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Abstract

The problem of critical slowing down is reviewed and a comprehensive description of
how to measure the efficiency of Monte Carlo algorithms in practice is given. Special
regard is paid to the O(N) and CPN−1 σ models. The dynamic critical exponents
of Wolff’s single-cluster algorithm are determined on the two-dimensional O(3) and
CP3 models to confirm its efficiency on the former and inefficiency on the latter. The
idea of worm algorithms is explained on the exemplary Ising model and the analogous
formalism based on the high-temperature expansion by Chandrasekharan is derived for
the CPN−1 model with general N . An efficient computer implementation is provided
in detail, and the algorithm is verified. Consistency with existing numerical results is
reported for CP1 in two dimensions to very high precision, together with a dynamic
critical exponent of z = 0.32(3) for winding numbers and z ≈ 0 for energy and magnetic
susceptibility. The algorithm is found to lack ergodicity for N > 2, and the problem
is quantified numerically. An effort to include the disconnected piece of the CPN−1

Green’s function into the sampling scheme results in a sign problem.
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1 Introduction

1.1 Motivation

The lattice approach to quantum field theory (QFT) is accompanied by the inherent
need for efficient Monte Carlo (MC) algorithms for near-continuum simulations. On
the journey of finding such for various problems in QFT, the (1+1)-dimensional O(N)
invariant non-linear σ models and CPN−1 models (chapter 2) serve as suitable toy
models. They share a set of fundamental properties with quantum chromodynamics
((3+1)-dimensional Yang-Mills theory), such as asymptotic freedom (chapters 2 &
4), or the presence of instanton solutions (CPN−1 for all N) [1]. The CPN−1 model
is subject to particular prominence also due to its equivalence to N -flavor quantum
electrodynamics (QED) [2].

Cluster algorithms such as the one by Wolff efface the problem of critical slowing
down (CSD, chapter 4) in the 2D O(N) model nicely [3–6], but unfortunately, it has
been argued in a no-go theorem [7] that a generalization of Wolff-type embedding
to models where an MC update has a fixed-point manifold with codimension higher
than one, which would be a first step towards lattice gauge theories, won’t be efficient.
Indeed, Wolff’s algorithm isn’t on the CPN−1 model (codimension 2).

In 1992, Hasenbusch and Meyer [8] proposed a multigrid MC algorithm for the two-
dimensional CP3 model which (almost) eliminates CSD. More recently, using the ideas
of dimensional reduction from D-theory, Beard, Pepe, Riederer and Wiese achieved to
construct a cluster algorithm for the CPN−1 model that doesn’t suffer from CSD at
all [9,10], at the painful cost of one additional lattice dimension however. The (somewhat
surprisingly) successful approach of worm algorithms by Prokof’ev and Svistunov [11]
on φ4 theory and a variety of universality classes during the last few years gives rise to
hope that the worm algorithm might also accelerate the CPN−1 model. Yet, the worm
algorithm in Prokof’ev and Svistunov’s formalism has never been outlined for the latter.
It is the major purpose of the present thesis to fill this gap.

However, just during the writing of this work, Wolff published an adaption of his loop
algorithm for the O(N) model [12], which is essentially a generalized worm algorithm
with an alternative implementation approach, to the CPN−1 model [13], showing that
critical slowing down can indeed be completely defeated.
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2 1.2. Preliminary Comments

1.2 Preliminary Comments

We restrict ourselves to the simple square lattice Λ with periodic boundary conditions,
i.e. in the following the lattice dimensionality is always D = 2. For convenience we
use equal lattice extents L in all dimensions, hence the spacetime volume is given by
V = |Λ| = L2. Furthermore we drop nondimensionalizations like L/a (where a is the
lattice spacing) and implicitly understand L and related quantities in dimensionless
lattice units. As is customary in lattice theories, site indices x ∈ Λ are implicitly
understood as vectors x ∈ {0, 1, ..., L − 1}D, or global indices taking scalar integral
values x ∈ {0, 1, ..., LD − 1}, whichever makes sense in the context.

Where not stated differently, we will give the standard error of the mean σ/
√
n,

where σ is the sample standard deviation from n measurements (i.e. from n independent
simulations), as statistical error bounds in brackets for any numerical results. This
corresponds to an approximate 68% confidence level (or slightly lower for small n, where
the Student’s t-distribution is to be considered).

In some cases we will provide the reduced chi-square statistic χ2
red as a measure for

the goodness of a fit, defined on a set of k data points {yi}1≤i≤k, each with standard
error ∆yi and a fitted value fi, as

χ2
red =

1
k − p

k∑
i=1

(
yi − fi

∆yi

)2

, (1.1)

where p denotes the number of fit parameters (and hence k− p is the number of degrees
of freedom). χ2

red > 1 indicates a poor fitting model (or underestimated errors), whereas
χ2

red < 1 is an indicator for over-fitting.

Be aware that a number of different quantities are identified by the same symbols in
the following. This is simply for consistency and is considered to enhance readability.
We denote them the way they are commonly denoted by in literature. Along many
other examples, the topological charge is represented by Q, which also stands for the
site integral in the worm algorithm. Such ambiguities are especially numerous with the
two models at hand, where we denote both actions by S, the couplings by β, etc. These
are of course not identical. Where we don’t explicitly repeat the meaning of certain
variables, it should be clear within the given context.

1.3 Program Implementation

All programs in this thesis were implemented in C++, with some postprocessing in
MATLAB. We used the lagged_fibonacci1279 pseudo-random number generator from
the Boost C++ libraries, which provides a good balance between sufficient performance
and high quality, for all our simulations. To avoid numerical trouble, our programs work
with double IEEE 754 floating point precision (64-bit), and even quadruple precision
(128-bit) for averaging and statistical evaluation.



2 The Spin Models

In this chapter we define the spin models and their statistical properties that were
studied for this thesis.

2.1 The O(N) Model

The non-linear lattice O(N) σ model (often just called O(N) model or N-vector
model) was first proposed by H. E. Stanley in 1968 [14, 15]. When discretized on a
lattice, it consists of a classical vector-valued spin field z with N real-valued components
and unit Euclidean length, i.e.

z(x) ∈ RN , N ∈ N0, ‖z(x)‖2 = 1 ∀x ∈ Λ = {0, 1, ..., L− 1}D. (2.1)

In the absence of a magnetic field, the lattice action usually reads

S = −β
∑
〈x,y〉

z(x) · z(y) (2.2)

with inverse temperature (or coupling) β, where the sum runs over all nearest-neighbor
coordinate pairs x, y. The name of the model origins from its invariance under global
O(N) transformations. It’s also worth mentioning that the O(N) model has special
names for the lowest values of N :

� N = 0: self-avoiding walk [16]

� N = 1: Ising model

� N = 2: XY model

� N = 3: Heisenberg model

In two spacetime dimensions, the Ising model has a second-order phase transition at
βc = log(1 +

√
2)/2 [17], while the XY model features a Kosterlitz-Thouless transition

at βc ≈ 1.1199 [18, 19]. For N ≥ 3 the O(N) model is asymptotically free [20–25],
i.e. exhibits no phase transition (cf. section 4.3.1).

The Green’s function (or two-point function, spin-spin correlator) is given by

G(x, y) = 〈z(x) · z(y)〉. (2.3)

Among common statistical quantities of interest are the energy

〈E〉 = −
∑
〈x,y〉

G(x, y) = −
∑
〈x,y〉

〈z(x) · z(y)〉, (2.4)

3



4 2.1. The O(N) Model

and the absolute magnetization

〈|M |〉 =
〈∥∥∥∑

x

z(x)
∥∥∥

2

〉
, (2.5)

and using the fluctuation dissipation theorem one finds the heat capacity

〈CV 〉 = β2
(
〈E2〉 − 〈E〉2

)
, (2.6)

the (disconnected) magnetic susceptibility

〈χ〉 =
1
V
〈M2〉 =

1
V

〈(∑
x

z(x)
)2〉

=
1
V

∑
x,y

G(x, y), (2.7)

the connected magnetic susceptibility

〈χc〉 =
1
V

(
〈M2〉 − 〈M〉2

)
= 〈χ〉 (2.8)

in a symmetric phase (〈M〉 = 0) and

〈χc〉 =
1
V

(
〈M2〉 − 〈|M |〉2

)
(2.9)

in a broken phase (〈M〉 6= 0).

The Heisenberg (O(3)) model is topologically non-trivial. One defines the topological
susceptibility as [26,27]

〈χt〉 =
1
V
〈Q2〉 (2.10)

where

Q =
∑
x

q(x) ∈ Z (2.11)

is the topological charge on a periodic lattice with charge density q, that, for the
Heisenberg model, efficiently calculates as [28,29]

q(x) = δsign |z1 z2 z3|=sign |z1 z2 p|=sign |z2 z3 p|=sign |z3 z1 p| sign |z1 z2 z3|
+ δsign |z1 z3 z4|=sign |z1 z3 p|=sign |z3 z4 p|=sign |z4 z1 p| sign |z1 z3 z4|

(2.12)

for any arbitrary constant reference point p on the 2-sphere. sign |a b c| ∈ {−1, 1}
stands for the signum of the determinant of the matrix defined column-wise by the
vectors a, b, c. This amounts to counting the number of times p lies within one of
the two oriented spherical triangles spanned by the four sites z1, ..., z4 that generate
the plaquette at site x like depicted in fig. 2.1. An alternative, less efficient, but
equivalent way of calculating q(x) is summing the areas of those two spherical triangles,
see refs. [26, 27]. Unfortunately, short-range fluctuations of Q dominate the field
contribution on lattices, which makes numerical results for Q and χt inconsistent with
perturbation theory [26,30,31].

Note that the above observables (2.4) to (2.11) are extensive properties. In order to
obtain meaningful values, and in particular if varying spacetime volumes V or even the
continuum limit are studied, they are usually divided by V to become intensive (or
specific).
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x z1

z2

z3

z4

�(x)

Figure 2.1: Illustration of the plaquette �(x) at site x and spin vectors z1 = z(x), ..., z4
at the corner sites.

2.2 The CPN−1 Model

The non-linear CPN−1 σ model (CPN−1 model in short) is a direct generalization of
the O(N) model to complex fields. It was first defined by H. Eichenherr in 1978 [1].
In close analogy to the O(N) model we formulate it on the lattice in terms of a vector
field z with N complex-valued components and unit length, i.e. [32]

z(x) ∈ CN , 2 ≤ N ∈ N, |z(x)|2 =
N∑
a=1

|za(x)|2 = 1 ∀x ∈ Λ = {0, 1, ..., L− 1}D.

(2.13)
There exist various lattice actions with different properties (such as gauge invariance
for instance) that reproduce the CPN−1 model in the continuum limit. In this work we
use the standard quartic action

S = −β
∑
〈x,y〉

|z̄(x) · z(y)|2 = −β
∑
〈x,y〉

∣∣∣ N∑
a=1

z̄a(x) za(y)
∣∣∣2

= −β
∑
〈x,y〉

N∑
a,b=1

(
z̄a(x) zb(x)

)(
z̄b(y) za(y)

) (2.14)

with coupling β, where the sum is again taken over all nearest-neighbor coordinate pairs
x, y, and the bar denotes complex conjugation. (Some literature denote the coupling by
2κ and define a different β = 2κ/N , see e.g. ref. [33].) This action is invariant under
global SU(N) transformations and U(1) gauge transformations. It is well known that
the CP1 model is equivalent to the O(3) model. (We will numerically confirm this in
chapters 4 and 5.) The convention to write CPN−1 instead of, say, CP(N) originates
from the observation that one N -component spin vector z parametrizes a point in the
complex projective space CPN−1. All CPN−1 models are asymptotically free, i.e. exhibit
no phase transition (see however ref. [34]). More on this in section 4.4.1.
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The connected two-point function takes the form [33,35]

Gc(x, y) =
〈
|z̄(x) · z(y)|2

〉
c

=
〈
|z̄(x) · z(y)|2

〉
− 1
N

= G(x, y)− 1
N
. (2.15)

Among common statistical quantities of interest are the energy

〈E〉 = −
∑
〈x,y〉

G(x, y) = −
∑
〈x,y〉

〈∣∣z̄(x) · z(y)
∣∣2〉, (2.16)

the absolute magnetization

〈|M |〉 =
〈( N∑

a=1

∣∣∣∑
x

za(x)
∣∣∣2)1/2〉

, (2.17)

the magnetic susceptibility

〈χ〉 =
1
V

∑
x,y

Gc(x, y) =
1
V

〈 N∑
a,b=1

∣∣∣∑
x

z̄a(x) zb(x)
∣∣∣2〉− V

N
, (2.18)

and the heat capacity CV given by (2.6).

The CPN−1 model is topologically non-trivial for all N [1, 32]. The topological
susceptibility and charge are defined like in (2.10) and (2.11), respectively. The charge
density q(x), on the other hand, is determined from the U(1) parallel transporters [33]

U(x, µ) =
z̄(x) z(x+ µ̂)
|z̄(x) z(x+ µ̂)|

= exp
(
iφ(x, µ̂)

)
∈ U(1), (2.19)

namely as the sum of the arguments φ of the four parallel transporters along the oriented
boundary of the plaquette �(x) at site x, shifted by an integer multiple k(x) of 2π to
the standard ]− π, π] interval:

2πq(x) =
∑

(y, µ)∈ ∂�(x)

φ(y, µ̂) + 2πk(x) ∈ ]− π, π] (2.20)

For a drawing of the plaquette �(x), see fig. 2.1. For the very same reason as for
the O(3) model, lattice results for Q and χt at N ≤ 3 are typically inconsistent with
perturbation theory. Luckily, however, this doesn’t hold for CP3 and above [31].



3 Efficiency of Monte Carlo
Algorithms

Beyond Onsager’s solution [17] of the simple two-dimensional Ising model, no exact
(non-perturbative) analytic solution for either of the above models is known. They are
therefore studied numerically, using Monte Carlo simulations. The most elementary
importance sampling MC algorithm for such systems is the popular single-spin-flip
Metropolis algorithm [36].

The major disadvantage of the single-spin-flip Metropolis algorithm is the dramatic
loss of efficiency at second-order phase transitions (or in the ‘‘critical’’ β → ∞ limit
for O(N), N ≥ 3, and CPN−1), known as critical slowing down, see section 3.3 below.
This handicap limits its application to the uninteresting noncritical regimes of the phase
diagrams, leaving it unsuitable for calculations near the continuum limit. Sections 3.1
to 3.3 give an introduction to the characteristics of this problem.

Much effort has been put into the development of more efficient algorithms to
overcome or reduce critical slowing down. In chapter 4 we discuss Wolff’s cluster
algorithm as an example of non-local algorithms, and chapter 5 is on the more recently
developed local, yet in many cases efficient classical worm algorithm.

3.1 Autocorrelation Times

The most common MC algorithms sample the configuration space by modifying the
current configuration of the system to obtain a new one. Two subsequent samples are
thus not statistically independent; they are correlated. The autocorrelation time τA of
any state function A (energy, magnetization, etc.) is a measure of how many updates a
MC algorithm typically needs to perform, until a configuration is created, such that
the correlation between the current value for A and the last measurement has decayed
significantly. It is important to stress that τA depends on the choice of A, the model,
the MC algorithm and D.
Obviously, as we are interested in approximating 〈A〉 by the arithmetic mean of a series
of (correctly sampled) measurements {As}1≤s≤T ,

〈A〉 ≈ Ā =
1
T

T∑
s=1

As, (3.1)

we would like τA to be as small as possible, such that we obtain reasonably accurate
results from decorrelated At within short simulation time.

