
FLIP GRAPHS

VIVIAN KUPERBERG

1. TRIANGULATIONS AND DIAGONAL FLIPS

In this class, we’re going to talk about triangulations. Much of this exposition follows
a combination of Chapter 7 from Felsner’s book Geometric Graphs and Arrangements, and
some of it also follows Sleator, Tarjan, and Thurston’s paper on flip graphs, triangulations,
and hyperbolic geometry.

One setting in which triangulations come up a lot is that of triangulating regular n-gons,
which is something like:

TRIANGLE

Remark 1.1. It’s also possible to triangulate point sets that aren’t regular n-gons. This is a
pretty interesting generalization, and we’ll come back to it, but for the moment we’ll stick
with the n-gons.

Now, let’s say we have a set of points and several different ways to triangulate them.
We’d like to say that some of our triangulations are closer than others.

(Add a picture here)
One way of doing this is an idea of two triangulations differing just in one diagonal.

This idea is made rigorous by the definition of a diagonal flip.

Definition 1.2. For an edge pq of a triangulation T contained in a quadrilateral, the diagonal
flip of the edge consists in removing edge pq and replacing it with the other diagonal of
the quadrilateral.

So we have triangulations, and we have these moves, diagonal flips, that let us go from
one to another. We can then study the flip graph of the set of points.
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Definition 1.3. The flip graph of an n-gon is the graph whose vertex set is the set of
all triangulations of the n-gon, and which has an edge between two vertices if those
triangulations can be related by a diagonal flip.

Example 1.4. Go through, with pictures (maybe handout?) the flip-graph of a regular
hexagon.

There are various questions we might have about the flip-graph! For starters, is it even
connected? In other words, if I have two triangulations of the same n-gon, can I always
get from one to the other using diagonal flips? The answer (spoiler alert!) is yes, which
is good, because we wanted to the flips to give us a picture of how closely related two
triangulations are, so this tells us it gives us a pretty complete picture.

Proposition 1.5. The flip-graph Gn of an n-gon is connected.

Proof. Let’s number our vertices counterclockwise by 0, 1, . . . , n− 1. We’ll show that any
triangulation T is connected via diagonal flips to the triangulation F, a fan at 0, where
every diagonal is through 0. Then we can connect any two triangulations T and S by going
through our process to get from T to F, and then backwards to get from F to S.

Let T 6= F be any triangulation of the n-gon. Consider the points connected to 0 via
diagonals in T. This must include 1 and n− 1 via outside edges, so it’s some nontrivial
subset S ⊆ {1, . . . , n− 1}. If every vertex is connected to 0, then T would be F, which is
not the case. Thus some vertex 1 < j < n− 1 is missing. Let i < j be the largest vertex
before j that is connected to 0, and let k > j be the smallest vertex after j that is connected
to 0. Then (i, 0, j) must form a triangle in our triangulation, so (i, j) is a diagonal of T.
Flipping (i, j) gives one more diagonal through 0.

In particular, this argument shows that for any triangulation T with fewer than n− 1
diagonals through 0, a diagonal flip can be performed that will increase the number of
diagonals through 0. We can keep performing this process until it terminates, which must
be when we have reached F via diagonal flips. �

Remark 1.6. Here is one fun application (working out the details is a good homework
question).

If we have an associative product operation · and some product x0 · x1 · · · · · xn, we
usually say that we feel comfortable not writing parentheses by associativity. But asso-
ciativity only tells us that when multiplying three things a, b, and c, a(bc) = (ab)c. How
do we know that any parenthesization of x0, . . . , xn is equivalent? There’s a correspon-
dence between parenthesizations of x0, . . . , xn and triangulations of an (n + 2)-gon (both
of which are examples of things counted by Catalan numbers). It turns out that performing
one operation of the associativity law exactly corresponds to doing a diagonal flip. So the
argument that the flip graph is connected is exactly what tells us that associativity of three
things is enough to never worry about parentheses.

So, now that we know that the flip-graph is connected, a next question is its diameter.
What’s the largest possible flip distance between two triangulations of an n-gon? This is
known as the diameter of Gn.

