accentuates how elasto-plasticity decouples
form from potential energy: Different internal stress levels do not necessarily imply
different coiling, and conversely, similar shapes can store vastly different amounts of
elastic energy.

These preliminary results offer first insights into the packing of elasto-plastic
filaments in constrained three-dimensional spaces. Unlike in 2D [213], dry friction
is not crucial for the packing process in rigid containers—the data presented above
is largely insensitive to changes in µ. In this sense, plastically deforming wires
are no different than purely elastic ones. The interplay of friction and filament
yielding in deformable membranes, however, remains an open question, as does
the packing at higher volume densities. It should also be noted that the pattern
found experimentally (Fig. 6.3) significantly deviates from the coiled morphology
observed here (Fig. 6.5), which is seemingly owed to the precise form of the nonlinear
constitutive relationship. To test this hypothesis, different hardening moduli, and
possibly also nonlinear hardening, should be examined in future research, as it
appears to have a dramatic influence on the packing.

Understanding the effect of ductility on wire packing problems is particularly
important in the optimal design of detachable coils for the stable embolization
of saccular aneurysms. Strong cavity pressure might lead to further damage on
the arterial wall, and highly ordered alignment of coils is undesirable for complete
occlusion at moderate packing densities. With a more detailed quantitative analysis,
it might be possible to formulate precise recommendations for the best choice of
geometrical and material properties.
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Chapter 7

Outlook and Conclusion

7.1 Extensibility and future prospects

Large deformation mechanics of thin objects is an extremely multifaceted topic, and
apart from the questions raised in the previous chapter, many questions that go
beyond the scope of the present work can be asked, with both practical and scientific
relevance. A short list of open problems that can be tackled easily without any or
with only minor extensions of the presented finite element program is given below,
together with a summary of preliminary results where available.

Packing and statistical properties of filaments with intrinsic curvature or twist

In the framework of large-scale filament packing, a comprehensive study on the
morphological phase space of strongly curved or twisted strings is still missing. Up
to this point, moderate intrinsic curvature has been used to couple bending and twist
only weakly, i.e., with a radius of curvature that is no smaller than the confinement
radius. There are, however, many systems where intrinsic curvature is much higher.
Various forms of DNA come to mind, especially fractal globules [82, 120, 146].

A related phenomenon occurring in helical structures such as tendrils and tele-
phone cords is helical perversion [74, 143], which describes the spontaneous change of
handedness in helices. In a preliminary computer simulation, an initially straight elas-
tic rod of net length L/r = 8×104 with net intrinsic radius of curvature Rint/r = 10
was released to develop such perversions. Its relaxed static end configuration is
shown in Fig. 7.1a, where a change of handedness every few windings is in evidence.
The filament cannot fully relax to a stress-free configuration due to excluded volume,
thus taking a locally helical shape with radius ≈ Rint and pitch 2r. The torsion of
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Figure 7.1: Helical perversion of a rod with intrinsic curvature. (a) Locally, the torsion
ϑ1 can be significantly larger than that of an equivalent dense helix, τ (see equa-
tion (7.1)). (b,c) Large-range scaling of the radius of gyration and the point-to-point
distance with the axial separation S. The straight lines correspond to an exponent
of ν = 2/3.

such a helix is
τ =

r/π

(r/π)2 + (Rint)2
, (7.1)

which is used for normalization of the torsion ϑ1 in the color scale. Each perversion
induces a change of direction at the helical length scale, resulting in a relatively
disordered global path of the structure. The Euclidean distance of two mass points
separated by a distance S along the rod centerline,

d(s, S) = ‖x(s+ S)− x(s)‖, s, s+ S ∈ [0, L], (7.2)

as well as the radius of gyration,

R2
g(s, S) =

1

S

∫ s+S

s

‖x(s′)− x(s, S)‖2
ds′, (7.3a)

x(s, S) =
1

S

∫ s+S

s

x(s′) ds′ (7.3b)
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B

Figure 7.2: Packing of a pre-curved cord. Simulation snapshot at a packing density
of φ ≈ 13% of an intrinsically curved wire with Rint/r = 10 that was fed through a
small hole into a rigid cube with edge length B/r = 80.

are consistently found to scale as

〈Rg(s, S)〉 ∼ 〈d(s, S)〉 ∼ Sν . (7.4)

with exponent ν ≈ 2/3, as shown in Fig. 7.1b,c. 〈·〉 = (1/L)
∫ L

0
· ds denotes the

average over the filament length. The global path does hence not follow a random
walk, for which ν = 1/2. It could be worthwhile to verify this presumed exponent
with simulations on longer rods, to investigate its dependence on the ratio Rint/r,
and to clarify its relation to the FLORY exponent for self-avoiding polymers in three
dimensional space, ν = 3/5 [63].