7



8 3.1. Autocorrelation Times

The (unnormalized) time-displaced autocorrelation function is defined as [37,38]

CAA(t) =
〈(
As − 〈A〉

)(
As+t − 〈A〉

)〉
= 〈AsAs+t〉 − 〈A〉2 (3.2)

where we are averaging over all times s. For convenience, it is usually normalized to

ρAA(t) = CAA(t)/CAA(0). (3.3)

The typical observation is that ρAA decays exponentially at large time separation t;

ρAA(t) ≈ exp(−|t|/τA), |t| � 1. (3.4)

(For a more rigorous discussion of the characteristics of ρAA involving Markov matrices,
see ref. [38].) This defines the exponential autocorrelation time [37]

τ exp
A = lim sup

t→∞

−t
log |ρAA(t)|

. (3.5)

One could then in principle fit the measured ρAA(t) by an exponential and use its
exponent as an estimate for τA. However, in the large-time regime where the exponential
rate of decay is closest to τA, ρAA is usually completely dominated by noise, as depicted
in fig. 3.1. This limitation on the fitting range renders the fitting approach unsuitable
for an automated numerical implementation. Moreover (and most importantly), τ exp

A

describes the relaxation of A towards equilibrium, which is in general not the same as
the measure of autocorrelation in equilibrium we are looking for [37,39]. We therefore
integrate rather than fit the autocorrelation function, exploiting the identity∫ ∞

0
exp(−t/τ) dt = τ. (3.6)

Assuming that (3.4) is a good approximation for all times t, we define the integrated
autocorrelation time

τ int
A =

∫ ∞
0

ρAA(t) dt ≈ τA. (3.7)

In a practical implementation, τ int
A is obtained as follows: From a series of measurements

{As}1≤s≤T taken at regularly spaced MC times s, calculate the autocorrelation function
as [38]

CAA(t) =
1

T − t

T−t∑
s=1

(
As − Ā

)(
As+t − Ā

)
, 0 ≤ t ≤ T − 1, (3.8)

and normalize to obtain ρAA(t). Then, integrate by summing the first M values, to
obtain a trucated estimate:

τ̃ int
A (M) =

1
2

+
M∑
t=1

ρAA(t). (3.9)

Finally, calculate and add the truncated tail (t ∈ [M,∞[) using the estimator τ̃ int
A by

setting

τ int
A = τ̃ int

A (M)
(

1 + exp
(
−M/τ̃ int

A (M)
))
. (3.10)
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The only question remaining is how to decide at which M to truncate the summation.
This is a tradeoff between bias and variance; the authors of ref. [37] have found that
choosing M minimal under the contraint M ≥ cτ int

A (M) is convenient. We use c = 3 for
all computations in the following.

Obviously, to obtain a reliable estimate for the integrated autocorrelation time, ρAA(t)
needs to be resolved at time steps well below τA, and at the same time, many samples
(T ≈ 1000τA or even more [37]) are required to obtain a clear exponential. This sampling
window evidently strongly depends on τA, the (a-priori unknown) quantity which we
want to determine with it in the first place. Calculating τ int

A can therefore be tedious in
practice. A good initial guess typically proves quite worthy.

Note that these calculations give the integrated autocorrelation time in units of
measurements. Usually one would like to know it on a meaningful MC time scale such
as in units of lattice sweeps. That is, updating each lattice degree of freedom (each spin
vector in our case) once on average. This is easy to achieve: simply multiply τ int

A by
the average number of spin flips between measurements and divide by the spacetime
volume V .

0 5 10 15 20 25 30 35
10

-4

10
-3

10
-2

10
-1

10
0

lattice sweeps

ρ

 

 
energy E

fit: ρ
EE

 = exp(-1/τ
E
), τ

E
 = 5.25

topological charge |Q|

fit: ρ
QQ

 = exp(-1/τ
Q

), τ
Q

 = 0.988

topological susceptibility χ
t

fit: ρ
χ

t
χ

t

 = exp(-1/τ
χ

t

), τ
χ

t

 = 0.471

Figure 3.1: Examples of the normalized autocorrelation function on a semi-logarithmic
plot, for the O(3) model simulated on a L = 128 square grid at β = 1.5 with Wolff’s
cluster algorithm. After each cluster update, a measurement of the drawn three modes
was performed, with a total of 2× 107 updates. Clearly, the data for the topological
charge, for instance, is dominated by noise after roughly 4 sweeps. The slowest mode is
the energy. The autocorrelation times are given in units of sweeps and were obtained
by fitting a straight line in the appropriate region.
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3.2 The Correlation Length

The typical distance on the lattice at which spins decorrelate is measured by the
correlation length ξ. It is a state function describing the average size of clusters of spins
with ‘‘similar’’ orientation. In that sense, it may be seen as a measure of the order of
the system. As we will see in section 3.3, ξ is a key component of the definition of the
efficiency of a MC algorithm. How can it be calculated?

3.2.1 The Classical Way

Let us consider the two-point function of the CPN−1 model along lattice directions
µ = 1, ..., D,

Gc(r) =
〈
|z̄(0) · z(r)|2

〉
c

=
1
D

D∑
µ=1

(
1
V

∑
x

〈
|z̄(x) · z(x+ rµ̂)|2

〉)
− 1
N
, (3.11)

where we used the usual notation of µ̂ being the µth canonical unit vector in D
dimensions. At large separations r (1� r ≈ L/2, L→∞) it decays as

Gc(r) ∼ r−p exp(−r/ξ). (3.12)

Here it becomes evident why ξ is called correlation length. It is the expected distance
at which the two-point correlator decreases roughly by a factor of 1/e. On a periodic
lattice, Gc(r) is L-periodic and symmetric: Gc(r) = Gc(L− r), r = 0, 1, ..., L. To obtain
an estimate for ξ = ξ(L), one can hence measure Gc(r) using (3.11) at a complexity of
O(DLD+1N) for each sample, and then fit (3.12) from the left and right to the data.
Figure 3.2 shows an example of such a fit. However, this is only precise at large r ≈ L/2,
and the power law correction doesn’t help to extract a clear signal for ξ. Similarly, ξ
may be extracted from the ‘‘zero momentum’’ correlator

G0,c(r) =
〈
|z̄(0) · z(r)|2

〉
0,c

=
1
D

D∑
µ=1

(
L

V 2

∑
x,y

δ
(
|(y − x)µ| − r

)〈
|z̄(x) · z(y)|2

〉)
− 1
N
,

(3.13)
which projects the D-dimensional system to only one dimension by averaging the spins
in all lattice dimensions other than the µth. The indicator function δ holds z̄(x) and
z(y) at a distance r in direction µ. The observed decay is then purely exponential,

G0,c(r) ∼ exp(−r/ξ), (3.14)

and hence ξ can be determined from fitting the L-periodic MC estimator for G0,c(r)
to C cosh

(
(L/2− r)/ξ

)
without any disruptive power law term. The price to pay is a

higher computational cost: O(DL2DN) per sample for G0,c.

For systems with constant physical extent L/ξ (cf. also section 3.3) the Green’s
functions are expected to collapse after rescaling by a field renormalization prefactor
Z = Z(β) because they describe the same physical system, at different discretization
coarseness (i.e. different lattice spacings a). Indeed, we observe an accurate collapse for
the CP3 model in fig. 3.3, where the data from table 4.2 is plotted. Z(β) grows linearly
with β in the shown range.
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Figure 3.2: Semi-logarithmic plot of the Green’s function Gc(r) of the CP3 model on
a L = 90 square lattice at β = 5.5. The data was calculated from a single simulation
using Wolff’s cluster algorithm, at the same statistics as Jansen & Wiese (1992) [33].
The resulting correlation length ξ = 11.12 is consistent with their prediction of 10.3(9).
Clearly, the fit to the form C(r−p exp[−r/ξ] + (L − r)−p exp[−(L − r)/ξ]) is poor at
small separations r ≈ 0.
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Figure 3.3: Collapse of the Green’s functions of the CP3 model at different lattice
spacings. The data from table 4.2 is used. Both vertical axes are given up to a constant
prefactor only.
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3.2.2 Fitting a Free Massive Boson

In lattice units, the inverse of the correlation length corresponds to the mass (the
so-called mass gap m = 1/ξ) of a freely moving boson propagating the interaction
among the sites. This identity can be used to determine ξ more precisely from the full
two-point correlator G(x, y). Consider the Euclidean action of a free massive bosonic
field φ in one spatial dimension

SE =
∫

1
2
(
∂µφ(τ, x)

)2 +
1
2
m2φ(τ, x)2 dτdx, (3.15)

with x being the spacial coordinate, and τ imaginary time. On a square lattice, this
discretizes to the lattice action

SL =
1
2
φ†M(m)φ, (3.16)

where φ =
(
z(0), ..., z(V − 1)

)T ∈ CV is the field vector, and

M(m) = (m+ 2D)1V −
∑
x

x̂ n(x)T ∈ RV×V (3.17)

is the discretized Laplacian matrix with the reduced mass m on the diagonal. Here, x̂
is the xth canonical unit vector in V dimensions, and n(x) is the vector containing the
nearest neighbors of the site with global index x,

ny(x) =

{
1 if x,y are nearest neighbors
0 otherwise

, y = 1, ..., V. (3.18)

This setup then allows to fit the full translation-invariant two-point correlator g ∈ RV ,
given component-wise by

gy = 〈G(0, y)〉 =
1
V

∑
x

G(x, y), y = 1, ..., V, (3.19)

to the first column of the inverse of M(m) by

g ∝M(m)−1e1, (3.20)

and thereby extracting the correlation length ξ(L) = 1/m(L) from the complete in-
formation g gathered during the simulation. Figure 3.4 shows an example of such a
fit.

This method has a major drawback compared with the second-moment definition,
which we will become acquainted with in the next subsection, for algorithms that directly
operate on the spin configuration, such as cluster algorithms. Calculating g there is
rather expensive, since one sample has complexity O(L2DN). However, in chapter 5 we
will study the worm algorithm, which directly samples the translation-invariant Green’s
function, such that g comes almost for free. It is thus most efficient to extract ξ using
this method for the worm algorithm.
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Figure 3.4: The propagator cM(m)−1e1 of a free boson (black grid) fitted to the
Green’s function g =̂ 〈G(0, y)〉, y = (y1, y2), of the Ising model (blue dots) on a L = 25
square lattice, calculated from a single simulation at β = 0.4 using the worm algorithm.
The fit yields a correlation length of ξ = 1/m = 5.85. The root mean square error of the
fit is as small as RMSE = 6.26×10−4, thus confirming the high precision of the data.

3.2.3 The Second-Moment Definition

There exists a somewhat more robust way to directly extract the correlation length
from the simulated system. Let’s identify the Fourier transform of the continuum
Green’s function at momentum k, G̃(k), normalized by its value at zero momentum,
G̃(k = 0) = 〈χ〉, by

G̃(k)
G̃(0)

=
m2

m2 + k2
. (3.21)

By inserting the minimal lattice momentum kmin = 2π/L, and discretizing it to the
lattice via ak̂ = 2 sin(ak/2), one defines the second-moment correlation length [40–42]

ξ2nd(L) =
1

2 sin(π/L)

√
G̃(0)/G̃(k̂min)− 1. (3.22)

Note that sometimes it is defined with linearized sine for large L [43, 44]:

ξ
(2)
2nd(L) =

L

2π

√
G̃(0)/G̃(k̂min)− 1. (3.23)

For yet another way of defining it, see e.g. ref. [45]. These three definitions coincide in
the thermodynamic limit L→∞. In the case of the O(N) model, G̃(k̂min) takes the
form [42]
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G̃(k̂min) =
1
D

D∑
µ=1

1
V

〈∣∣∣∑
x

exp
(
i kmin xµ

)
z(x)

∣∣∣2〉, (3.24)

(O(DLDN) time per sample) while for the CPN−1 model, it can be computed as [41]

G̃(k̂min) =
1
D

D∑
µ=1

N∑
a,b=1

1
V

〈∣∣∣∑
x

exp
(
i kmin xµ

)
z̄a(x) zb(x)

∣∣∣2〉 (3.25)

in O(DLDN2) time per sample.

A big advantage of the second-moment definition is that no data fitting is involved.
The ratio of Fourier transforms implicitly isolates the exponential we are interested
in. ξ2nd is widely used in the literature as a good approximation of the real correlation
length in a finite system.

3.2.4 Finite Size Scaling

If the correlation length is calculated on a finite lattice using one of the above methods,
the obtained value can of course never exceed the lattice size L by definition. This is
a finite size artifact; the system ‘‘sees its finite size’’ when it is simulated in regions
of the parameter space where ξ is of the order of (or larger than) L. Many textbooks
discuss these finite size effects in detail, see for example ref. [38]. The finite size scaling
function

F (y) = ξ(2L)/ξ(L), y = ξ(L)/L, (3.26)

quantifies the severity of the finite size effects. It is closely related to the step scaling
function first defined in ref. [46]. Numerical data for F on the two-dimensional O(3)
model can be found in ref. [25] for instance. In refs. [9, 10] F is given for the CP2

model and the second-moment definition of ξ. Finite size scaling then amounts to
extrapolating to infinite system size by

ξ = ξ(∞) = ξ(L)
∞∏
k=0

F (y0/2k), y0 = ξ(L)/L. (3.27)

Luckily, F is universal and hence independent of the coupling, which means that the
error |1− ξ(L)/ξ(∞)| made when measuring the correlation length in a finite system is
constant as long as the physical system size y0 remains the same. For CP3 at y0 = 1/2,
L = 16, we measured ξ(4L)/ξ(L) = 0.853(3) (ξ from eq. (3.12)), i.e. ξ(L) actually
overestimates the true correlation length. This should be kept in mind regarding our
results in the following studies, in particular section 4.4.1.
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3.3 Critical Slowing Down

We now have all means prepared to study critical slowing down (CSD). A MC
algorithm applied to a specific model is said to suffer from critical slowing down, if the
integrated autocorrelation time of the slowest mode (in units of sweeps!) diverges as a
power law with the correlation length near a critical point, i.e. if

τ int ∼ ξz, z > 0, τ int = max
A

τ int
A . (3.28)

z is called (integrated) dynamic critical exponent. The same can in principle be defined
for the exponential autocorrelation time [39], but the practical relevance is limited. In
this work we focus on τ int and z = zint. Just like τ int, z is a characteristic of the MC
algorithm combined with the model it is applied to, and the lattice dimensionality D.

CSD is a pain. If z is large, the corresponding algorithm becomes very inefficient
near phase transitions, or at large couplings for models with asymptotic freedom, where
ξ � 1 (cf. fig. 4.2). The single-spin-flip Metropolis algorithm has a dynamic critical
exponent z = 2.1665(12) for the two-dimensional Ising model [47], where Wolff’s cluster
algorithm (cf. chapter 4) is much more efficient with z = 0.25(1) [48]. Since power
laws with small exponents are hard to distinguish from logarithmic divergences, small
values of z, such as z = 0.25(1), are very hard to determine, though. The data in
ref. [48] is also consistent with a logarithmic divergence (z = 0), which has lead to
conjecture that Wolff’s cluster algorithm completely eliminates CSD for the O(N) model
in two dimensions (see e.g. ref. [3]). The same observation (consistency with logarithmic
divergence) holds for the worm algorithm applied to the 2D and 3D Ising and XY
model [11] (see however ref. [49]). The efficiency of the latter two algorithms will be
discussed in more detail in chapters 4 and 5.

3.3.1 Finite Volume Renormalization

Varying L and setting the β such that the Lüscher-Weisz-Wolff (LWW) coupling [46]
ḡ2 = L/ξ(L) = m(L)L = const. ≈ 2 − 3 is common practice for the determination of
the dynamic critical exponent, because the latter can then be extracted from the slope
of τ vs. L in a log-log plot. This procedure of keeping L/ξ(L) constant can be pictured
as shortening the lattice spacing of a system with constant physical size and is called
finite volume renormalization. It is applied in the following calculations.

To carry out finite volume renormalization, it is clear that reliable knowledge about
the behavior (the so-called running) of the coupling as a function of the length scale ξ
is desired. This can be found in sections 4.3.1 and 4.4.1, where we compare the scaling
predictions from perturbation theory with numerical data.