Theorem 1.7. The diameter Dn of Gn satisfies

Dn ≤ 2n− 10 + b12
n
c.
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Proof. Just like our proof above with connectivity, this proof relies on flipping to and from
star triangulations, where all diagonals go through one vertex.

Let T1 and T2 be two triangulations of an n-gon. For a point x on our n-gon, the degree
d1(x) is the number of diagonals incident to x in T1, and analogously with d2 and T2. For
i = 1, 2, if di(x) < n− 3, then as in our previous argument the degree of x can be increased
by an appropriate flip on Ti. The number of flips required to get from Ti to Sx, the star
through x, is n− 3− di(x), based on just counting diagonals through Sx. Thus going from
T1 to T2 through Sx takes 2n− 6− d1(x)− d2(x) flips. Thus, the distance from T1 to T2 is
bounded above by

Dn ≤ min
x

(2n− 6− d1(x)− d2(x)) = 2n− 6−max
x

(d1(x) + d2(x)).

So we’d like to find a lower bound on maxx(d1(x) + d2(x)) in order to get an upper bound
on Dn. We can get this from taking an average of d1(x) + d2(x) over all x. The sum of all
degrees is twice the number of diagonals, which is n− 3, so

∑
x

d1(x) + ∑
x

d2(x) = 2n− 6 + 2n− 6

⇒ 1
n ∑

x
(d1(x) + d2(x)) =

1
n
(4n− 12).

Some vertex x must have an above average value of d1(x) + d2(x), so maxx(d1(x) +
d2(x)) ≥ 4− b 12

n c. Thus

Dn ≤ 2n− 6−max
x

(d1(x) + d2(x)) ≤ 2n− 6− 4 + b12
n
c,

which is the desired result. �

So now the question is, is this bound tight? It seems like we didn’t do very much work.
Also, we guessed a silly way to get from one triangulation to another. If the bound is tight,
we’re saying that for some triangulations, this silly way is the best possible. However,
the bound is indeed tight for n ≤ 18. For n ≤ 8, this is doable by hand (hw problem?).
Surprisingly enough, the bound of 2n− 10 is also known to be tight for certain large values
of n (and in particular, infinitely often). The proof uses some hyperbolic geometry (no
kidding!) and gets a bit gnarly, but we’ll spend the next day or two going over an outline.

2. FROM TRIANGULATIONS TO POLYTOPES

We’ll be working through an outline of the following result.

Theorem 2.1. For large enough n, the diameter Dn of the flip-graph Gn is 2n− 10. In particular,
Dn ≥ 2n− 10.

We begin by the observation that if T1 and T2 are a pair of triangulations maximizing the
flip-distance dist(T1, T2), then they must have no diagonal in common. There can never be
a reason for a common diagonal to be flipped, so if T1 and T2 shared a diagonal, we could
flip a shared diagonal in T1 to get T′1 and T2, that are at least one more step away from each
other. From now on, let T1 and T2 be a pair of triangulations with no shared diagonals.

We’re then going to construct a tetrahedrated polyhedron from a flip path from T1 to T2
as follows. (Draw draw draw draaaaw here picture with hexagon and tiles). We’re going
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to glue the two triangulations T1 and T2 along their boundary to create a decoration on
the boundary of a sphere. Now, each flip is going to become a tetrahedron. How? Well,
the flip operation consists of taking a parallelogram containing a diagonal. Then we can
imagine drawing the old diagonal faintly (’cause it’s old), and the new diagonal firmly on
top...and hey, we’ve just drawn a tetrahedron!

So, we have a base tiling T1. Then every flip is a tetrahedral tile we can glue on the
previous tetrahedron. At every step, all faces have to perfectly match up. When we reach
T2, we glue on the triangulation T2 as the top face. Since T1 and T2 share no diagonals,
Then we can imagine inflating our flat picture like a beach ball to get this polyhedron filled
with tetrahedra. Let PG be this polyhedron.

Black Box 2.2. If we inflate the ball so that all the tetrahedra are convex, we get something
with rigid edges that looks like a polyhedron. In fact, this is always a convex polyhedron.