Helical perversions also emerge when an intrinsically curved filament is injected
into spatial confinement. Figure 7.2 shows an example simulation in a box cavity.
A systematic study of entanglement, interlocking and maximum packing density
of helical wires as a function of helical radius and pitch could be of particular value
for the medial industry dedicated to the optimal design of detachable microcoils for
the stable surgical occlusion of cerebral aneurysms. All required features are readily
implemented in the presented finite element program; intrinsic rotations can be set
via equation (3.63).

Unpacking and disentanglement of packed filaments

A natural next step in the study of filament packing and entanglement is to ex-
plore the reverse process: extraction and disentanglement. Although long filaments
tightly packed in spatial confinement can be extracted without obstruction, as al-
ready mentioned in Section 5.1.2, abrupt removal of the container does not allow
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Figure 7.3: Disentanglement of a released coil. Computer simulation of a packed
rigid sphere (q = 40, packing density φ ≈ 50%) which is instantaneously removed.
Even though packed elastic wires aren’t knotted, removal of the confinement doesn’t
lead to entire disentanglement when friction is involved.

the elastic thread to completely disentangle without further external effort. Very
heterogenous tangled coils are left behind, whose structure is expected to depend
strongly on the initial packing density and friction. An example configuration is
pictured in Fig. 7.3. A better understanding of this dependency could shed some light
on why it can be so cumbersome to unsnarl even seemingly ordered coils, and might
be useful e.g. for DNA extraction.

Fracture and segmentation

Perhaps even more prevalent in Nature and our daily life than the packing of a single
long filament is that of multiple ones. A bowl of pasta (Fig. 7.4) or a haystack are just
two out of many examples. Segmentation can also occur spontaneously as a mode
of material failure. A question that has not been pursued exhaustively is the effect
of segment length and fracture on packing processes, in either rigid or deformable
confinements. Figure 7.5 shows a preliminary two-dimensional simulation of a
ductile and fragile wire injected into a circular container. Fragmentation clearly has
a increasing effect on the maximum packing density, as is breaks up loops at the
point of highest curvature, allowing the filament to occupy space that is otherwise
excluded by the inner void of loops. Whether the same holds in 3D, too, remains
unclear. The relationship of such configurations to the random packing of rigid rods
[167], and the impact of flexibility of segmented fibers on the maximum packing
fraction, which is barely known [115], could be studied easily on a large scale with the
presented computational model.
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Figure 7.4: A bowl of spaghetti. Left: Photography copyright by STUART MONK / 123RF
Stock Photo. Right: Simulation in which a pliable segmented cord (the spaghetti) was
dropped into an oblate cavity (the bowl) under the effect of gravity and significant
frictional forces.
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Figure 7.5: Fracture of a ductile wire in a two-dimensional cavity. The relevant simula-
tion parameters are q = 100, µ = 0.5, a plastic yield strain of σY/E = 1%, a kinematic
hardening modulus of Hkin/E = 5%, and a fracture strain of σF/E = 1.2%. In color,
the signed plastic curvature κp is shown, rescaled by the wire radius r.
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7.2 Summary and significance

When thin deformable bodies grow or are spatially confined to length scales that
are much larger than their thickness, but much shorter than their longitudinal equi-
librium extent, they develop a wealth of complex shapes and patterns, in the first
instance owing to their low bending rigidity. Nature and our daily environment are
rife with examples. As soon as deformations are so large that the objects come
in contact with themselves or with one another, contact phenomena give rise to
even more morphological diversity. The presented thesis considered shape transfor-
mation and pattern formation due to different kinds of growth, confinements and
mechanical interactions of thin bodies. The main focus was on a specific subclass of
problems that couples these effects in a particularly challenging way: the packing of
long filaments in flexible cavities.

In the first part, a highly capable finite element program was developed to study
the dynamic morphogenesis, interplay and packing of thin wires and shells under-
going very large deformations and growth. It was thoroughly implemented and
verified, and its capabilities and limitations were assessed. In the second part, nu-
merical simulations were carried out to quantitatively explore the morphological
phase space under the aforementioned constraints on a series of example settings.
For each, the respective non-dimensional geometric and material control parameters
were identified that govern the process of shape transformations or packing. A set
of distinct morphological phases were found, and their characteristic statistical and
energetic properties were measured and compared. For the rigorous definition of
these phases and the transitions between them, appropriate order parameters were
defined and the associated broken symmetries were identified. The results from com-
puter simulations are fully consistent with experiments conducted on off-the-shelf
materials at the human length scale.