4 Cluster Algorithms

In the 1980s R. H. Swendsen and J.-S. Wang proposed a completely new type of
MC algorithm for statistical models [50]. Inspired by percolation theory (based on
the work by Fortuin and Kasteleyn [51]), their idea was to build clusters of spins
with ‘‘similar’’ orientation by introducing connecting bonds between them, and to
reflect all spins belonging to the same cluster at once. The decisive point is that
the activation probability of each bond is chosen such that the clusters have sizes of
the order of ξ, rendering an elementary update much more effective than in a single-
spin-flip algorithm near criticality, where ξ � 1. Each spin strongly interacts with
its (widespread) neighborhood, and the algorithm is hence said to be non-local. It
reduces the dynamic critical exponent quite substantially for a wide range of models,
see e.g. refs. [48, 50,52]. Furthermore, improved estimators can be used to reduce the
variance of some observables.

U. Wolff published an improved version of the cluster algorithm in 1989 [3], formulated
for the O(N) model. Instead of looking for all clusters in the system and reflecting
each with probability 1/2, Wolff’s algorithm identifies only one cluster per update and
always reflects it. This simplifies the implementation, and in most cases even increases
the efficiency. As mentioned above, Wolff found no sign for critical slowing down (z ≈ 0
for τχ) when applying his algorithm to the O(N) model. In sections 4.3.2 and 4.4.2, we
calculate the dynamic critical exponent for a larger number of observables on the O(3)
model and the CP3 model, respectively, showing that it is still inefficient on the latter.

A generic single-cluster update for our spin models consists of the following procedure
[3]:

1. Draw a random spin r in the respective space ((2.1) or (2.13)).

2. Allocate an empty list of sites and add a random lattice site to it.

3. For each site x that was added in the previous step, add each nearest-neighboring
site y with probability P (x, y, r) (defined below) to the list, if it hasn’t been added
yet.

4. Repeat step 3 until no more sites were added. The list now represents a cluster
C ⊂ Λ.

5. Reflect all spin vectors contained in the cluster on the hyperplane perpendicular
to r.

Note that in each Wolff update, any of the DV bonds may be tested for activation
merely once at most, but each site may be tested for addition from any direction, i.e. up
to 2D times.

17
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The bond activation probability reads [3]

P (x, y, r) = 1− exp
[

min
{

0,−2β R(x, y, r)
}]

(4.1)

(ref. [3] is missing a minus sign, while ref. [33] is mixing up max{0, · } and max{1, · } for
both models!), where R is model-specific. For O(N) it is given by

RO(x, y, r) =
(
r · z(x)

)(
z(y) · r

)
. (4.2)

Reflecting the cluster in step 5 then amounts to setting

z(x)→ z(x)− 2
(
r · z(x)

)
r ∀x ∈ C. (4.3)

Analogously, one finds for the CPN−1 model [33]

RCP(x, y, r) = 2<
{[
z̄(x) · z(y)−

(
z̄(x) · r

)(
r̄ · z(y)

)](
r̄ · z(x)

)(
z̄(y) · r

)}
(4.4)

and
z(x)→ z(x)− 2

(
r̄ · z(x)

)
r ∀x ∈ C. (4.5)

In the introduction we briefly indicated the reason why Wolff-type embedding algo-
rithms, such as the one above, are precluded from expunging critical slowing down for
a particular class of σ models: The authors of ref. [7] argue that it may be efficient only
if the manifold of fixed points of a particular update (the hyperplane perdendicular to
r in our case) has codimension one in the space it is embedded in. Quite clearly, this
is the case for the O(N) model, but not for CPN−1. See sections 4.3.2 and 4.4.2 for
numerical evidence.

4.1 Improved Estimators

The information encoded in the clusters may be used to reduce the variance of
observable estimation [53]. Aside from the alleviation of critical slowing down (for
O(N)), this is another major benefit coming along with cluster algorithms. Given
a cluster C built during a Wolff update, and the associated reflection normal r, the
Green’s function of the O(N) model can be calculated from its improved estimator
(IE) [5]

G(x, y) = NV
〈 1
|C|

δC(x)δC(y)RO(x, y, r)
〉

(4.6)

where |C| denotes the cluster size. δC is the cluster incidence function:

δC(x) =

{
1 if x ∈ C
0 otherwise

. (4.7)

The IE for the (disconnected) magnetic susceptibility it is given by [5]

〈χ〉 = N

〈
1
|C|

(∑
x∈C

z(x) · r
)2
〉
. (4.8)
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This identity assigns the O(N) clusters a physical interpretation. Their size is propor-
tional to the magnetic susceptibility, with a proportionality constant that exclusively
depends on N [5]. In particular, it is unity for the Ising model.

For the CPN−1 model we just mention the IE for the Green’s function [33]:

G(x, y) =
N + 2

2
V
〈 1
|C|

δC(x)δC(y)RCP(x, y, r)
〉

(4.9)

4.2 Parallelization

We place a brief note on parallelization here. The simple Metropolis spin flip algorithm
is of course easily parallelizable thanks to its ultralocal elementary updates. This can go
as far as multi-spin coding [54], a technique primarily popular in the 1980s for the Ising
model. Cluster algorithms are by far less trivial to parallelize in general. Nevertheless,
numerous attempts hereto have been made, many of them successful in some degree. A
somewhat intuitive result of these is that the multi-cluster algorithm by Swendsen and
Wang tends to be better suited for parallelization than Wolff’s single-cluster adaption. A
nice overview including a fairly well-scaling parallel implementation of Wolff’s algorithm
can be found in ref. [55].

What can be done with any MC algorithm, of course, is the trivial parallelization
of letting multiple (n) simulations with the same setting (up to random seeds) run
on different CPUs simultaneously. The thereby collected n statistically independent
samples of any quantity of interest can then be used to reduce statistical errors by a
factor of 1/

√
n by averaging. This is indeed a technique we have applied extensively

for the present work.

4.3 Numerical Results for the O(N) Model

Table 4.1 lists some numerical results for the O(3) model simulated with Wolff’s
cluster algorithm. Topological modes (〈|Q|〉, 〈χt〉) are excluded, see section 2.1 for
the reason why. We also simulated innumerable parameter settings (N ,β,L) that are
not tabulated, producing results invariably consistent with values in literature such as
refs. [3–7,12,26,27,30,44,53,56].
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Table 4.1: Numerical results for the O(3) model obtained with Wolff’s cluster algorithm
at L/ξ2nd(L) ≈ 2, averaged over n simulations for each setting. u is the number of
updates after equilibration, s the number of updates between measurements, and |C|
the average cluster size. All autocorrelation times are in units of lattice sweeps and
were computed from Tτ measurements with sτ updates between each.

L β n u×10−6 s Tτ×10−6 sτ |C|/V E/V CV /V |M |/V χ/V ξ2nd τ int
E τ int

M τ int
χ

16 1.55300 12 1000 15 15 1 0.243325(6) -1.2544342(15) 1.57281(10) 0.562981(3) 0.322514(3) 7.99740(12) 4.299(3) 1.8988(12) 1.9461(12)
23 1.62000 12 1000 20 15 1 0.220169(9) -1.290678(2) 1.53586(10) 0.536435(2) 0.292540(2) 11.49981(12) 4.619(4) 1.7381(6) 1.7928(7)
32 1.67623 12 500 25 15 1 0.20162(2) -1.319598(3) 1.49334(14) 0.513793(4) 0.268226(4) 15.9796(3) 4.881(6) 1.6117(9) 1.6617(9)
45 1.73215 12 300 30 15 1 0.18494(2) -1.346588(3) 1.44736(19) 0.492426(6) 0.246282(5) 22.4517(6) 5.156(5) 1.5112(11) 1.5487(16)
64 1.78951 12 200 40 15 1 0.17028(3) -1.372248(2) 1.4019(2) 0.472794(7) 0.226943(7) 31.9638(15) 5.417(6) 1.4212(5) 1.4637(6)
91 1.84646 12 100 50 15 1 0.15758(5) -1.395712(3) 1.3617(4) 0.454981(11) 0.210096(9) 45.523(3) 5.708(8) 1.3537(10) 1.3935(10)

128 1.90133 12 40 75 15 1 0.14670(8) -1.4165642(15) 1.3273(5) 0.438955(18) 0.19552(2) 64.111(8) 5.963(7) 1.3004(8) 1.3325(15)
181 1.95674 12 30 100 15 2 0.13680(12) -1.436058(2) 1.3012(14) 0.42358(3) 0.18204(3) 90.649(18) 6.233(7) 1.254(2) 1.2863(6)
256 2.01190 12 30 150 10 3 0.12755(8) -1.4540708(15) 1.2769(8) 0.40904(3) 0.16976(2) 128.09(3) 6.499(6) 1.210(3) 1.2491(4)
362 2.06763 12 10 250 2.5 4 0.1192(4) -1.471034(4) 1.2566(19) 0.39559(6) 0.15878(5) 180.97(6) 6.772(11) 1.182(4) 1.2181(7)
512 2.12140 12 5 400 1 5 0.1105(5) -1.486338(2) 1.245(4) 0.38186(11) 0.14798(8) 255.0(2) 7.018(12) 1.1382(9) 1.170(4)

L β n u×10−6 s Tτ×10−6 sτ |C|/V E/V CV /V |M |/V χ/V ξ2nd τ int
E τ int

M τ int
χ

16 1.55300 12 1000 15 15 1 0.243325(6) -1.2544342(15) 1.57281(10) 0.562981(3) 0.322514(3) 7.99740(12) 4.299(3) 1.8988(12) 1.9461(12)
23 1.62000 12 1000 20 15 1 0.220169(9) -1.290678(2) 1.53586(10) 0.536435(2) 0.292540(2) 11.49981(12) 4.619(4) 1.7381(6) 1.7928(7)
32 1.67623 12 500 25 15 1 0.20162(2) -1.319598(3) 1.49334(14) 0.513793(4) 0.268226(4) 15.9796(3) 4.881(6) 1.6117(9) 1.6617(9)
45 1.73215 12 300 30 15 1 0.18494(2) -1.346588(3) 1.44736(19) 0.492426(6) 0.246282(5) 22.4517(6) 5.156(5) 1.5112(11) 1.5487(16)
64 1.78951 12 200 40 15 1 0.17028(3) -1.372248(2) 1.4019(2) 0.472794(7) 0.226943(7) 31.9638(15) 5.417(6) 1.4212(5) 1.4637(6)
91 1.84646 12 100 50 15 1 0.15758(5) -1.395712(3) 1.3617(4) 0.454981(11) 0.210096(9) 45.523(3) 5.708(8) 1.3537(10) 1.3935(10)

128 1.90133 12 40 75 15 1 0.14670(8) -1.4165642(15) 1.3273(5) 0.438955(18) 0.19552(2) 64.111(8) 5.963(7) 1.3004(8) 1.3325(15)
181 1.95674 12 30 100 15 2 0.13680(12) -1.436058(2) 1.3012(14) 0.42358(3) 0.18204(3) 90.649(18) 6.233(7) 1.254(2) 1.2863(6)
256 2.01190 12 30 150 10 3 0.12755(8) -1.4540708(15) 1.2769(8) 0.40904(3) 0.16976(2) 128.09(3) 6.499(6) 1.210(3) 1.2491(4)
362 2.06763 12 10 250 2.5 4 0.1192(4) -1.471034(4) 1.2566(19) 0.39559(6) 0.15878(5) 180.97(6) 6.772(11) 1.182(4) 1.2181(7)
512 2.12140 12 5 400 1 5 0.1105(5) -1.486338(2) 1.245(4) 0.38186(11) 0.14798(8) 255.0(2) 7.018(12) 1.1382(9) 1.170(4)

L β n u×10−6 s Tτ×10−6 sτ |C|/V E/V CV /V |M |/V χ/V ξ2nd τ int
E τ int

M τ int
χ

16 1.55300 12 1000 15 15 1 0.243325(6) -1.2544342(15) 1.57281(10) 0.562981(3) 0.322514(3) 7.99740(12) 4.299(3) 1.8988(12) 1.9461(12)
23 1.62000 12 1000 20 15 1 0.220169(9) -1.290678(2) 1.53586(10) 0.536435(2) 0.292540(2) 11.49981(12) 4.619(4) 1.7381(6) 1.7928(7)
32 1.67623 12 500 25 15 1 0.20162(2) -1.319598(3) 1.49334(14) 0.513793(4) 0.268226(4) 15.9796(3) 4.881(6) 1.6117(9) 1.6617(9)
45 1.73215 12 300 30 15 1 0.18494(2) -1.346588(3) 1.44736(19) 0.492426(6) 0.246282(5) 22.4517(6) 5.156(5) 1.5112(11) 1.5487(16)
64 1.78951 12 200 40 15 1 0.17028(3) -1.372248(2) 1.4019(2) 0.472794(7) 0.226943(7) 31.9638(15) 5.417(6) 1.4212(5) 1.4637(6)
91 1.84646 12 100 50 15 1 0.15758(5) -1.395712(3) 1.3617(4) 0.454981(11) 0.210096(9) 45.523(3) 5.708(8) 1.3537(10) 1.3935(10)

128 1.90133 12 40 75 15 1 0.14670(8) -1.4165642(15) 1.3273(5) 0.438955(18) 0.19552(2) 64.111(8) 5.963(7) 1.3004(8) 1.3325(15)
181 1.95674 12 30 100 15 2 0.13680(12) -1.436058(2) 1.3012(14) 0.42358(3) 0.18204(3) 90.649(18) 6.233(7) 1.254(2) 1.2863(6)
256 2.01190 12 30 150 10 3 0.12755(8) -1.4540708(15) 1.2769(8) 0.40904(3) 0.16976(2) 128.09(3) 6.499(6) 1.210(3) 1.2491(4)
362 2.06763 12 10 250 2.5 4 0.1192(4) -1.471034(4) 1.2566(19) 0.39559(6) 0.15878(5) 180.97(6) 6.772(11) 1.182(4) 1.2181(7)
512 2.12140 12 5 400 1 5 0.1105(5) -1.486338(2) 1.245(4) 0.38186(11) 0.14798(8) 255.0(2) 7.018(12) 1.1382(9) 1.170(4)
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4.3.1 Scaling and Asymptotic Freedom

As indicated earlier, the running of the coupling is a fundamential and highly substan-
tial characteristic. For N > 2 perturbation theory predicts asymptotic freedom [24]:

1/ξ = m ≈ C exp
(
−2πβ/(N − 2)

)(
2πβ/(N − 2)

)−1/(N−2)
. (4.10)

The three-loop expansion can also be found in ref. [24]. Since this is of minor interest
here we will not go into more detail. The scaling of the CPN−1 model (section 4.4.1)
will be more absorbing.

4.3.2 Dynamic Critical Exponents

In figure 4.1 we plot the integrated autocorrelation times τE , τM and τχ against
the second-moment correlation length for Wolff’s single-cluster algorithm on the two-
dimensional Heisenberg model. The data set is the same as in table 4.1. The fits are of
the form

τ int(L) = c1ξ2nd(L)z
(
1 + c2/ log[ξ2nd(L)]

)
. (4.11)

Our results show no indication for critical slowing down, confirming that Wolff’s
clusters update the O(N) model efficiently. All data are also consistent with the purely
logarithmic form τ int(L) = τ0 + c log[ξ2nd(L)], i.e. with z = 0.

4.4 Numerical Results for the CPN−1 Model

Table 4.2 lists some numerical results for the CP3 model we simulated with Wolff’s
cluster algorithm. We have also consistently reproduced numerous results from literature,
notably refs. [8, 13,33,57,58], which we don’t tabulate here.

We must stress that our numerical results for the correlation length at L > 32 are
reproducibly inconsistent with the perturbative prediction, i.e. too low. These values
are marked with an asterisk. The origin of this systematic discrepancy remains unclear.
A poor fitting quality can be excluded from the range of possibilities, as it remains high
also at large L (cf. fig. 3.3). Also, we don’t expect τ int

ξ to be large enough to cause such
a significant bias. In any case, the values for β in the marked simulations were chosen
such that ξ(L) = L/2 in theory according to eq. (4.12). This will allow us to use the
tabulated data to examine the dynamic critical behavior without too many finite size
effects in the next section.
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Table 4.2: Numerical results for the CP3 model obtained with Wolff’s cluster algorithm
at L/ξ(L) ≈ 2, averaged over n simulations. ξ is extracted from the exponential decay
of Gc, eq. (3.12). See the caption of table 4.1 for an explanation of the listed parameters.
Asterisks mark inconsistencies with perturbative predictions (see text).