Assume that our flip sequence consists of t flips, with tetrahedra τ1, . . . , τt corresponding
to each flip. Then

vol(PG) =
t

∑
i=1

vol(τi).

OK, so we want a lower bound on the number t of tetrahedra in our path. If we knew
that some value V∆ were an upper bound on the volume of a tetrahedron that can be
inscribed in the polytope PG, then we’d have

vol(PG) ≤
t

∑
i=1

V∆,

implying that

t ≥ vol(PG)

V∆
,

which would give us exactly the kind of bound we want. However, at the moment this
seems pretty bad. We don’t know what our polytope in R3 really looks like, and we could
hypothetically inscribe a big tetrahedron that would have volume close to that of PG itself.
In that case, this would say that t ≥ 1, which is not very helpful.

By one interpretation, the problem that we’re running up against is that in Euclidean
geometry, we can’t bound the volume of tetrahedra very well. So, why don’t we switch to
working in a geometry where we can?

3. HYPERBOLIC GEOMETRY

Classically, the idea behind hyperbolic geometry is as follows. Instead of taking the
axiom, as we do in Euclidean geometry, that given a line and a point not on the line, there
exists exactly one line through the point parallel to the given line, we take the axiom that
there are many lines through the point parallel to the given line. This leads to lots of
strange properties! For example, and what we most need, triangles in hyperbolic 2-space
and tetrahedra in hyperbolic 3-space have uniformly bounded volume, i.e. I can tell you a
number c such that you cannot draw a triangle or a tetrahedron in hyperbolic space with
volume greater than c. For tetrahedra, we won’t prove this fact, but let’s look a little bit at
how hyperbolic space works in two dimensions, to give us an idea of why this might be
true. There are many ways to model hyperbolic space; let’s start with the Poincaré disk.



FLIP GRAPHS 5

facts about hyperbolic space: Poincaré disk model, intuition that triangles have bounded
volume, mention that optimal triangles have points on the sphere at infinity, half-space
model and equivalence, discuss the point at infinity (TODO put this in)

So at this point, the goal becomes to construct a hyperbolic polyhedron whose boundary
consists of gluing two triangulations T1 and T2 just like our PG above, and which has large
volume. Then we know that if we built a flip path from T1 to T2, it would need some
minimum number of flips because we need a minimum number of tetrahedra. Again,
we’re going to simplify things a bit. With a fairly straightforward construction, we can do
pretty well. If you make the construction significantly uglier and more complicated, you
can get the actual bound - if you’re excited about that, talk to me at TAU!

Proposition 3.1. For k ∈N and n = k2 + 1, there are triangulations T1, T2 of an n-gon with flip
distance

dist(T1, T2) ≥ 2n− 4
√

n + O(1).

Proof. Consider the section of the triangular grid below.

For parallelogram with k vertices on a side, this has k2 + 1 points. We can fill it with ideal
tetrahedra, with each tetrahedron having one vertex at v∞ and base one triangle in our
grid. There are 2(k− 1)2 of these triangles in the grid, so the volume of this polytope is
2(k− 1)2V0, with V0 the maximal volume of a tetrahedron in hyperbolic space.

Thus every way to fill this polytope with tetrahedra requires at least 2(k− 1)2 = 2k2 −
4k + 2 = 2n− 4

√
n + O(1) tetrahedra. This is exactly what we want if we can show that

there exist T1, T2 triangulations such that the polytope above is the flip polytope from one
to the other.

But to do this, we really need to draw a Hamiltonian cycle, or a path going through all
vertices exactly once, then joining to its end. As one example, we can zigzag through the
grid, then connect to and from v∞ at the end. This cycle has two sides, an “outside” and
an “inside,” each of which is one triangulation, just as desired. �

With a different, more complicated choice of polytope, one can prove:
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Theorem 3.2 (Sleator, Tarjan, Thurston). For sufficiently large n, the diameter of the flip-graph
of an n-gon is 2n− 10.