Different types of growth give rise to very different shapes. A uniformly and
isotropically swelling thin elastic sheet exhibits the exact same crumpling behavior
in spatial confinement as an invariant sheet under external compression. Differential
in-plane growth, on the other hand, lets even an unconstrained shell buckle out of
plane. The fractal dimension of wrinkled edges of beet leaves and torn plastic sheets,
that are due to differential orthotropic growth with steep metric gradients, was
determined and compared to related self-similar curves. A broad family of differential
orthotropic growth fields yield unimodal boundary wrinkling reminiscent of flower
petals, with a universal scaling law for the number of wrinkles. Thin wires, however,
don’t offer the same amount of freedom due to their quasi-one-dimensionality,
which essentially limits the scope of growth to the axial direction. Two extreme
cases of axial filament growth in constrained spaces were studied: localized to a
point (in the form of injection from outside) and uniformly distributed.
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Previous scientific work on the filament packing problem concentrated on the
ideal case of rigid spherical confinement, precluding their results from being directly
applicable to biophysical and medical systems in which long threads are enclosed by
deformable membranes. In the present thesis, for the first time, the morphological
phase space of filament packings was explored in a regime that is conceptually very
different. A regime where the growing filament can strongly deform the cavity, allow-
ing for a surprisingly enriching mutual feedback between the two structures. This
change of paradigm delivers dramatic consequences. While friction has relatively
little influence on the filament coiling in rigid three-dimensional spheres, it plays
a key role in flexible shells. Even moderate frictional forces lead to a large amount
of disorder in the packing, effectively inhibiting ordered coiling and bundling of the
thread. This novel insight sheds light on daily mysteries like the spontaneous entan-
glement of earphone cords in one’s pockets. In combination, container flexibility and
friction can give rise to bundling, coiling, folding or crumpling, to order or disorder,
and to the spontaneous breaking of various symmetries. Scaling laws have been
found that characterize or separate these different regimes, and power laws unveiled
hierarchic or self-similar processes in the packing of flexibly confined filaments.

The presented findings establish a paradigm for understanding morphogenesis
of thin filaments in a multitude of biological mechanisms. It was shown how Nature
may employ flexible envelopment and low frictional forces as a mechanical trick to
realize spontaneous bundling and alignment of confined threads, as it is observed in
giant vesicles, erythrocytes, hagfish cells etc., without need for filament interlinking.
On the technological side, the morphologies discovered in flexible confinement
should find direct impact in nanorobotics and nanomotors, for which the reported
folding of elastic rings provides a new method to stably store and deploy mechanical
work in tightly confined spaces. Unlike linear nanowires, which coil into quasi-two-
dimensional spirals or tori, ring-like filaments fold in a three-dimensional fashion
and possess no sharp ends that could pierce their environment. Such systems need
to be designed with as little friction as possible in order to avoid energetically and
spatially less optimal disordered configurations.

Growth, packing and mutual interaction of slender objects were addressed from
a continuum mechanical perspective, considering shapes and shape transformations
as they emerge from “dead” physical principles even in living organisms—or as the
famous mathematical biologist, whose pioneering ideas have served as a guiding
keynote for this work, put it:

Cell and tissue, shell and bone, leaf and flower, are so many portions of
matter. [...] Their problems of form are in the first instance mathematical
problems, their problems of growth are essentially physical problems, and
the morphologist is, ipso facto, a student of physical science.

– D’ARCY WENTWORTH THOMPSON, On Growth and Form (1917)
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Appendix A

Individual numerical realizations

To arrive at the quantitative morphological phase diagram in Fig. 5.31, a series of
numerical simulations at different phase space parameters were carried out. Each of
them produced one of the morphologies as detailed in Section 5.3, and is represented
in Fig. A.1 by a colored data point. Black symbols denote simulations that yielded the
mixed configuration described in Section 5.3.

The phase boundaries were obtained from a fit to these individual realizations. In
the frictionless case, the phase boundary is well approximated by a quadratic curve
in log(f)− log(γ) space at all fixed system sizes q examined, and thus this functional
relationship is used for the least-squares fits at µ = 0.

In Fig. A.1 the classical morphology is bounded toward large shell flexibilities f by
a dashed line to indicate where the stability criterion l� q2 mentioned in Section 5.3
is no longer fulfilled and the filament detaches from the confining wall to buckle
inward. The uncolored area in the phase diagram may hence be considered a fifth
morphology, and the transition from the classical and spiral phases to this buckled
phase can be quantified by considering as order parameter the fraction of filament
length that is not in contact with the enclosing shell (at fixed l). It vanishes for the
classical and spiral morphologies while taking a strictly positive value in the buckled
configurations.
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Figure A.1: Morphological phase diagram with individual realizations for different
system sizes q. (a-c) Cuts through the phase space for the frictionless case (µ = 0).
(d-f) Cuts through the phase space for thin shells (γ = 104).
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[151] M. M. MÜLLER, M. BEN AMAR, and J. GUVEN. Conical Defects in Growing
Sheets. Phys. Rev. Lett. 101 (2008), 156104.