L β n u×10−6 s Tτ×10−6 sτ |C|/V E/V CV /V |M |/V χ/V |Q| χt×103 ξ τ int
E τ int

M τ int
χ τ int

Q τ int
χt

12 5.08540 23 2000 100 15 1 0.755398(17) -1.279536(3) 6.2890(5) 0.079488(2) 0.174667(3) 0.26104(3) 2.1169(3) 6.0028(3) 65.68(7) 105.0(3) 92.61(13) 5.138(14) 4.123(3)
16 5.26290 20 1710 180 15 1 0.76657(3) -1.310039(3) 6.0573(7) 0.059714(3) 0.155744(4) 0.31342(4) 1.4699(3) 8.0019(6) 71.47(15) 127.1(4) 142.7(5) 5.928(18) 4.772(4)
20 5.39750 16 1100 275 15 2 0.77541(3) -1.333137(4) 5.7846(13) 0.047818(2) 0.144011(6) 0.34244(9) 1.0433(3) 9.9998(10) 72.15(11) 146.9(4) 201.2(9) 6.72(4) 5.378(5)
25 5.53172 15 700 350 15 2 0.78405(4) -1.355279(5) 5.4882(13) 0.038284(2) 0.134223(8) 0.36010(11) 0.7078(3) 12.4940(19) 70.12(14) 168.5(5) 286.8(1.1) 7.490(5) 6.05(3)
32 5.68002 20 420 350 15 2 0.79296(7) -1.378294(3) 5.1683(13) 0.029934(2) 0.125040(8) 0.36671(14) 0.4407(2) 15.994(3) 66.73(9) 196.5(6) 426(3) 8.214(11) 6.89(4)
40 5.81504 17 268 400 15 3 0.80061(8) -1.397753(3) 4.921(3) 0.023964(3) 0.11781(2) 0.3634(3) 0.2783(3) 19.980(8)* 63.68(8) 224.0(7) 620(3) 9.069(10) 7.476(13)
50 5.94980 24 170 500 15 4 0.80747(13) -1.415800(3) 4.710(2) 0.019183(3) 0.111153(17) 0.3549(4) 0.1729(3) 24.895(9)* 61.51(4) 253.4(5) 909(4) 9.920(16) 8.38(8)
64 6.09912 17 100 500 15 5 0.81464(14) -1.434333(4) 4.526(4) 0.015000(4) 0.10427(4) 0.3425(5) 0.10099(18) 31.61(3)* 59.88(7) 288.5(6) 1439(9) 10.88(9) 9.17(11)
80 6.23418 23 64 640 12.8 5 0.8203(2) -1.449922(4) 4.396(4) 0.012001(3) 0.09848(5) 0.3291(7) 0.06160(16) 39.21(4)* 59.18(5) 320.1(7) 2198(29) 11.20(6) 9.58(6)

100 6.36944 20 40 800 5 8 0.8262(2) -1.464553(3) 4.284(8) 0.009606(4) 0.09306(7) 0.3152(10) 0.03748(14) 48.60(9)* 58.77(4) 354.5(19) 3366(42) 12.73(20) 10.78(14)
128 6.51914 24 24 1000 2 12 0.8313(4) -1.479704(7) 4.188(9) 0.007503(4) 0.08720(12) 0.3023(18) 0.02170(16) 61.16(19)* 58.63(5) 395.4(19) 5832(136) 15.3(4) 12.9(3)

L β n u×10−6 s Tτ×10−6 sτ |C|/V E/V CV /V |M |/V χ/V |Q| χt×103 ξ τ int
E τ int

M τ int
χ τ int

Q τ int
χt

12 5.08540 23 2000 100 15 1 0.755398(17) -1.279536(3) 6.2890(5) 0.079488(2) 0.174667(3) 0.26104(3) 2.1169(3) 6.0028(3) 65.68(7) 105.0(3) 92.61(13) 5.138(14) 4.123(3)
16 5.26290 20 1710 180 15 1 0.76657(3) -1.310039(3) 6.0573(7) 0.059714(3) 0.155744(4) 0.31342(4) 1.4699(3) 8.0019(6) 71.47(15) 127.1(4) 142.7(5) 5.928(18) 4.772(4)
20 5.39750 16 1100 275 15 2 0.77541(3) -1.333137(4) 5.7846(13) 0.047818(2) 0.144011(6) 0.34244(9) 1.0433(3) 9.9998(10) 72.15(11) 146.9(4) 201.2(9) 6.72(4) 5.378(5)
25 5.53172 15 700 350 15 2 0.78405(4) -1.355279(5) 5.4882(13) 0.038284(2) 0.134223(8) 0.36010(11) 0.7078(3) 12.4940(19) 70.12(14) 168.5(5) 286.8(1.1) 7.490(5) 6.05(3)
32 5.68002 20 420 350 15 2 0.79296(7) -1.378294(3) 5.1683(13) 0.029934(2) 0.125040(8) 0.36671(14) 0.4407(2) 15.994(3) 66.73(9) 196.5(6) 426(3) 8.214(11) 6.89(4)
40 5.81504 17 268 400 15 3 0.80061(8) -1.397753(3) 4.921(3) 0.023964(3) 0.11781(2) 0.3634(3) 0.2783(3) 19.980(8)* 63.68(8) 224.0(7) 620(3) 9.069(10) 7.476(13)
50 5.94980 24 170 500 15 4 0.80747(13) -1.415800(3) 4.710(2) 0.019183(3) 0.111153(17) 0.3549(4) 0.1729(3) 24.895(9)* 61.51(4) 253.4(5) 909(4) 9.920(16) 8.38(8)
64 6.09912 17 100 500 15 5 0.81464(14) -1.434333(4) 4.526(4) 0.015000(4) 0.10427(4) 0.3425(5) 0.10099(18) 31.61(3)* 59.88(7) 288.5(6) 1439(9) 10.88(9) 9.17(11)
80 6.23418 23 64 640 12.8 5 0.8203(2) -1.449922(4) 4.396(4) 0.012001(3) 0.09848(5) 0.3291(7) 0.06160(16) 39.21(4)* 59.18(5) 320.1(7) 2198(29) 11.20(6) 9.58(6)

100 6.36944 20 40 800 5 8 0.8262(2) -1.464553(3) 4.284(8) 0.009606(4) 0.09306(7) 0.3152(10) 0.03748(14) 48.60(9)* 58.77(4) 354.5(19) 3366(42) 12.73(20) 10.78(14)
128 6.51914 24 24 1000 2 12 0.8313(4) -1.479704(7) 4.188(9) 0.007503(4) 0.08720(12) 0.3023(18) 0.02170(16) 61.16(19)* 58.63(5) 395.4(19) 5832(136) 15.3(4) 12.9(3)

L β n u×10−6 s Tτ×10−6 sτ |C|/V E/V CV /V |M |/V χ/V |Q| χt×103 ξ τ int
E τ int

M τ int
χ τ int

Q τ int
χt

12 5.08540 23 2000 100 15 1 0.755398(17) -1.279536(3) 6.2890(5) 0.079488(2) 0.174667(3) 0.26104(3) 2.1169(3) 6.0028(3) 65.68(7) 105.0(3) 92.61(13) 5.138(14) 4.123(3)
16 5.26290 20 1710 180 15 1 0.76657(3) -1.310039(3) 6.0573(7) 0.059714(3) 0.155744(4) 0.31342(4) 1.4699(3) 8.0019(6) 71.47(15) 127.1(4) 142.7(5) 5.928(18) 4.772(4)
20 5.39750 16 1100 275 15 2 0.77541(3) -1.333137(4) 5.7846(13) 0.047818(2) 0.144011(6) 0.34244(9) 1.0433(3) 9.9998(10) 72.15(11) 146.9(4) 201.2(9) 6.72(4) 5.378(5)
25 5.53172 15 700 350 15 2 0.78405(4) -1.355279(5) 5.4882(13) 0.038284(2) 0.134223(8) 0.36010(11) 0.7078(3) 12.4940(19) 70.12(14) 168.5(5) 286.8(1.1) 7.490(5) 6.05(3)
32 5.68002 20 420 350 15 2 0.79296(7) -1.378294(3) 5.1683(13) 0.029934(2) 0.125040(8) 0.36671(14) 0.4407(2) 15.994(3) 66.73(9) 196.5(6) 426(3) 8.214(11) 6.89(4)
40 5.81504 17 268 400 15 3 0.80061(8) -1.397753(3) 4.921(3) 0.023964(3) 0.11781(2) 0.3634(3) 0.2783(3) 19.980(8)* 63.68(8) 224.0(7) 620(3) 9.069(10) 7.476(13)
50 5.94980 24 170 500 15 4 0.80747(13) -1.415800(3) 4.710(2) 0.019183(3) 0.111153(17) 0.3549(4) 0.1729(3) 24.895(9)* 61.51(4) 253.4(5) 909(4) 9.920(16) 8.38(8)
64 6.09912 17 100 500 15 5 0.81464(14) -1.434333(4) 4.526(4) 0.015000(4) 0.10427(4) 0.3425(5) 0.10099(18) 31.61(3)* 59.88(7) 288.5(6) 1439(9) 10.88(9) 9.17(11)
80 6.23418 23 64 640 12.8 5 0.8203(2) -1.449922(4) 4.396(4) 0.012001(3) 0.09848(5) 0.3291(7) 0.06160(16) 39.21(4)* 59.18(5) 320.1(7) 2198(29) 11.20(6) 9.58(6)

100 6.36944 20 40 800 5 8 0.8262(2) -1.464553(3) 4.284(8) 0.009606(4) 0.09306(7) 0.3152(10) 0.03748(14) 48.60(9)* 58.77(4) 354.5(19) 3366(42) 12.73(20) 10.78(14)
128 6.51914 24 24 1000 2 12 0.8313(4) -1.479704(7) 4.188(9) 0.007503(4) 0.08720(12) 0.3023(18) 0.02170(16) 61.16(19)* 58.63(5) 395.4(19) 5832(136) 15.3(4) 12.9(3)
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Figure 4.1: Semi-log plot of integrated autocorrelation times for Wolff’s cluster algo-
rithm applied to the 2D O(3) model at constant physical size L/ξ2nd(L) ≈ 2. Horizontal
and vertical error bars are smaller than the dots and were therefore omitted. In the
legend we give 95% confidence bounds for the fit parameters in brackets. χ2

red is 2.9,
14.1 and 38.6, respectively.
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4.4.1 Scaling and Asymptotic Freedom

The perturbative two-loop prediction for asymptotic scaling in the CPN−1 models
is [33,41,59]

1/ξ = m ≈ Cpm exp(−2πβ/N)(2πβ/N)−2/N , (4.12)

where Cpm needs to be determined non-perturbatively. (Note that refs. [33, 41] use
β/N as the coupling, while the β in ref. [59] coincides with our β/2.) For CP3 we
find Cpm = 1400.4(3), in contrast to Jansen & Wiese’s erroneous result of 190(6).
To obtain the true thermodynamic constant, our value should be finite-size scaled
(cf. section 3.2.4). Figure 4.2 shows a comparison of the data. Clearly, Jansen & Wiese
also underestimated their errors. The second-loop power law correction significantly
increases the goodness of fit compared to the pure exponential from one-loop expansion
(χ2

red = 0.53 vs. χ2
red = 2344). In the inset, m is reduced by its first-loop exponential

and then log-log plotted against the coupling. The black straight line represents the
pure second-loop power law. Our data is precise enough to show a clear systematic
deviation from the two-loop formula for β < 5.3 supposably arising from higher-order
corrections. Note that a few blue dots carry a slight bias in cases where L/ξ(L) didn’t
precisely hit two. Both fitting and goodness-of-fit analysis were restricted to data points
no. 10 to 15 (L = 17 to 32), where the higher-order corrections disappear and yet our
numerical correlation lengths don’t veer away from the expected first-order exponential.
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Figure 4.2: Scaling and asymptotic freedom of the CP3 model. Our data (blue)
combine the results from table 4.2 with additional simulations to refine the range of
couplings. 95% confidence intervals for the fitted prefactors are given in brackets. Error
bars are smaller than the symbols.
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4.4.2 Dynamic Critical Exponents

The integrated autocorrelation times from table 4.2 are plotted against the correlation
length in figure 4.3. The horizontal axis displays the expected correlation length
ξ(L) = L/2 according to the perturbative prediction for ξ ≥ 20, where our numerical
results for ξ(L) veer away from L/2. The magnetic susceptibility is by far the slowest
mode, while the topological modes decorrelate the fastest in the systems examined here.
A pure power law of the form τ int(L) = c ξ(L)z is fitted to each of the modes in the
range where the power law is dominant, revealing a dynamic critical exponent of about
two for Wolff’s single-cluster algorithm on the CP3 model. Jansen & Wiese’s early
crude estimate of z ≈ 2 [33] is confirmed. This concludes our studies of the cluster
algorithm, which is evidently unable to accelerate the CPN−1 model. The next chapter
will be dedicated to the worm algorithm.
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energy E

fit: z = -0.12(3), c = 94(10)

magnetization |M|

fit: z = 0.53(3), c = 46(5)

magn. susceptibility χ 

fit: z = 1.97(13), c = 1.6(8)

topol. charge |Q|

fit: z = 0.42(4), c = 2.6(4)

topol. susceptibility χ
t

fit: z = 0.45(4), c = 1.9(2)

Figure 4.3: Log-log plot of integrated autocorrelation times for Wolff’s cluster algorithm
applied to the 2D CP3 model at constant physical size L/ξ(L) ≈ 2. Horizontal and
vertical error bars are smaller than the dots and were therefore omitted. In the legend
we give 95% confidence bounds for the fit parameters in brackets.



5 The Worm Algorithm

In the late 1990s, N. V. Prokof’ev, B. V. Svistunov and I. S. Tupitsyn developed a
novel type of local MC algorithms for quantum systems and called it the worm algorithm
(WA) [60]. The basic underlying idea is that instead of sampling the trajectories between
two fixed world-line discontinuities, the trajectory itself is held still and the end points
are moved around on the lattice. The resulting ergodic movement of the discontinuities
(then called ‘‘head’’ and ‘‘tail’’) looks like a worm, hence the name. The WA directly
samples the Green’s function, as we will see later.

Prokof’ev and Svistunov later reformulated the worm algorithm for classical statistical
systems [11]. The key ingredient of the classical WA is a duality transformation [61] of
the partition function from field vectors to bond variables forming closed loops, which
can be achieved from a high-temperature expansion of the Boltzmann weights. The
findings concerning the efficiency is rather astonishing for a MC algorithm that operates
locally: Critical slowing down is dramatically reduced on the tested models and even
completely absent on the two- and tree-dimensional Ising and XY model [11,49].

In the following section we sketch the construction of the worm algorithm for the
Ising model to provide some intuition of its main principles. Then, in section 5.2, the
ideas of the worm algorithm are deployed to the CPN−1 model. In both cases our focus
will be restricted to the prominent high-temperature expansion as the technique for
reformulating the configuration space and arriving at a loop representation. There exist
other ways however, for instance domain boundaries for lattice models with discrete
spins variables [11].

5.1 Worm Algorithm for the Ising Model

We start off with the simple Ising model, for which the worm formulation is particularly
plain and many technicalities cancel, to demonstrate the basic principles informing the
worm algorithm.