Their polytopes are constructions based on subdividing faces of an icosahedron (draw
a picture), then sometimes cutting out faces to get the right number n of vertices (draw
a minipicture of this too). They then show that the tetrahedralization of these polytopes
requiring the least number of tetrahedra is of cone type, so it must have 2n− 10 idealized
tetrahedra, so this is an appropriate large hyperbolic polytope.

This concludes our sketched discussion. We wanted to provide a lower bound on the
diameter of the flip-graph, and our strategy, surprisingly enough, consisted of taking
the problem up a dimension by making tetrahedrated polyhedra out of a path in the
flip-graph, then translating the problem once again to hyperbolic geometry so that we
could use volume bounds, then finding special hyperbolic polyhedra that reached the
bounds correctly. Whew!

4. ARBITRARY POINTSETS

Okay, but let’s say we’ve decided now that we’re really good at triangulating n-gons,
and we want to triangulate an arbitrary finite set of points P in the plane. We’ll assume
that P is a “general” set of points, which basically means that if we encounter problems
because the points are arranged in a very specific configuration, we can assume that
that configuration doesn’t occur. For example, if P is a set of colinear points, we cannot
triangulate P , but if you randomly pick points in the plane, it would be very surprising if
they were colinear, so we will assume that this is not the case. Similarly, we’ll assume that
no four of our points lie on a circle.

Definition 4.1. A triangulation of a set of points P in the plane is a maximal non-crossing
geometric graph with vertex set P . In other words, it is a set of line segments between
points of P so that no two lines cross and we can’t add any more line segments to preserve
this property.

Remark 4.2. The outside edges will always be present in any triangulation. If they’re not
there, there’s nothing stopping us from adding them.

First of all, it’s worth noting that the flip-graph of a general pointset can be much
gnarlier than that of an n-gon. For example, we’re used to seeing triangulations where
every diagonal is contained in a convex quadrilateral and thus flippable, but in this settings
there are cases where this doesn’t hold! (Draw star trek logo). So now we have a new
question: what are the maximal and minimal degrees in a flip-graph on n vertices?

4.1. Maximal degrees. For the maximal question, we may feel like we can do pretty well
with an n-gon, where we can flip n− 3 diagonals out of 2n− 3 total. However, in some
cases we can do better!

Let T be the triangulation of the following figure.
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Each line is a slightly bent chain of three edges, so only the five hull edges are non-flippable.
By iterating this, for any n ∼= 1 (mod 5), we can construct a triangulation on n points
with n− 5 flippable edges. We can also get n ∼= 0 (mod 5) by removing the central point.
Question to think about that I don’t know the answer to: what about for other large n?
Can certainly get pretty close, to n−O(1).

Proposition 4.3. Let S be a triangulation of n ≥ 5 points with a convex hull of only 3 or 4 edges.
Then S has at least 6 non-flippable edges.

Proof. See handwritten notes for Viv’s lecture reference (regular case) / homework problem
for the nonregular case. �

4.2. Minimal degrees. For the minimum degree in a flip-graph, we can get a precise
answer.

Proposition 4.4. Any triangulation T of a set P of n points in the plane contains at least n
2 − 2

flippable edges.

We’ll start with this lemma.

Lemma 4.5. Let T be a triangulation of a set P of n points. Let γ be the number of points of P
contained in its convex hull. Then T has 3n− 3− γ edges and 2n− 2− γ bounded triangular
faces.

Proof. This follows from the idea of Euler characteristic, which we’re using so narrowly
that we’ll barely speak of it. If G is any planar graph with n vertices, e edges, and f faces,
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then n− e + f = 1. This can be shown by induction. If we start with one vertex, then
e = f = 0, so n− e + f = 1. Then we can either add a vertex and an edge, or add an edge
between two existing vertices, which also adds a bounded face. Either move keeps the
value n− e + f constant, so it must always be 1.

Thus n− e + f = 1. But also, each face is a triangle with three edges and each edge
save for the outer γ edges is contained in two faces, so the number of pairs (F, E) with F
a bounded face and E an edge in F is counted both by 3 f and by 2e− γ, so 3 f = 2e− γ.
Solving both these equations for e and f in terms of n and γ gives e = 3n− 3− γ and
f = 2n− 2− γ. �

Now we prove the proposition.