[152] J. NAJAFI, N. STOOP, F. WITTEL, and M. HABIBI. Ordered packing of elastic wires
in a sphere. Phys. Rev. E 85 (2012), 061108.

[153] A. NEEDLEMAN. Inflation of spherical rubber balloons. Int. J. Solids Struct. 13
(1977), 409–421.

[154] M. NEGAHBAN, A. GOEL, P. MARCHON, and A. AZIZINAMINI. Geometrically
Exact Nonlinear Extended-Reissner/Mindlin Shells: Fundamentals, Finite
Element Formulation, Elasticity. Int. J. Comput. Meth. Eng. Sci. Mech. 10
(2009), 430–449.

[155] I. NEMHAUSER, J. JOSEPH-SILVERSTEIN, and W. D. COHEN. Centriole as microtubule-
organizing centers for marginal bands of molluscan erythrocytes. J. Cell. Biol.
96 (1983), 979–989.

[156] A. G. NETO, P. M. PIMENTA, and P. WRIGGERS. Contact between rolling beams
and flat surfaces. Int. J. Numer. Meth. Eng. 97 (2014), 683–706.

[157] N. M. NEWMARK. A Method of Computation for Structural Dynamics. J. Eng.
Mech. Div. 85 (1959), 67–94.

[158] J. NOCEDAL and S. J. WRIGHT. Numerical optimization. New York: Springer,
1999.

[159] T. ODIJK. Statics and dynamics of condensed DNA within phages and glob-
ules. Phil. Trans. R. Soc. Lond. A 362 (2004), 1497–1517.

[160] N. H. OLSON, M. GINGERY, F. A. EISERLING, and T. S. BAKER. The structure of
isometric capsids of bacteriophage T4. Virology 279 (2001), 385–391.

[161] OpenMP Application Program Interface Version 3.0. OpenMP Architecture
Review Board. 2008.

[162] C. ORAN. Tangent Stiffness in Plane Frames. J. Struct. Div. 99 (1973), 973–985.
[163] C. ORAN. Tangent Stiffness in Space Frames. J. Struct. Div. 99 (1973), 987–1001.
[164] O. OTTO, S. STURM, N. LAOHAKUNAKORN, U. F. KEYSER, and K. KROY. Rapid

internal contraction boosts DNA friction. Nat. Commun. 4 (2013), 1780.
[165] H. PARISCH. A continuum-based shell theory for non-linear applications. Int.

J. Numer. Meth. Eng. 38 (1995), 1855–1883.
[166] A. S. PETROV and S. C. HARVEY. Packaging Double-Helical DNA into Viral

Capsids: Structures, Forces, and Energetics. Biophys. J. 95 (2008), 497–502.

http://dx.doi.org/10.1007/s10659-010-9266-5
http://dx.doi.org/10.1007/s10659-010-9266-5
http://dx.doi.org/10.1038/ncomms2311
http://dx.doi.org/10.1038/ncomms2311
http://dx.doi.org/10.1103/PhysRevLett.101.156104
http://dx.doi.org/10.1103/PhysRevLett.101.156104
http://dx.doi.org/10.1103/PhysRevE.85.061108
http://dx.doi.org/10.1103/PhysRevE.85.061108
http://dx.doi.org/10.1016/0020-7683(77)90036-1
http://dx.doi.org/10.1080/15502280903108032
http://dx.doi.org/10.1080/15502280903108032
http://dx.doi.org/10.1080/15502280903108032
http://dx.doi.org/10.1083/jcb.96.4.979
http://dx.doi.org/10.1083/jcb.96.4.979
http://dx.doi.org/10.1002/nme.4611
http://dx.doi.org/10.1002/nme.4611
http://www.worldcat.org/search?q=isbn%3A0-387-98793-2
http://dx.doi.org/10.1098/rsta.2004.1385
http://dx.doi.org/10.1098/rsta.2004.1385
http://dx.doi.org/10.1006/viro.2000.0735
http://dx.doi.org/10.1006/viro.2000.0735
http://dx.doi.org/10.1038/ncomms2790
http://dx.doi.org/10.1038/ncomms2790
http://dx.doi.org/10.1002/nme.1620381105
http://dx.doi.org/10.1529/biophysj.108.131797
http://dx.doi.org/10.1529/biophysj.108.131797


REFERENCES 149

[167] A. P. PHILIPSE. The Random Contact Equation and Its Implications for (Col-
loidal) Rods in Packings, Suspensions, and Anisotropic Powders. Langmuir 12
(1996), 1127–1133.

[168] M. PINOT, F. CHESNEL, J. KUBIAK, I. ARNAL, F. NEDELEC, and Z. GUEROUI. Effects
of Confinement on the Self-Organization of Microtubules and Motors. Curr.
Biol. 19 (2009), 954–960.
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