5.1.1 From Spins to Bonds

The lattice partition function in terms of spin configurations {z} reads

Z =
∑
{z}

exp
(
−S({z})

)
=
∑
{z}

exp
(
β
∑
〈x,y〉

z(x) z(y)
)

=
∑
{z}

∏
〈x,y〉

exp
(
β z(x) z(y)

)
, (5.1)

i.e. it is the sum of Boltzmann weights over all spin configurations. Now, we perform a
high-temperature expansion (or strong coupling expansion in the terminology of QFT),

26
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which is a mere Maclaurin series expansion in β (i.e. for strong couplings), on each of
these weights [11]:

exp( · ) =
∞∑
n=0

( · )n

n!
=⇒ Z =

∑
{z}

∏
〈x,y〉

∞∑
nxy=0

βnxy

nxy!
(
z(x) z(y)

)nxy (5.2)

The term high-temperature expansion is due to the Taylor expansion being a good
approximation at the lower order the smaller the inverse temperature β, i.e. the higher
the temperature. Each pair of nearest-neighbor sites 〈x, y〉, which will be called bond
from now on, is assigned a bond variable (or bond state, bond occupation number)
nxy ∈ N0 constituting the order of expansion of its Boltzmann weight. For each
configuration {n} of bond states the summation over spins factorizes and we can rewrite
the partition function as [11]

Z =
∑
{n}

(∏
〈x,y〉

βnxy

nxy!

)(∏
x

Q
(
k(x)

))
, (5.3)

where

Q
(
k(x)

)
=

∑
z(x)=±1

z(x)k(x) =

{
2 if k(x) is even
0 if k(x) is odd

(5.4)

is the sum of all possible spin values at site x with site charge

k(x) =
D∑
µ=1

(
nx(x+µ̂) + n(x−µ̂)x

)
. (5.5)

In other words, by summing over bond configurations rather than spin configurations,
we can explicitly sum out the spin variables z (eq. (5.4)), and solely describe our system
in terms of bond variables! The charge k(x) is nothing but the sum of all bond variables
incident on site x. It counts the number of z(x) factors in an expansion term.

Now, obviously we have Z = 0 if there exists any site x with an odd charge k(x),
which means that any such configuration doesn’t contribute to the partition function.
In figure 5.1 we see what that means. The bond variables may be visualized by drawing
lines between sites, as many (or as thick) as their values specify. The evenness condition
on the charges then corresponds to these lines forming closed loops (or closed paths, CP,
not to be confused with CP). Any configuration with open paths has zero weight and
can therefore be excluded from the summation. This finding is most vital to the WA,
as we will soon see. We henceforth denote the set of closed-path configurations by CP .
By combining (5.3) and (5.4) we find the final expression for the Ising partition function
in the worm formalism:

Z = 2V
∑
{n}∈CP

(∏
〈x,y〉

βnxy

nxy!

)
. (5.6)
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Figure 5.1: Illustration of the worm algorithm I: Sample closed path configuration
contributing to Z. Each bond 〈x, y〉 is populated with a bond variable nxy (blue lines
with a width proportional to their values, or black dashed lines if zero). The bond
variables incident on site x add up to the charge k(x) (red).

5.1.2 The Algorithm

Above, we transformed the Ising field to a dual loop/graph representation, often
called loop gas. Simulating the fluctuations of this loop gas is the task of a Monte Carlo
algorithm. The worm algorithm is a simple local Metropolis scheme that acts on the
bond states by updating them one after the other, transforming one CP configuration
into another and thereby sampling Z. This is achieved by relaxing the CP constraint
temporarily: during an update, two sites xh, xt carry a ‘‘field insertion’’ z(xh) and z(xt),
respectively, and are hence enabled to have an odd sum of incident bond variables
contributing to the (still even) charge

k(x) =
D∑
µ=1

(
nx(x+µ̂) + n(x−µ̂)x

)
+ δx,xh

+ δx,xt , (5.7)

i.e. they form the endpoints of an open path, called ‘‘worm’’. xh and xt represent the
‘‘head’’ and ‘‘tail’’ of the worm. We have

D∑
µ=1

(
nx(x+µ̂) + n(x−µ̂)x

)
=

{
odd for x = xh, xt

even elsewhere
(5.8)

as long as the worm forms an open path (xh 6= xt). The reason why it is precisely two
sites falls into place when the translation invariant two-point function, that we would
like to calculate with the algorithm, is considered:

G(xh − xt) = 〈z(xt) z(xh)〉 =
1
Z

∑
{z}

z(xt) z(xh) exp
(
−S({z})

)
=

1
Z
g(xh − xt) (5.9)
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By performing the same high-temperature expansion to g as to Z above, we immediately
realize that g and Z only differ in the exponents of z(xt) and z(xh), which have increased
by one and are odd for g:

g(xh − xt) =
∑
{z}

∏
〈x,y〉

∞∑
nxy=0

βnxy

nxy!
(
z(x) z(y)

)nxyz(xt) z(xh) (5.10)

Thus, while relaxing the CP constraint on exactly two sites for a transition between valid
CP configurations, we can directly sample g. In the WA, the tail xt will always remain
seated during an update, while the head xh moves around. Each bond it traverses is
either increased or decreased in value, a process one may picture by drawing or erasing
lines. The locomotion of the head is stopped only when it coincides with the tail again,
i.e. when the open path closes and a (new) CP configuration is found. All we need to
take care of is moving the head with the correct Metropolis probabilities according to
(5.6).

The final worm algorithm for the Ising model goes as follows [11]:

1. Allocate an array the size of the lattice for g and zero it. Set Z = 0.

2. Assign each of the DV bonds an initial non-negative integer value such that they
form a CP configuration, e.g. all zero.

3. Select a random site xm and set xh = xt = xm.

4. Pick one of the 2D bonds incident on xh at random and call its other end xc (c
for candidate).

5. Propose to increase or decrease the bond variable nxhxc by 1 with probability 1
2 .

6. Perform the change with probability Psh = min{1, Rsh} (defined below). If
accepted, ‘‘shift’’ the head to the candidate site, i.e. set xh = xc.

7. Increment g(xh − xt) by 1, regardless of whether the shift was accepted or not.

8. If xh = xt, increment Z by 1, measure any desired quantity on the current
configuration (see below) and go to step 3, otherwise continue with step 4.

The Metropolis acceptance ratios are straightforwardly derived from (5.3, 5.7) [11]:

Rsh(xh → xc, nxhxc → nxhxc + 1) =
β

nxhxc + 1
Q
(
k(xc) + 2

)
Q
(
k(xc)

) =
β

nxhxc + 1

Rsh(xh → xc, nxhxc → nxhxc − 1) =
nxhxc

β

Q
(
k(xh)− 2

)
Q
(
k(xh)

) =
nxhxc

β

(5.11)

Note that their remarkable simplicity is thanks to the 2-periodicity of Q for the Ising
model. The ratio of Q functions doesn’t cancel in more elaborate models, such as
CPN−1, which will be considered later on. Also, the relocation of head and tail to a
randomly selected site in step 3, called ‘‘move’’, which we can always accept here, is in
general subject to an acceptance ratio Rmv of Q functions.
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Each worm (steps 3 to 8, until xh = xt) transforms the system from one CP
configuration into another (not necessarily different) one. The intermediate local head
shifts might look inefficient at first glance, but they aren’t. Each one of them, whether
accepted or not, increases the statistics for the Green’s function g by 1. Figure 5.2 shows
a series of consecutive head shifts, each of the configurations contributing to g(xh − xt)
but not to Z (except the first), because the path has not yet closed (xh 6= xt). Along its
way, the worm may build new loops by increasing bond variables, erase (‘‘backtrack’’)
others by decreasing them, change their path, combine or even break up some of them,
all during the same journey of head shifts. In Prokof’ev & Svistunov’s picture, it is
hence wrong to imagine a worm as a mere (purely positive or negative) path record of
the diffusive head. A worm might for instance ‘‘eat itself up’’ and leave a part behind,
forming a stand-alone closed loop. From two consecutive CP configurations created
by the WA, it is in general impossible to reconstruct the head trajectory, because the
worm is empowered to switch from drawing to erasing lines and vice versa at each head
shift independently.

1

1 2
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xt =xh
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6 0

(a) Beginning of a worm

1
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xh

1
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1
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(b) After the first shift
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1
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(c) After the second shift

1

1 2

2
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xh

1

2
1

1

6

6 1

(d) After the third shift

Figure 5.2: Illustration of the worm algorithm II: Series of head shifts producing
configurations contributing to g, in consecutive order (a to d). The marking is the
same as in fig. 5.1, with the red numbers indicating the sums of incident bond states
(5.8). Head and tail are additionally marked by black dots. Arrows identify head shift
directions.
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As soon as enough statistics are collected, we can abort the scheme and obtain
measurables from the collected data according to (2.4), (2.7) and (5.9) by

〈E〉 = − V

DZ

∑
|x|=1

g(x), (5.12)

〈χ〉 =
1
Z

∑
x

g(x), (5.13)

The correlation length can be computed using a fitting method described in section
3.2. The Green’s function G(x) = g(x)/Z comes at particularly low cost in the worm
algorithm, which, aside from the low dynamic critical exponent, is another major
advantage of the WA. Computing autocorrelation times of measurables calculated from
the Green’s function, on the other hand, is a bit less convenient with the WA, because
no MC time series of measurements is naturally on hand, for G being available at
full precision no earlier than at the end of MC dynamics. Therefore, for computing
autocorrelation times of such modes, one resorts to binning the accumulation of statistics
for G, calculating the measurables on each bin separately and then performing the
usual autocorrelation analysis on the resulting series [13]. The price to pay is a high
variance, of course. In principle, one could set the bin size to a single head shift proposal
only, with the binned Green’s function then being gbin(x) = δx,xh−xt , but the induced
variance is of course preposterous. Rather, bins of size

∑
x gbin(x) = O(DV ) should be

used, i.e. proportional to the number of lattice degrees of freedom in the system.

It is worth stressing that the above transformation recipe and sampling algorithm are
both directly applicable to any hypercubic lattice dimensionality D without modification.
This generality property accentuates the beauty of the WA and facilitates a generic
implementation.

5.1.3 Direct Estimators

As usually, there exists a second way (other than the Green’s function) to determine
the energy, also for the WA, namely from the logarithmic derivative of the partition
function w.r.t. β [11]:

〈E〉 = −d lnZ
dβ

= − 1
Z

dZ
dβ

= − 1
Z

[
2V

∑
{n}∈CP

(
d

dβ

∏
〈x,y〉

βnxy

nxy!

)]

= − 1
Z

[
2V

∑
{n}∈CP

(
1
β

∑
〈x,y〉

nxy

)(∏
〈x,y〉

βnxy

nxy!

)]
= − 1

β

〈∑
〈x,y〉

nxy

〉
CP
,

(5.14)

which is perfectly intuitive. 〈 · 〉CP denotes the thermal average over closed-path
configurations. To obtain a direct MC estimator for the energy from a CP configuration
we can hence just sum up all bond variables in step 8 of the WA, when Z is non-zero,
or better even keep track of the change ±1 during the head shifts, record in step 8, and
divide by β after averaging. Analogously we find the heat capacity
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〈CV 〉 =
(

d〈E〉
dβ−1

)
V

= β2 d
dβ

(
1
Z

dZ
dβ

)
=
β2

Z2

(
d2Z

dβ2
Z −

(
dZ
dβ

)2
)

=
β2

Z

d2Z

dβ2
−
〈∑
〈x,y〉

nxy

〉2

CP

=
2V

Z

∑
{n}∈CP

(∑
〈x,y〉

nxy

)(∑
〈x,y〉

nxy − 1
)(∏
〈x,y〉

βnxy

nxy!

)
−
〈∑
〈x,y〉

nxy

〉2

CP

=
〈(∑
〈x,y〉

nxy

)(∑
〈x,y〉

nxy − 1
)〉

CP
−
〈∑
〈x,y〉

nxy

〉2

CP

=
〈(∑
〈x,y〉

nxy

)2〉
CP
−
〈∑
〈x,y〉

nxy

〉
CP
−
〈∑
〈x,y〉

nxy

〉2

CP

= β2
(
〈E2〉 − 〈E〉2

)
+ β〈E〉,

(5.15)

which differs from the common formula in spin notation (2.6)! Autocorrelation times
for E and CV can be computed in the usual way as described in section 3.1.

Spin-like observables like the magnetization or derivative modes thereof, on the other
hand, are incomparably less manifest. Since the spins no longer exist in our system,
they can at best be retrieved from backward mapping the loop configuration to spin
fields, which is only possible for a fraction of configurations, even for the unpretentious
Ising model [62]. We expect this portion to shrink with increasing spin dimension N
and to be insufficient for as low as N ≥ 2 in O(N), but are unaware of any rigorous
investigation in this regard.

5.1.4 Variant Implementations

Note that there exists a substantial performance enhancement trick in the simple
case of the Ising model [11]: One may replace the full Maclaurin series expansion in
(5.2) by the identity

exp
(
β z(x) z(y)

)
= cosh(β)

∑
nxy=0,1

[
tanh(β) z(x) z(y)

]nxy (5.16)

to truncate the configuration space of bond variables to binary values nxy ∈ {0, 1}. As
this is of no use in this illustrative example of the WA fundamentals, we omit further
details, which are straightforward.

Also, the relocation of head and tail every time the worm closes may in principle be
performed at any probability p < 1 or even completely skipped without compromising
the correctness of the results [11,49]. However, equilibration will take a lot longer in
the latter case, of course, particularly for large physical system sizes L/ξ.

Moreover, keeping the tail fixed while shifting the head is a simplification enabled by
translation invariance. Using the exact same rules as for the head, also the tail could
be shifted around on the lattice, although at no additional revenue, which is why this is
usually not implemented.
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5.2 Worm Algorithm for the CPN−1 Model

Prokof’ev and Svistunov successfully applied their worm algorithm to the complex
scalar φ4 theory [11]. The essential difference to real-valued models is that the lines
drawn along bonds become oriented. Both directions can (and do) coexist, one of them
belonging to z̄(x) z(y) and the other to the complex conjugate. A similar generalization
will occur in our deployment to the CPN−1 model.

5.2.1 From Spins to Bonds

A compact derivation of the high-temperature expansion for the CPN−1 partition
function has been given by S. Chandrasekharan in 2008 [63]. We replicate it here in
some more detail for completeness and to introduce the terms and nomenclature. Again
starting from the partition function in terms of spin configurations (2.13),

Z =
∫

exp
(
−S({z})

) ∏
x

Dz(x)

=
∫ ∏
〈x,y〉

N∏
a,b=1

exp
[
β
(
z̄a(x) zb(x)

)(
z̄b(y) za(y)

)] ∏
x

Dz(x)
(5.17)

with infinitesimal normalized invariant CPN−1 measure

Dz = δ(|z|2 − 1) dNz̄ dNz, (5.18)

we Maclaurin-expand in β to obtain

Z =
∫ ∏
〈x,y〉

N∏
a,b=1

∞∑
nab

xy=0

[βnab
xy

nabxy!
(
z̄a(x) zb(x)

)nab
xy
(
z̄b(y) za(y)

)nab
xy

] ∏
x

Dz(x). (5.19)

While this expression looks rather lengthy, it is actually the same as in the aforementioned
Ising model, except that each bond 〈x, y〉 now carries a bond state for each ‘‘flavor’’
pair ab, such that we need to assign each bond an N×N bond matrix nxy ∈ NN×N

0 . Its
abth element nabxy gives the power of the

(
z̄a(x) zb(x)

)
factor in the expansion, and at

the same time the power of
(
z̄b(y) za(y)

)
. In a way, the bond matrix seen from site x is

nxy, and nTxy from the perspective of site y.



34 5.2. Worm Algorithm for the CPN−1 Model

As usually, we can now integrate over all possible spin fields. Let za = ra exp(iφa),
r = (r1, ..., rN ), φ = (φ1, ..., φN ), and k = (k1, ..., kN ), l = (l1, ..., lN ) ∈ NN

0 . Then

Q(k, l) =
∫ N∏

a=1

(z̄a)ka(za)la Dz(x)

=
∫
δ(|r| − 1) δ[0,2π]N (φ)

N∏
a=1

rka+la+1
a exp

[
iφa(la − ka)

]
dNφ dNr

=
N∏
a=1

(δka,la) πN
∫
δ
( N∑
a=1

ua − 1
) N∏
a=1

uka
a dua

= δk,l

2πN
N∏
a=1

ka!(
N∑
a=1

ka +N − 1
)

!
,

(5.20)

where we substituted ua = r2a. We observe that the integral is non-zero only if the power
vectors k and l are equal in each component. This is the equivalent to the evenness
condition (5.4) on the charge that we encountered in the Ising model. Let’s now rewrite
the partition function using this integral:

Z =
∑
{n}

(∏
〈x,y〉

N∏
a,b=1

βn
ab
xy

nabxy!