Proof. Certainly, the γ edges of the convex hull cannot be flipped. Every non-flippable
interior edge e has one endpoint, say u, so that the sum of the two angles adjacent to e at
u is equal to or exceeds π. In other words, it’s a star trek shape in some direction. Then
orient each non-flippable edge e away from u.

An important aspect of this orientation is that if two edges are oriented away from the
same point u, they must share an angle at u, assuming (due to general position) that we
never have perfectly right angles. Thus a point u can have at most three outward oriented
edges, and this maximum can only be attained by points of degree 3 in T. Let ηi be the
number of interior points with i outward edges, for 0 ≤ i ≤ 3. Then

η3 + η2 + η1 ≤ n− γ,

since the left hand side represents a subset of all interior points.
Let’s call a corner u of a triangle ∆ in T the root of ∆ if the two edges of ∆ incident to

u are both outward oriented at u. This implies that every triangle of T has at most one
root. If u has out-degree two, then exactly one triangle is rooted at u, since the edges must
share an angle. If u has out-degree three, then there are exactly three triangles rooted at u,
namely the three triangles intersecting u. In all other cases, u is not a root. Counting roots
of triangles on one side and all triangles of T on the other, we get

3η3 + η2 ≤ 2n− 2− γ.

Thus adding 3/2 our first inequality with 1/2 our second gives

3η3 + 2η2 +
3
2

η1 ≤
5
2

n− 2γ− 1.

The number of interior unflippable edges is given by 3η3 + 2η2 + η1. Thus the above
inequality implies that there are at most 5

2 n− 2γ− 1 such edges. Together with the hull
edges, this gives at most 5

2 n− γ− 1 unflippable edges. Thus the number of flippable edges
of T must be at least

(3n− 3− γ)− (
5
2

n− γ− 1) =
1
2

n− 2,

as desired. �

This bound can be attained! It is sharp. One family of extremal examples is as follows:
let T be a triangulation of a set of m points in convex position. We can take the corners of a
regular m-gon, or points that are a little off from these if we want them to be in general
position. T has m− 3 interior edges, with m− 2 triangels. Subdivide each triangle with a
new point connected to the three corners (draw a picture), which gives a triangulation T∗
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of the set of n = 2m− 2 points. The flippable edges are the m− 3 = n
2 − 2 interior edges of

T, and none of the newly added edges.
Another family is exhibited in the following picture.

To see that the flip-graph is connected, we’re going to define Voronoi regions and Delaunay
Triangulations.

5. DELAUNAY TRIANGULATIONS

Definition 5.1. Let P be a set of n points in R2. For p ∈ P , the Voronoi region V(p) of p
is the set of all points x that are at least as close to p as to any other point in P . In other
words,

V(p) = {x ∈ R2 | ||x− p|| ≤ ||x− q|| for all q ∈ P}.

Draw a picture here!

Lemma 5.2. For P a set of points in R2 and p ∈ P , V(p) is a possibly infinite convex polygonal
region, i.e. an intersection of halfplanes.

Proof. Let q ∈ P be any other point. Then let Vq(p) be defined by

Vq(p) = {x ∈ R2 | ||x− p|| ≤ ||x− q||}.

Then Vq(p) is a halfspace. (Draw a picture).
Also, V(p) =

⋂
q∈P\{p} Vq(p), so V(p) is a possibly infinite convex polygonal region. �
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Consider the set of all Voronoi regions; every point x ∈ R2 has some closest point in P ,
so it belongs to some Voronoi regions. Thus the Voronoi regions divide up all of R2, like
this: (Draw a picture)

Definition 5.3. For p, q ∈ P , if V(p) and V(q) share an edge, we call p and q Delaunay
neighbors. The Delaunay triangulation of a point set P is the graph obtained by connecting
all pairs of Delaunay neighbors by straight edges.

Proposition 5.4. The Delaunay triangulation is a triangulation for a general set of points.

Proof. Let T be the Delaunay “triangulation,” which we don’t yet know is a triangulation.
Voronoi edges correspond to points that are equally close to the two closest points in our
set; Voronoi vertices correspond to points that are equally close to the three or more closest
points in our set. If a face in our Delaunay configuration is not a triangle, this corresponds
to four or more points being equally close to some point in the plane. But then those four
or more points must all lie on a circle centered at our Voronoi point, which doesn’t happen
because our points are in general position.

Also, no two Delaunay edges will cross. If they do, we have crossing Voronoi lines (draw
a picture!!! above, but especially here), which contradicts our definition of Voronoi region.

This (explain this more) shows that the Delaunay triangulation is in fact a triangulation.
�

The idea of thinking of Delaunay triangles as lying on circles is quite useful. Let’s look a
little bit more at circles in our pointset.

Definition 5.5. A circle C is an empty circle for P if there is no point of P in the interior of
C.

For a Delaunay triangle p, q, r, there is a corresponding Voronoi vertex v = V(p) ∩
V(q) ∩V(r). As in the argument above, the largest empty circle with center v has p, q, and
r on the boundary, so it must be the unique circle through p, q, and r, i.e. the circumcircle
for the triangle p, q, r. Meanwhile, if p, q, r are three points of P with an empty circumcircle,
then the center of that circle is a Voronoi vertex in V(p) ∩V(q) ∩V(r), so p, q, and r form
a Delaunay triangle. This gives the following.

Fact 5.6. Let P ⊆ R2 be a set of n points in general position. A triple p, q, r ∈ P is a
Delaunay triangle if and only if the circumcircle of p, q, r is empty.

So intuitively, the triangles in the Delaunay triangulation are the most “logical” triangles;
it is more likely to have smaller and equilateral-ish triangles than long and thin triangles,
although this is certainly not always true.

So now we have a new “special” triangulation, and once again our strategy for proving
that the flip-graph is connected is going to be quanitfying how far away we are from
that triangulation. Given a triangulation T of P , we can measure how far it is from the
Delaunay triangulation by counting points contained in circumcircles of triangles in the
triangulation. Then, we reduce this number by performing Lawson flips.

Definition 5.7. Let T be a triangluation of P containing triangles p, q, r and p, q, s such that
s is in the interior of the circumcircle of p, q, r. Then pq, r, s form a convex quadrilateral,
and so we can flip the edge p, q. In this case, the edge p, q is called a weak edge of the
triangulation T, and the flip is known as a Lawson flip.
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See the picture below.

Proposition 5.8. Let T be an arbitrary triangulation of a set P of n points in general position.
Any algorithm that repeatedly performs Lawson flips will reach the Delaunay triangulation of P
with at most (n

2) flips.

Note that this will mean that the Delaunay triangulation is the only triangulation of P
that has no weak edge. This also implies that the flip-graph is connected with diameter at
most n2 − n. This is not as good a bound as we had for the n-gon case - in fact it’s pretty
bad - but it is what we have.

We’re going to prove this by lifting our triangulation into space! Imagine the triangula-
tion as living on a table. We’ll drag each point up to a different height. Namely, let’s drag a
point p = (p1, p2) ∈ P to the point p̂ = (p1, p2, p2

1 + p2
2), so that all of our points lie on the

paraboloid z = x2 + y2, and each point is moving straight up. We’ll lift our triangulation
T of P by lifting each triangle p, q, r to the spatial triangle (not on the paraboloid) with
corners p̂, q̂, r̂. The crucial property of this lifting is as follows:

Lemma 5.9. A point s is in the interior of the circumcircle of p, q, r if and only if ŝ lies below the
plane spanned by p̂, q̂, r̂.

This proof is a bit of linear algebra (specifically, determinants). If you’d like to treat this
as a black box, that is OK.

Proof. To prove this, let’s go up a dimension! For a = (a1, a2, a3) ∈ R3, let a+ =
(a1, a2, a3, 1) in R4.

Fact 5.10 (Linear Algebra Fact). Four points a, b, c, d ∈ R3 lie in the same plane if and
only if the determinant |a+, b+, c+, d+| vanishes. If the determinant is negative instead of
vanishing, then standing at d and looking at the triangle (a, b, c), the vertices are listed in
counterclockwise order.