)(∏
x

Q
(
q(x), p(x)

))
, (5.21)

with auxiliary ‘‘outflow’’ and ‘‘inflow’’ vector fields q and p, respectively, given
component-wise at each site by

qa(x) =
D∑
µ=1

N∑
b=1

(
nabx(x+µ̂) + nba(x−µ̂)x

)
, pa(x) =

D∑
µ=1

N∑
b=1

(
nbax(x+µ̂) + nab(x−µ̂)x

)
. (5.22)

Note the nifty similarities to eqs. (5.3–5.5)! The outflow q(x) is the combination of
the row sum of the bond matrix in positive lattice direction plus the column sum in
negative direction, and the inflow p(x) is just the transposed analogon. Of course their
naming is purely conventional, we could just as well call q the inflow.

Z is non-zero if and only if inflow and outflow are balanced on each site. This is
the closed path constraint with oriented loops for the CPN−1 model. Especially in
the context of oriented loops, the CP constraint is often also interpreted as ‘‘zero
divergence’’, ‘‘flux conservation’’ or ‘‘current conservation’’. On each lattice site, any
incoming line has an outgoing counterpart.
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5.2.2 The Algorithm

For the derivation of the algorithm, we proceed analogously to the Ising model above.
Using two sites at which the CP constraint q ≡ p is broken, we will transform the
system from one CP configuration into another and thereby sample Z, using standard
Metropolis rules. In the process, the movement of the worm will sample g.

Let’s first consider the translation-invariant connected Green’s function

Gc(xh − xt) =
〈
|z̄(xh) · z(yt)|2

〉
− 1
N

=
1
Z

∫
|z̄(xh) · z(xt)|2 exp(−S)

∏
x

Dz(x)− 1
N

=:
1
Z
g(xh − xt)−

1
N
.

(5.23)

We now high-temperature-expand g and observe that it can be decomposed into a sum
of N2 components gab that are labeled by a flavor pair ab:

g(xh − xt) =
∫ [ N∑

a,b=1

(
z̄a(xh) zb(xh)

)(
z̄b(xt) za(xt)

)] ∏
〈x,y〉

N∏
c,d=1

∞∑
ncd

xy=0

[
...
] ∏

x

Dz(x)

=
N∑

a,b=1

∫ (
z̄a(xh) zb(xh)

)(
z̄b(xt) za(xt)

) ∏
〈x,y〉

N∏
c,d=1

∞∑
ncd

xy=0

[
...
] ∏

x

Dz(x)

=:
N∑

a,b=1

gab(xh − xt),

(5.24)

where [...] is just the same expansion expression as in eq. (5.19). The core statement is
the same as for the simple Ising model. We have found an expression for the Green’s
function that essentially differs from Z at only two sites: the head xh and the tail xt.
For each pair ab, gab carries an additional ‘‘source’’ factor z̄a zb at the head and a ‘‘sink’’
factor z̄b za at the tail. They increase the power of the corresponding expansion terms
by one each. Their presence allows us to violate the zero-flux contraint q(x) = p(x) at
those two sites during the updates. Again, the terms ‘‘head’’ and ‘‘tail’’, or ‘‘source’’
and ‘‘sink’’, are merely conventional and interchangeable, as long as they are used
consistently.

Eventually, a worm will operate in a single matrix element ab only, sampling gab by
shifting z̄a zb and z̄b za factors around. A new index pair cd will be proposed uniformly
and accepted with correct Metropolis probability whenever a new worm is generated,
i.e. in the ‘‘move’’ step of the WA. That newly created worm will then sample gcd, and
so on. In the end, we will sum up g =

∑
ab g

ab to obtain the full correlation.

Let’s define the weight integral

I(k) =
2πN

N∏
a=1

ka!(
N∑
a=1

ka +N − 1
)

!
, k ∈ NN

0 , (5.25)
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such that Q(q, p) = δq,pI(q). Let’s further assume that we have chosen a worm label
ab ∈ {1, 2, ..., N}2, i.e. consider the case where we sample a single component gab of the
Green’s function with a worm whose head and tail are z̄a(xh) zb(xh) and z̄b(xt) za(xt),
respectively. For gab, the zero-flux contraint q ≡ p is modified into k ≡ l with

k(x) = q(x) + δx,xh
â+ δx,xt b̂,

l(x) = p(x) + δx,xh
b̂+ δx,xt â.

(5.26)

Here, â is the ath canonical unit vector in N dimensions. Accordingly,
∏
x I
(
q(x)

)
in

eq. (5.21) becomes
∏
x I
(
k(x)

)
for gab:

gab(xh − xt) =
∑
{n}

(∏
〈x,y〉

N∏
c,d=1

βn
cd
xy

ncdxy!

)(∏
x

δk(x),l(x)I
(
k(x)

))
(5.27)

This expression readily provides us with the ratios of Boltzmann weights as acceptance
probability for the Metropolis updates. Suppose the head is located at site x and will
be shifted in lattice dimension µ to site (x± µ̂). We need to distinguish four different
possible changes in bond configuration with their respective impacts on k and l:

� Increase nabx(x+µ̂):

* q(x)→ q(x) + â, which replaces the leaving head (−δx,xh
â) in k

* p(x)→ p(x) + b̂, which replaces the leaving head (−δx,xh
b̂) in l

* q(x+ µ̂)→ q(x+ µ̂) + b̂, which compensates the new head (+δx+µ̂,xh
b̂) in l

* p(x+ µ̂)→ p(x+ µ̂) + â, which compensates the new head (+δx+µ̂,xh
â) in k

� Increase nba(x−µ̂)x:

* q(x)→ q(x) + â, which replaces the leaving head (−δx,xh
â) in k

* p(x)→ p(x) + b̂, which replaces the leaving head (−δx,xh
b̂) in l

* q(x− µ̂)→ q(x− µ̂) + b̂, which compensates the new head (+δx−µ̂,xh
b̂) in l

* p(x− µ̂)→ p(x− µ̂) + â, which compensates the new head (+δx−µ̂,xh
â) in k

� Decrease nbax(x+µ̂):

* q(x)→ q(x)− b̂, which compensates the leaving head (−δx,xh
b̂) in l

* p(x)→ p(x)− â, which compensates the leaving head (−δx,xh
â) in k

* q(x+ µ̂)→ q(x+ µ̂)− â, which is replaced by the new head (+δx+µ̂,xh
â) in k

* p(x+ µ̂)→ p(x+ µ̂)− b̂, which is replaced by the new head (+δx+µ̂,xh
b̂) in l

� Decrease nabx(x−µ̂):

* q(x)→ q(x)− b̂, which compensates the leaving head (−δx,xh
b̂) in l

* p(x)→ p(x)− â, which compensates the leaving head (−δx,xh
â) in k

* q(x− µ̂)→ q(x− µ̂)− â, which is replaced by the new head (+δx−µ̂,xh
â) in k

* p(x− µ̂)→ p(x− µ̂)− b̂, which is replaced by the new head (+δx−µ̂,xh
b̂) in l
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Note that the index pair of the bond matrix element which is changed depends on the
direction the head is shifted (positive or negative) as well as the change itself (±1)! k(x)
remains unchanged in the first two cases where the bond matrix element is incremented,
while k(x± µ̂) remains unchanged in the latter two. The Metropolis acceptance ratios
for the four changes are hence given by

Rinter
sh (x→ x+ µ̂, nabx(x+µ̂) → nabx(x+µ̂) + 1) =

β

nabx(x+µ̂) + 1
I
(
q(x+ µ̂) + â+ b̂

)
I
(
q(x+ µ̂)

) ,

Rinter
sh (x→ x− µ̂, nba(x−µ̂)x → nba(x−µ̂)x + 1) =

β

nba(x−µ̂)x + 1
I
(
q(x− µ̂) + â+ b̂

)
I
(
q(x− µ̂)

) ,

Rinter
sh (x→ x+ µ̂, nbax(x+µ̂) → nbax(x+µ̂) − 1) =

nbax(x+µ̂)

β

I
(
q(x)− b̂

)
I
(
q(x) + â

) ,
Rinter

sh (x→ x− µ̂, nab(x−µ̂)x → nab(x−µ̂)x − 1) =
nab(x−µ̂)x

β

I
(
q(x)− b̂

)
I
(
q(x) + â

) ,

(5.28)

if, and this is important to see, the head shift is neither the worm’s first (x 6= xt) nor
last (x± µ̂ 6= xt). Rinter

sh is only valid for intermediate head shifts, hence the superscript.
For the first shift, the tail contributes an additional δx,xt b̂ to k(x = xt), thus the ratios
become

Rfirst
sh (x→ x+ µ̂, nabx(x+µ̂) → nabx(x+µ̂) + 1) = Rinter

sh (...),

Rfirst
sh (x→ x− µ̂, nba(x−µ̂)x → nba(x−µ̂)x + 1) = Rinter

sh (...),

Rfirst
sh (x→ x+ µ̂, nbax(x+µ̂) → nbax(x+µ̂) − 1) =

nbax(x+µ̂)

β

I
(
q(x)

)
I
(
q(x) + â+ b̂

) ,
Rfirst

sh (x→ x− µ̂, nab(x−µ̂)x → nab(x−µ̂)x − 1) =
nab(x−µ̂)x

β

I
(
q(x)

)
I
(
q(x) + â+ b̂

) .
(5.29)

During the last shift, the tail contributes an additional δx,xt b̂ to k(x± µ̂ = xt):

Rlast
sh (x→ x+ µ̂, nabx(x+µ̂) → nabx(x+µ̂) + 1) =

β

nabx(x+µ̂) + 1
I
(
q(x+ µ̂) + â+ 2b̂

)
I
(
q(x+ µ̂) + b̂

) ,

Rlast
sh (x→ x− µ̂, nba(x−µ̂)x → nba(x−µ̂)x + 1) =

β

nba(x−µ̂)x + 1
I
(
q(x− µ̂) + â+ 2b̂

)
I
(
q(x− µ̂) + b̂

) ,

Rlast
sh (x→ x+ µ̂, nbax(x+µ̂) → nbax(x+µ̂) − 1) = Rinter

sh (...),

Rlast
sh (x→ x− µ̂, nab(x−µ̂)x → nab(x−µ̂)x − 1) = Rinter

sh (...).

(5.30)

But this is not the whole story. In the case where a = b, i.e. if the worm is ‘‘diagonal’’,
the Kronecker deltas for head and tail in the definition of k and l (eq. (5.26)) need no
compensation by a change in bond state when shifting the head around. The constraint
k ≡ l is automatically fulfilled if q ≡ p. An ergodic sampling of the diagonal entries of g
must therefore also include head shifts which don’t modify the diagonal bond matrix
elements naaxy. The ratios of new over old weight for such ‘‘no-change’’ shifts are easily
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found to be

Rfirst
ncsh(x→ x± µ̂, a = b) =

I
(
q(x) + â

)
I
(
q(x) + 2â

) I(q(x± µ̂) + â
)

I
(
q(x± µ̂)

) ,

Rinter
ncsh (x→ x± µ̂, a = b) =

I
(
q(x)

)
I
(
q(x) + â

) I(q(x± µ̂) + â
)

I
(
q(x± µ̂)

) ,

Rlast
ncsh(x→ x± µ̂, a = b) =

I
(
q(x)

)
I
(
q(x) + â

) I(q(x± µ̂) + 2â
)

I
(
q(x± µ̂) + â

) .
(5.31)

When a worm closes (xh = xt), a new CP configuration contributing to Z is reached.
For the Ising model, where the g sector was the same as the Z sector due to the
2-periodicity of the site integrals Q, the weight w({n}) of a CP configuration resulting
from the removal of the source and sink terms was exactly unity. This no longer holds
here. k and l are reduced to q and p again, respectively, which modifies the argument
where the site integral is evaluated, yielding the configuration weight

w({n}) =
1
N2

Q
(
q(x), p(x)

)
Q
(
k(x), l(x)

) =
1
N2

I
(
q(x)

)
I
(
q(x) + â+ b̂

) , x = xh = xt. (5.32)

The prefactor 1/N2 accounts for the fact that N2 worms are needed to sample all
components ab. This weight serves as the increment for the statistics of the partition
function as well as a prefactor for any observable A (cf. section 5.2.4) measured while
sampling Z, via

〈A〉CP =
1
Z

∑
{n}∈CP

MC

A({n})w({n}), Z =
∑
{n}∈CP

MC

w({n}), (5.33)

where
∑

MC is the Monte Carlo sum of sampled configurations.

What remains to be specified is the Metropolis ratio for the ‘‘move’’ step in the
WA, i.e. for the transition of one worm into another one. Here, both the change of
location and the change of the flavor label ab need to be taken into account. The ratio
of weights for moving a closed worm from site x = xh = xt to site xm and at the same
time reflavoring it from ab to cd is

Rmv(x = xh = xt → xm, ab→ cd) =
Q
(
q(x), p(x)

)
Q
(
k(x), l(x)

) Q(k(xm), l(xm)
)

Q
(
q(xm), p(xm)

)
=

I
(
q(x)

)
I
(
q(x) + â+ b̂

) I(q(xm) + ĉ+ d̂
)

I
(
q(xm)

) .

(5.34)

This corresponds to the removal of the source z̄a zb and the sink z̄b za from site x and
placing a new source z̄c zd and sink z̄d zc at site xm. Rmv cancels to unity for the Ising
model, which is why the move is always accepted there.

With the above considerations, we devise the worm algorithm as follows:

1. Allocate a V ×N×N array for the components gab and zero it. Set Z = 0.

2. Assign each of the DV bonds an N×N matrix of non-negative integers and
initialize them such that q ≡ p, e.g. all elements zero.
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3. Select any site xm and set xh = xt = xm. Start with any a, b ∈ {1, 2, ..., N}.
4. Pick one of the 2D lattice directions ±µ̂ at random.

5. If a = b, then with probability Pnc (see below) propose a head shift without change
of bond state. In this case, set xh = xh± µ̂ with probability Pncsh = min{1, Rncsh}
and continue with step 8.

6. Propose to increase or decrease the bond state by 1 with probability 1/2. Together
with the decision +µ̂ or −µ̂ this identifies the four possible bond modifications.

7. Perform the change with probability Psh = min{1, Rsh}. If accepted, set xh =
xh ± µ̂.

8. Increment gab(xh − xt) by 1, regardless of whether the shift was accepted or not.

9. If xh 6= xt, continue with step 4.

10. Increment Z by w({n}) and measure any desired quantity A({n})w({n}).
11. With probability 1/2 (cf. ref. [11]), draw a new random flavor pair and a new

location xm for head and tail, and accept with probability Pmv = min{1, Rmv}.
Go to step 4.

When enough statistics have been collected, the simulation cycle is terminated. The full
connected Green’s function is retrieved using eqs. (5.23) and (5.24), and the energy and
magnetic susceptibility are derived from it in the usual way as described in section 2.2.

It’s worth mentioning that the WA operates with reals and integers only, as can be
seen without difficulty. No complex numbers are involved, even though the original
lattice model is completely complex-valued. This astonishing property stands in sharp
contrast to cluster algorithms.

The ‘‘no-change’’ probability Pnc with which we decide to propose a shift that leaves
the bonds untouched if the worm is diagonal, can be chosen freely in ]0,1[. We observed
no impact on the simulation results if Pnc was varied. The decorrelation power is
expected to vary significantly, though. Furthermore, ergodicity and detailed balance
are also maintained if this special shift is modified to a ‘‘heatbath’’, where a randomly
drawn site xc replaces the role of the nearest neighbor (x ± µ̂) as the candidate site
for the shift (or ‘‘jump’’ in that case). This heatbath version of the algorithm has
been checked to yield the same results as well, and is also expected to lead to different
autocorrelation times. A rigorous study in these regards is still pending.