Let (p, q, r) be a counterclockwise triangle in R2. Consider the mapping ϕp,q,r : R2 → R

given by ϕp,q,r(s) = det| p̂+, q̂+, r̂+, ŝ+|. This determinant vanishes if the lifted point ŝ is in
the plane spanned by p̂, q̂, r̂. Otherwise, the sign tells us whether ŝ lies above or below the
plane. We’d like to show that ϕp,q,r(s) = 0 if and only if s is on the circumcircle C of p, q, r,
and that ϕp,q,r(s) > 0 if and only if s is in the interior of C. Let m be the center of C, and let
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ψp,q,r = ϕp−m,q−m,r−m be the mapping R2 → R given by

ψp,q,r(s) = det| ˆp−m+, ˆq−m+, ˆr−m+, ŝ+|.
By linearity of the determinant, ψp,q,r(s−m) = ϕp,q,r(s). However, if p = (p1, p2) and

likewise with q, r, s, m, and if ρ is the radius of C, then (p1 −m1)
2 + (p2 −m2)

2 = ρ2 and
the same for q and r (draw a picture). Thus

ψp,q,r(s−m) = det


p1 −m1 p2 −m2 ρ2 1
q1 −m1 q2 −m2 ρ2 1
r1 −m1 r2 −m2 ρ2 1
s1 −m1 s2 −m2 (s1 −m1)

2 + (s2 −m2)
2 1

 .

If s ∈ C, then (s1−m1)
2 + (s2−m2)

2 = ρ2, and the last two columns are multiples of each
other, so this value is 0. If not, then ϕp,q,r must be nonzero. Thus ϕp,q,r has constant sign on
interior points of C, so we can pick any to test in order to show that ϕp,q,r is positive on
interior points. Let’s pick m, since that is a particularly nice value.

ϕp,q,r(m) = ψp,q,r(0) = det


p1 −m1 p2 −m2 ρ2 1
q1 −m1 q2 −m2 ρ2 1
r1 −m1 r2 −m2 ρ2 1

0 0 0 1

 .

But this is just ρ2 times the determinant of the points p+, q+, r+ (say a bit more with
picture), and this determinant is positive since p, q, r is a counterclockwise triangle. This
completes the proof. �

Lawson flips suffice proof. Let T be a triangulation with a weak edge p, q, and let T → Tf be
the Lawson flip replacing p, q by r, s. Then the lifted triangulations T̂ and T̂f enclose the
tetrahedron p̂, q̂, r̂, ŝ, by the same inflate-a-beach ball argument that we used before. By the
lemma, T̂ contains the two upper triangles p̂, q̂, r̂ and p̂, q̂, ŝ of the tetrahedron, and T̂f the
lower triangles p̂, r̂, ŝ and q̂, r̂, ŝ. Thus the surface T̂f is below the surface T̂, and the edge
p̂, q̂ of T̂ is above T̂f . Then Lawson flips consistently lower a sequence of surfaces, and we
can never return to an edge that has been flipped away. Since each edge can be flipped at
most once, there are at most as many Lawson flips as there are possible edges on n points,
namely (n

2).
We now need only show that the Delaunay triangulation is the unique triangulation

with no weak edges, so that the process terminates in the Delaunay triangulation. If T
is not Delaunay, then there exists some triangle p, q, r with a circumcircle C containing a
point s ∈ P in its interior. By relabeling, assume that p, q and r, s are the diagonals of the
quadrilateral p, q, r, s (picture!!!). By the lemma, the segment r̂, ŝ lies below p̂, q̂. Thus T̂ is
not convex, so it contains a non-convex edge â, b̂. This edge must be part of triangles a, b, c
and a, b, d, but since â, b̂ is non-convex, the point d̂ is below the plane spanned by â, b̂, ĉ.
Thus a, b is a weak edge, so it allows a Lawson flip. �

As a corollary, we’ve shown that the Delaunay triangulation is just the vertical projection
of the lower convex hull of the point set lifted to the paraboloid.

Hopefully I’ll stop here - if not, I can talk about secondary polytopes (but probably
handwrite notes).
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