An interesting feature of the CPN−1 worm is that head and tail cannot be located
from the bond configuration alone if a = b, which is rather peculiar. Z also includes
‘‘open’’ paths labeled aa, which are broken open by the no-change shifts. The ‘‘CP’’
constraint q ≡ p is fulfilled for arbitrary values in the diagonal elements of the bond
matrices, i.e. they do not necessarily need to form closed lines. In other words, when
gaa is sampled with a diagonal worm, any open-line configuration (whether xh = xt or
not) carries a non-zero weight in Z and may be used to measure observables from. In
principle, one could even consider interrupting the head shifting before xh = xt and
start another worm elsewhere. Neither of these measures is required for ergodicity,
though. In any case, the set of configurations contributing to Z, which we continue
denoting CP here, is strictly speaking not exclusive to closed paths in the original sense.
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5.2.3 Efficient Implementation

A predominant portion of the simulation code comprises the evaluation of site integrals
ratios I(...)/I(...) with only small differences in the argument between numerator and
denominator. While all ratios nicely cancel for the Ising model, the site integrals can be
tabulated for many other models prior to the simulation [11]. This is rather useless in
our case. Even for moderate N , the dimensionality of such a lookup table is presumably
large enough to make the costs for finding the memory location of the table entry more
expensive than recalculating the ratio of integrals in the first place, if the table even
fits into memory at all. Instead, we can exploit the identities

I
(
q(x) + â

)
I
(
q(x)

) =
qa(x) + 1
q̃(x)

and
I
(
q(x)− â

)
I
(
q(x)

) =
q̃(x)− 1
qa(x)

, (5.35)

where

q̃(x) =
N∑
c=1

qc(x) +N. (5.36)

Using trivial expansions of the form

I
(
q(x) + â+ b̂

)
I
(
q(x)

) =
I
(
q(x) + â

)
I
(
q(x)

) I
(
q̌(x) + b̂

)
I
(
q̌(x)

) , q̌(x) = q(x) + â, (5.37)

all ratios (5.28–5.34) occurring in the algorithm can be decomposed into products of
(5.35) or their reciprocals, which are very cheap to compute. In practice, the integral
formula (5.25) doesn’t ever need to be actually evaluated.

In principle, neither of q and p vectors need to be kept track of. They can be
reconstructed from the bond matrices via eq. (5.22) at any time. In a practical
implementation, however, one is of course advised to avoid this recalculation by storing
q and q̃ at each site anyway. The update to q and q̃ corresponding to the bond matrix
modification in step 7 of the algorithm can be readily seen from the four allowed bond
changes disclosed further above. The evaluation of any integral ratio is then possible
in O(1) time, i.e. independent of N . The p vectors are not needed at all during the
simulation.
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5.2.4 Direct Estimators

In the exact same manner as for the Ising model, the energy of the constrained CPN−1

loop gas can be written as the sum of all bond states:

〈E〉 = − 1
β

〈∑
〈x,y〉

N∑
a,b=1

nabxy

〉
CP

(5.38)

The fluctuative-dissipative formula (5.15) for the heat capacity also holds for the CPN−1

model, with 〈E〉 from eq. (5.38).

The topological charge has recently been identified in the loop gas formulation by
Wolff [13]. It is rather non-trivial to extract and reportedly involves the infamous sign
problem. Numerical studies are still pending. However, the presence of oriented loops
(together with periodic boundaries) grants easy direct access to another topological
mode. From the difference of outflow and inflow per flavor along each bond, we define
the winding number W ∈ ZD×N of a CP configuration component-wise by

Wµ,a =
1
L

∑
x

N∑
b=1

(
nabx(x+µ̂) − n

ba
x(x+µ̂)

)
. (5.39)

Pictorially speaking, it is the net number of loops spanning the D-torus, for each
component and lattice dimension. The worm algorithm holds the pleasant power of
modifying these winding numbers.

5.2.5 Scaling with the Flavor Number

The number of degrees of freedom (bond states) in the loop gas representation of the
CPN−1 model is DVN2. Consequently, the CPU time needed by the worm algorithm
grows at least like the square of N . But there is also an N -dependency hidden in the
Metropolis probabilities. In particular, the acceptance probability of a regular head
shift, Psh, is critical, as it is the predominant one. To find the overall scaling behavior
of the algorithm, we measured the average probabilities on a L = 8 square grid (fig. 5.3).
When β is fixed, the average acceptance probability for a head shift diminishes like
1/N2 (fig. 5.3(a)), making the overall CPU time required scale like O(N4). However,
the case where ξ is fixed instead is more important. There, we observe a stable shift
probability (fig. 5.3(b)). The overall scaling will still be slightly worse than O(N2)
though, due to the moderate decline of the move probability Pmv.
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(a) At constant β = 4.8483 (i.e. varying ξ), Psh diminishes like 1/N2.
The other exponents serve only as a rough approximation in the shown
range; clearly the probabilities approach 1 for large N .
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(b) At constant ξ, i.e. β chosen such that L/ξ = 2 according to the
two-loop scaling prediction (eq. (4.12)), no clear power law is observed.
The shift acceptance probabilities slowly approach 1 with increasing N ,
while Pmv declines moderately.

Figure 5.3: Log-log plots of average Metropolis acceptance probabilities after equili-
bration, for a L = 8 sample grid. The key probability is that of a regular head shift
(blue). Errors are smaller than the symbols.
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5.2.6 Ergodicity Problem

With the above worm algorithm, we obtain results that are consistent with those from
the single-flip and single-cluster algorithms for N = 2, see section 5.2.7. Surprisingly,
though, we haven’t been able to reproduce the correct results for larger N , not even
for small lattices and rather long runs with, say, O(109) worms. To illustrate this, lets
consider the (averaged) results of n = 12 independent simulations at N = 4, L = 12,
β = 5.0854, with u = 2×109 worms after equilibration. The number of worms between
measurements was s = 100. The expected (correct) outcome is that of the first row in
table 4.2. But instead, we obtain the following:

� from the average bond occupation: 〈E〉/V = −1.295352(11)

� from the nearest neighbor correlation: 〈E〉/V = −1.29541(9)

� 〈χ〉/V = 0.25624(4)

These values are obviously wrong. Yet the two energy measurements match, which
indicates that our worm updates sample only part of the full phase space. A possible
cause of ergodicity failure becomes apparent when we look at the winding numbers from
one of these simulations:

〈|W |〉 = 10−3

[
3.967 3.899 3.943 11.789
3.993 3.963 3.968 11.904

]
(5.40)

They are the same within statistical errors in both lattice directions (rows), but not for
all components (columns). For symmetry, the true equilibrium values are of course the
same in all components. When histogramming the component label ab the worms adopt
in step 11 of the algorithm, we observed that for N > 2, the worms easily get ‘‘trapped’’
in the sense that there exists a flavor c such that the worms keep their labels within
ac or cb (a row or column in the N×N matrix of label histograms) for a very long
time, resulting in an imbalance between the winding numbers in eq. (5.40). Also, the
statistics for the different components of g are affected in the same way, i.e. they remain
perseveringly imbalanced until very long. With increasing N , this lack of ergodicity
seems to grow even.

To get an idea of the potential severity of this problem, we investigated the simulation
time required to overcome the mentioned imbalance. More precisely, we measured the
average maximum value for β/N we could reach in L = 16 square lattice simulations at
different N , subject to the constraint that the histograms for aa get balanced within a
fixed number of lattice sweeps. Let’s denote the number of times a worm carrying the
component label ab is chosen in step 11 of the algorithm by h(a, b). For a given value
of N , we varied β and determined, at which value (on average) we would find that

maxa h(a, a)
mina h(a, a)

= 1.01 (5.41)

after precisely T lattice sweeps, without thermalizing beforehand, i.e. starting from the
zeroed configuration. (One lattice sweep is defined as DVN2 head shift proposals, or
increments to the statistics of g.) In other words, we determined the maximum values
for β/N , for which the histogram imbalance is overcome up to a percent within T lattice
sweeps. The results for T = 104, 105, 106 are shown in figure 5.4. These results quantify
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the depth of the row/column ergodicity trap, providing an immediate prediction for
the physical size L/ξ of the system one can simulate to a certain precision within a
given amount of time, via the scaling law (4.12). The main message from figure 5.4 is
actually the range of values rather than the behavior with N . For instance, a worm
simulation of CP3 at β/4 = 0.5214(9) on a lattice as small as L = 16 will balance to 1%
precision only after T = 104 lattice sweeps (green triangle at N = 4). The correlation
length reached by such a simulation is as small as ξ ≈ 0.034, a value far away from the
desired regime. Allowing for a runtime of T = 106 sweeps extends the accessible length
scale to no more than ξ ≈ 1.5 (β/4 = 1.06585(15), blue circle) in that example.
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Figure 5.4: Accessible values for β/N at various N for a L = 16 lattice. The dashed
lines are isolines for the number of lattice sweeps T required to sample the full flavor
space evenly to 1% precision. A detailed description is given in the text. Errors are
smaller than the symbols.

Non-ergodicity for large N has been reported also for the well-established spin
algorithms by Vicari [64], thus it is not a new phenomenon. It has also been realized long
ago that the high-temperature expansion and high-N expansion don’t commute [65, 66].
However, the issues that are encountered with the worm algorithm certainly are of a
different level of severity, as it fails already at N = 3. Using the Simulated Tempering
method proposed by Marinari and Parisi [67], Vicari has been able to go to quite large
N . In this method, the coupling β is varied while the system is kept at equilibrium
at the same time. It has not yet been examined whether a similar approach could be
successful also for the CPN−1 WA. Aside from Simulated Tempering, there are other
methods known to deal with very rough free energy surfaces. Umbrella Sampling [68]
is certainly worth considering, as are the numerous histogram methods [69–71]. Or,
just like in past simulations of the CPN−1 model [8, 41, 57, 64, 72], remedy could also be
found in overrelaxation, which may allow to tunnel between the separated vacua.
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5.2.7 Numerical Results and Dynamic Behavior for N=2

In this section we report simulation results for the CP1 model, which is known to be
equivalent to the classical Heisenberg model. Table 5.1 lists high-precision numerical
data for a series of simulations on square lattices up to L = 128. Pnc = 1/2 and regular
no-change head shifts were used (i.e. no heatbath). For benchmarking, we chose to
simulate the exact same systems (β, L) as with the single-cluster algorithm on the
O(3) model. The obtained values for the appropriately rescaled energy, specific heat
and magnetic susceptibility are thus directly comparable to table 4.1. The tabulated
parameters are explained there. Consistency within statistical errors is found in all cases.
Note that the correlation length is measured with the zero-momentum definition (3.14)
here, which is not identical to ξ2nd from table 4.1. Additional unlisted simulation runs
have also been carried out to assert consistency between the worm and single-cluster
algorithms on CP1, which is confirmed.

Table 5.1 also contains results for the winding numbers and their square. In favor of
a compact notation, we write

|W | = 1
DN

D∑
µ=1

N∑
a=1

|Wµ,a| (5.42)

and

W 2 =
1
DN

D∑
µ=1

N∑
a=1

W 2
µ,a (5.43)

with Wµ,a from (5.39). W 2 should be directly proportional to the spin stiffness ρs [73].
Furthermore, we use the notation

〈EG〉 = −
∑
〈x,y〉

G(x, y) = − 1
Z

∑
µ

g(µ̂) (5.44)

to clearly distinguish the energy obtained from the Green’s function, EG, from the one
obtained from the bond occupation (5.38), E without subscript.

The integrated autocorrelation times from table 5.1 are visualized in figure 5.5, where
they are logarithmically drawn against the zero-momentum correlation lengths to reveal
the dynamic critical behavior of the worm algorithm. This includes the modes derived
from the Green’s function, EG and χ, whose autocorrelation times τ int

EG
and τ int

χ were
determined using the binning strategy mentioned towards the end of section 5.1.2.
These two are well shorter than a single lattice sweep (1 sweep = DVN2 head shift
proposals) and may hence be subject to some inaccuracy induced by the very short
integration domain (M = 2 mostly, cf. section 3.1).
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Table 5.1: Numerical results for the CP1 model obtained with the WA. The systems
are chosen to be identical to our single-cluster simulations of the equivalent O(3) model
(table 4.1). For direct comparability with the latter, some values are rescaled as indicated
in the header.

L β/2 n u×10−9 s Tτ×10−6 sτ 2E/V + 2 2EG/V + 2 CV /V 2χ/V |W | W 2 ξ τ int
E τ int

EG
τ int
χ τ int

W τ int
W 2

12 1.49950 30 15 150 8 1 -1.225599(5) -1.225629(14) 1.5791(3) 0.352203(8) 0.29049(3) 0.32250(3) 5.99919(16) 0.3861(4) 0.11078(5) 0.09597(4) 14.77(7) 12.33(6)
16 1.55300 30 10 150 8 1 -1.254432(4) -1.25441(2) 1.5727(3) 0.322514(13) 0.28700(3) 0.31732(4) 7.9559(3) 0.3720(4) 0.10859(5) 0.09271(5) 16.67(10) 13.92(7)
23 1.62000 30 4 150 8 1 -1.290660(5) -1.29067(4) 1.5357(4) 0.29249(3) 0.28721(7) 0.31685(8) 11.4486(13) 0.3572(5) 0.10637(6) 0.08939(5) 19.02(16) 15.92(10)
32 1.67623 30 2 200 8 1 -1.319601(7) -1.31961(5) 1.4927(11) 0.26823(4) 0.28640(16) 0.31539(19) 15.944(3) 0.3461(5) 0.10460(6) 0.08687(6) 21.48(2) 18.02(15)
45 1.73215 30 1.2 250 8 1 -1.346585(6) -1.34664(7) 1.4479(13) 0.24629(6) 0.2848(3) 0.3132(4) 22.463(8) 0.3348(12) 0.10320(6) 0.08483(6) 24.4(3) 20.41(20)
64 1.78951 32 0.6 300 8 1 -1.372244(5) -1.37228(8) 1.403(2) 0.22707(9) 0.2863(5) 0.3147(6) 32.069(16) 0.3216(12) 0.10166(9) 0.08276(9) 26.2(6) 22.2(4)
91 1.84646 32 0.3 350 8 1 -1.395697(7) -1.39582(15) 1.368(5) 0.20984(17) 0.2900(5) 0.3189(14) 45.63(6) 0.3151(11) 0.10052(12) 0.08121(13) 30.2(1.1) 25.4(7)

128 1.90133 32 0.15 400 8 1 -1.416567(6) -1.41683(18) 1.331(5) 0.1954(2) 0.290(2) 0.319(3) 64.40(12) 0.3079(11) 0.09945(14) 0.07979(16) 33(2) 28.0(1.2)

L β/2 n u×10−9 s Tτ×10−6 sτ 2E/V + 2 2EG/V + 2 CV /V 2χ/V |W | W 2 ξ τ int
E τ int

EG
τ int
χ τ int

W τ int
W 2

12 1.49950 30 15 150 8 1 -1.225599(5) -1.225629(14) 1.5791(3) 0.352203(8) 0.29049(3) 0.32250(3) 5.99919(16) 0.3861(4) 0.11078(5) 0.09597(4) 14.77(7) 12.33(6)
16 1.55300 30 10 150 8 1 -1.254432(4) -1.25441(2) 1.5727(3) 0.322514(13) 0.28700(3) 0.31732(4) 7.9559(3) 0.3720(4) 0.10859(5) 0.09271(5) 16.67(10) 13.92(7)
23 1.62000 30 4 150 8 1 -1.290660(5) -1.29067(4) 1.5357(4) 0.29249(3) 0.28721(7) 0.31685(8) 11.4486(13) 0.3572(5) 0.10637(6) 0.08939(5) 19.02(16) 15.92(10)
32 1.67623 30 2 200 8 1 -1.319601(7) -1.31961(5) 1.4927(11) 0.26823(4) 0.28640(16) 0.31539(19) 15.944(3) 0.3461(5) 0.10460(6) 0.08687(6) 21.48(2) 18.02(15)
45 1.73215 30 1.2 250 8 1 -1.346585(6) -1.34664(7) 1.4479(13) 0.24629(6) 0.2848(3) 0.3132(4) 22.463(8) 0.3348(12) 0.10320(6) 0.08483(6) 24.4(3) 20.41(20)
64 1.78951 32 0.6 300 8 1 -1.372244(5) -1.37228(8) 1.403(2) 0.22707(9) 0.2863(5) 0.3147(6) 32.069(16) 0.3216(12) 0.10166(9) 0.08276(9) 26.2(6) 22.2(4)
91 1.84646 32 0.3 350 8 1 -1.395697(7) -1.39582(15) 1.368(5) 0.20984(17) 0.2900(5) 0.3189(14) 45.63(6) 0.3151(11) 0.10052(12) 0.08121(13) 30.2(1.1) 25.4(7)

128 1.90133 32 0.15 400 8 1 -1.416567(6) -1.41683(18) 1.331(5) 0.1954(2) 0.290(2) 0.319(3) 64.40(12) 0.3079(11) 0.09945(14) 0.07979(16) 33(2) 28.0(1.2)

L β/2 n u×10−9 s Tτ×10−6 sτ 2E/V + 2 2EG/V + 2 CV /V 2χ/V |W | W 2 ξ τ int
E τ int

EG
τ int
χ τ int

W τ int
W 2

12 1.49950 30 15 150 8 1 -1.225599(5) -1.225629(14) 1.5791(3) 0.352203(8) 0.29049(3) 0.32250(3) 5.99919(16) 0.3861(4) 0.11078(5) 0.09597(4) 14.77(7) 12.33(6)
16 1.55300 30 10 150 8 1 -1.254432(4) -1.25441(2) 1.5727(3) 0.322514(13) 0.28700(3) 0.31732(4) 7.9559(3) 0.3720(4) 0.10859(5) 0.09271(5) 16.67(10) 13.92(7)
23 1.62000 30 4 150 8 1 -1.290660(5) -1.29067(4) 1.5357(4) 0.29249(3) 0.28721(7) 0.31685(8) 11.4486(13) 0.3572(5) 0.10637(6) 0.08939(5) 19.02(16) 15.92(10)
32 1.67623 30 2 200 8 1 -1.319601(7) -1.31961(5) 1.4927(11) 0.26823(4) 0.28640(16) 0.31539(19) 15.944(3) 0.3461(5) 0.10460(6) 0.08687(6) 21.48(2) 18.02(15)
45 1.73215 30 1.2 250 8 1 -1.346585(6) -1.34664(7) 1.4479(13) 0.24629(6) 0.2848(3) 0.3132(4) 22.463(8) 0.3348(12) 0.10320(6) 0.08483(6) 24.4(3) 20.41(20)
64 1.78951 32 0.6 300 8 1 -1.372244(5) -1.37228(8) 1.403(2) 0.22707(9) 0.2863(5) 0.3147(6) 32.069(16) 0.3216(12) 0.10166(9) 0.08276(9) 26.2(6) 22.2(4)
91 1.84646 32 0.3 350 8 1 -1.395697(7) -1.39582(15) 1.368(5) 0.20984(17) 0.2900(5) 0.3189(14) 45.63(6) 0.3151(11) 0.10052(12) 0.08121(13) 30.2(1.1) 25.4(7)

128 1.90133 32 0.15 400 8 1 -1.416567(6) -1.41683(18) 1.331(5) 0.1954(2) 0.290(2) 0.319(3) 64.40(12) 0.3079(11) 0.09945(14) 0.07979(16) 33(2) 28.0(1.2)
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Prokof’ev & Svistunov reported shorter autocorrelation times for χ than for E already
in their original paper [11]. Wolff observed the same for O(N) at various N [12] and
CP3 [13]. Our finding for CP1 is identical. The slowest modes are |W | and W 2, which
are also the only ones not even speeding up with growing system size. We have fitted the
pure power law τ int(L) = c ξ(L)z to each mode (excluding the two smallest lattices) and
found excellent agreement for |W | and W 2 with χ2

red close to one. The fit parameters
are shown in the legend of figure 5.5. The most essential result is z = 0.32(3) for the
winding numbers and z ≈ 0 for the standard observables E, χ. All relations are also
consistent with logarithmic divergence, i.e. τ int(L) = τ0 + c log[ξ(L)] with zero dynamic
critical exponent, within two standard errors. We can safely summarize that the worm
algorithm accelerates the CP1 model, completely eliminating critical slowing down for
the standard modes.

6 8 11.5 16 22.5 32 45.5 64

10
-1

10
0

10
1

ξ(L)

τin
t

 

 

energy E                  

fit: z = -0.088(13), c = 0.441(19)

energy E
G

                

fit: z = -0.039(5), c = 0.1166(18)

magn. susceptibility χ 

fit: z = -0.066(9), c = 0.104(3)

winding number |W|        

fit: z = 0.32(3), c = 8.8(1.0)

squared winding number W
2

fit: z = 0.32(3), c = 7.4(7)

Figure 5.5: Log-log plot of integrated autocorrelation times for the WA applied to
the 2D CP1 model at constant physical size L/ξ(L) ≈ 2. Where omitted, error bars
(horizontal and vertical) are smaller than the dots. In the legend we give 95% confidence
bounds for the fit parameters in brackets. The smallest two systems aren’t used for
fitting. χ2

red takes the remarkably good values 1.3 and 2.2 for τ int
W and τ int

W 2 , respectively.

5.2.8 Sampling the Connected Correlation

The disconnected piece 1/N of the connected Green’s function precludes Gab = gab/Z
from approaching zero at large separations on the diagonal (a = b). Instead, we have

lim
L→∞

Gab(L/2) = δa,b
1
N2

, (5.45)

i.e. the sampled diagonal correlation 〈|za(x) za(y)|2〉 is bounded by 1/N2 from below.
A diagonal worm sampling this correlation therefore holds the power to shift its head
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arbitrarily around the lattice before closing again. In order to circumvent this potential
hindrance to efficiency, and hoping that also the row/column ergodicity problem
described in section 5.2.6 would be alleviated, we considered modifying the probabilities
in the worm algorithm such that it directly samples the connected correlation

Gc(xh − xt) =
1
Z

N∑
a,b=1

gabc (xh − xt), gabc (xh − xt) = gab(xh − xt)− δa,b
Z

N2
. (5.46)

This modifies the site integral contribution to the Boltzmann weight:

I
(
k(x)

)
→ I

(
k(x)

)
− δa,b

1
N2

I
(
q(x)

)
. (5.47)

All Metropolis ratios need to be modified accordingly in the case where a = b. This can
be done (and in fact we have done it), but the implied acceptance probabilities turn out
to suffer from the sign problem, i.e. they can be negative, which makes the corresponding
Metropolis scheme invalid. We won’t give all weight ratios for this illegal algorithm
here, as they become quite lengthy. Nevertheless, we note that they can all still be
expressed in terms of eq. (5.35), such that I never requires evaluation. Furthermore,
a bond state increment (decrement) now also affects the argument for I(...) at site x
(x± µ̂), because the change in bond state is compensated by the dislocation of the head
in the first term of (5.47) only, but not in the second, inhibiting cancellation of new
over old weight. To give an idea of what the modified acceptance ratios R̃ look like, we
provide an assortment below.

R̃inter
sh (x→ x+ µ̂, nabx(x+µ̂) → nabx(x+µ̂) + 1)

=
β

nabx(x+µ̂) + 1
I
(
q(x) + â

)
− δa,b 1

N2 I
(
q(x) + â

)
I
(
q(x) + â

)
− δa,b 1

N2 I
(
q(x)

)
I
(
q(x+ µ̂) + â+ b̂

)
− δa,b 1

N2 I
(
q(x+ µ̂) + b̂

)
I
(
q(x+ µ̂)

)
− δa,b 1

N2 I
(
q(x+ µ̂)

)
=

β

nabx(x+µ̂) + 1

(
1−

δa,b
N2

I
(
q(x)

)
I
(
q(x) + â

))−1

(
I
(
q(x+ µ̂) + â+ b̂

)
I
(
q(x+ µ̂) + b̂

) −
δa,b
N2

)
I
(
q(x+ µ̂) + b̂

)
I
(
q(x+ µ̂)

)

(5.48)

R̃inter
ncsh (x→ x± µ̂, a = b)

=
I
(
q(x)

)
− 1

N2 I
(
q(x)

)
I
(
q(x) + â

)
− 1

N2 I
(
q(x)

) I(q(x± µ̂) + â
)
− 1

N2 I
(
q(x± µ̂)

)
I
(
q(x± µ̂)

)
− 1

N2 I
(
q(x± µ̂)

)
=

(
I
(
q(x) + â

)
I
(
q(x)

) − 1
N2

)−1(
I
(
q(x± µ̂) + â

)
I
(
q(x± µ̂)

) − 1
N2

) (5.49)

R̃mv(x = xh = xt → xm, ab→ cd)

=
(

1−
δa,b
N2

)(
I
(
q(x) + â+ b̂

)
I
(
q(x)

) −
δa,b
N2

)−1

(
1−

δc,d
N2

)−1
(
I
(
q(xm) + ĉ+ d̂

)
I
(
q(xm)

) −
δc,d
N2

) (5.50)
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5.2.9 Wolff’s Alternative Worm Algorithm

Starting with the Ising model, Wolff generalized the WA in a series of publications
[12, 13, 74, 75]. The fourth of these papers is concerned with the CPN−1 model and was
published just during the writing of the present thesis. In that series he proposes a
twofold generalization design: First off, the number of ‘‘flavors’’ N is allowed to be
non-integral, an enhancement which is of rather limited use. Second, an additional
reweighting field ρ(x) (e.g. an initial guess for the Green’s function) is introduced to
the partition function biasing the dynamics, which turns out to improve on the signal
to noise ratio of the correlation at large distances. These generalizations have lead to a
terminology which to some extent diverges from the original worm formalism introduced
by Prokof’ev and Svistunov. The more so as Wolff’s implementation approach is very
distinct and involves an alternative data representation. Instead of storing the bond
occupation nxy as integer values on a fixed set of bonds (i.e. the overlapping paths
encoded in the dual lattice), the configuration is represented by a list containing the
varying number of disentangled loops. This requires regrouping the distinction between
different update types in the algorithm, which entails quite a radical and complicated
change in implementation, including a need to traverse entire loops for reflagging
purposes, which is to be seen as a computational overhead purely characteristic of his
MC scheme. While this overhead reportedly remains unproblematic for the lattice
sizes under study, things look worse when the continuum limit (increasing β and L) is
actually taken. There, autocorrelation times still diverge, i.e. Wolff’s algorithm, which
at its core is nothing else but the worm algorithm with an unusual data organization, is
subject to some critical slowing down [12]. This applies in particular to the CPN−1 case
for non-integer N [13]. Since the length of loops that need reflagging diverges roughly
like ξ2, a dynamic critical exponent of about two is faced in the thermodynamic limit.
By limiting his scheme to integral N and treating a prefactor in his representation of
the partition function stochastically rather than exactly, he finally observes no more
systematic increase in autocorrelation times. It remains to be investigated whether an
analogical procedure is applicable in the worm formalism derived in this thesis.

5.3 Parallelization

Although being purely local, the worm algorithm presumably doesn’t lend itself to a
very easy and efficient parallelization. To the present day, the author is unaware of a
successful parallel implementation of the WA for any model. A first approach could
comprize updating multiple worms at a time and discarding them when a collision is
detected. The larger the lattice and the shorter the range of propagation (i.e. the smaller
β in asymptotically free theories), the more efficient we expect this ansatz to be. Also,
models with a higher degree of complexity in terms of computational costs per head
shift could possibly profit more from such a parallelization scheme than abecedarian
theories.



6 Conclusion & Outlook

We have given a brief introduction to the problem of critical slowing down, along with
a description of how to quantify spatial correlation and autocorrelation of measurements.
With these recipies, we numerically confirmed that the single-cluster algorithm eliminates
critical slowing down on the two-dimensional O(N) model, but completely fails to do so
with the complex-valued CPN−1 model, where a dynamic critical exponent of at least
z ≈ 2 is faced. Nevertheless, we have obtained high-precision results for moderately
large lattices with it.

In chapter 5 we reviewed the worm algorithm for the Ising model and derived the
equivalent formalism for the CPN−1 model, based on the high-temperature expansion
previously provided by Chandrasekharan in 2008 [63]. This is the first explicit formula-
tion and implementation of the WA for CPN−1 (known to the author) in Prokof’ev &
Svistunov’s original spirit. The set CP of configurations contributing to the partition
function needed to be extended to include not only closed paths, but also arbitrarily
discontinuous paths labeled aa (i.e. connecting z̄a(x)za(x) with z̄a(y)za(y)). With this
algorithm, we simulated the two-dimensional CP1 model, reproducing exact results
to up to six significant digits. The dynamic critical exponent for the slowest modes
measured (|W | and W 2) has been determined to be z = 0.32(3), consistent with loga-
rithmic divergence (z = 0) within 2σ, indicating that the WA (almost) defeats critical
slowing down for N = 2. Integrated autocorrelation times for the energy and magnetic
susceptibility were even found to slowly decrease with increasing correlation lengths.

For N > 2 however, the algorithm suffers from severe lack of ergodicity and is
evidently unable to deliver correct results. Possible remedy in the form of a combination
of the presented algorithm with ergodicity-enhancing techniques has been proposed.
Such a hybrid algorithm may also help in further reducing the dynamic critical exponent
for N = 2. We need to stress, though, that it is uncertain if the observed incorrectness
is purely due to the ergodicity problem, since even very high statistics on tiny systems
don’t seem to overbear it. On the other hand, from the derivation alone, which holds
for general N , we have no reason to believe that the algorithm should be limited to
N = 2. This issue certainly requires further investigation.

The correlation sampled by our algorithm does not decay to zero at large distances,
as the disconnected piece of the Green’s function is not included in the configuration
weights. For N = 2, this doesn’t seem to pose a problem, but we may not fully preclude
it from being a potential hindrance to efficiency for N > 2, although the dynamic
critical exponents observed for CP1 are quite promising. The disconnected piece might
further play a role in the ergodicity deficit. A straightforward attempt to incorporate it
into the sampling probabilities ended with the occurrence of the sign problem.
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In this work, we derived the WA for the standard quartic action only. Other actions,
such as the Symanzik improved version with next-nearest neighbor interaction [41]

SSym = −β
∑
x,µ

(
4
3
|z̄(x) · z(x+ µ̂)|2 − 1

12
|z̄(x) · z(x+ 2µ̂)|2

)
(6.1)

or actions with a gauge field U(x, µ) ∈ U(1) like

Sg = −β
∑
x,µ

(
U(x, µ) z̄(x) · z(x+ µ̂) + Ū(x, µ) z̄(x) · z(x+ µ̂)

)
(6.2)

as used by Wolff [13] for example, could be interesting, particularly with regard to
potential future applications of strong coupling expansion Monte Carlo to other gauge
theories like lattice QCD. Adding a chemical potential is yet another option.

Two more things remain pending: Firstly, an explicit formula for the spin stiffness in
the CPN−1 model as a function of the squared winding numbers (5.39) is desirable and
should be rather immediate. And secondly, the decorrelation behavior of our WA as a
function of Pnc and the no-change update type (neighbor shift or heatbath) could be
worth studying.

We conclude by remarking that the conventional WA for the general (in terms of
N) O(N) model, which is still absent from literature, should be easily deducible using
the general derivation recipe given in section 5.2, and should be accompanied with
less trouble than for CPN−1. Given that cluster algorithms are CSD-free there, this
may be dispensable, though. Moreover, Wolff’s alternative WA is available for O(N)
already [12].
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