
HOCHSCHILD HOMOLOGY

VIVIAN KUPERBERG

1. HOCHSCHILD HOMOLOGY: DEFINITION AND EXAMPLES

We’re going to first take a relatively specific example and run with it as long as we can;
keep in mind that this can be generalized.

For now, let k be a unital ring, let A be a k-algebra, and let M be an A-bimodule. We
consider the module Cn(A, M) defined by

Cn(A, M) = M⊗ A⊗n,

where all tensors are taken over k. We then have a boundary map, defined as follows.

Definition 1.1. The Hochschild boundary is the k-linear map b : M⊗ A⊗n → M⊗ A⊗n−1

given by the formula

b(m, a1, . . . , an) = (ma1, a2, . . . , an) +
n−1

∑
i=1

(−1)i(m, a1, . . . , aiai+1, . . . , an)

+ (−1)n(anm, a1, . . . , an−1).

We will sometimes decompose b in terms of operators di : M⊗ A⊗n → M⊗ A⊗n−1 given
by

di(m, a1, . . . , an) = (m, a1, . . . , aiai + 1, . . . , an),
with appropriate alterations for d0 and dn, namely

d0(m, a1, . . . , an) = (ma1, a2, . . . , an)

and
dn(m, a1, . . . , an) = (anm, a1, . . . , an−1).

For notational simplicity, we will sometimes write a0 in place of m to denote the element
of M.

Fact 1.2. The Hochschild boundary is a boundary map, i.e. b ◦ b = 0.

Definition 1.3. The Hochschild complex is the resulting complex, given by

C(A, M) = C∗(A, M) : · · · → M⊗A⊗n b→ M⊗ A⊗n−1 b→ · · ·

· · · b→ M⊗ A b→ M,

where the module M⊗ A⊗n is in degree n. The nth Hochschild homology group of A with
coefficients in M, denoted Hn(A, M), is the nth homology group of the Hochschild complex
(C∗(A, M), b). The direct sum

Proposition 1.4. H∗(A, M) is functorial in M and in A (in a certain sense).
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Proof. The fact that it is functorial in M is straightforward; a bimodule homomorphism
f : M→ M′ induces a map f∗ : H∗(A, M)→ H∗(A, M′) via

f∗(m, a1, . . . , an) = ( f (m), a1, . . . , an).

Hochschild homology is also functorial in A in the following sense. Let g : A→ A′ be
a k-algebra map and M′ an A′-bimodule. Then the module M′ can be considered as an
A-bimodule via g, giving a map g∗ : H∗(A, M′)→ H∗(A′, M′) defined by

g∗(m, a1, . . . , an) = (m, g(a1), . . . , g(an)).

�

The most important case is when M = A.

Example 1.5. When taking M = A, we write C∗(A) = C∗(A, A), and HH∗(A) = H∗(A, A).
Any k-algebra map f : A → A′ induces a homomorphism f∗ : HHn(A) → HHn(A′). In
this case, HHn is a covariant functor from associative k-algebras to k-modules which
respects the product. In other words, it satisfies

HHn(A×A′) = HHn(A)⊕ HHn(A′).

For an A-bimodule M, the group H0(A, M) is given by

H0(A, M) = MA = M/{am−ma | a ∈ A, m ∈ M},
according to the chain complex definition. If [A, A′] is the submodule of A generated by
all [a, a′] = aa′ − a′a, then we further have that HH0(A) = A/[A, A]. If A is commutative,
then HH0(A) = A.

Example 1.6. Let A = k. Then the Hochschild complex for M = k is

· · · → k 1→ k 0→ · · · 1→ k 0→ k.

Thus HH0(k) = k, and HHn(k) = 0 for all n > 0.

Hochschild homology has a lot of properties that we would want, you know, a homology
theory to have. We can define relative Hochschild homology classes:

Remark 1.7. We can define Hochschild homology in a lot of generality. For most of our
purposes k is tacitly assumed to be commutative and unital, but none of the above explicitly
said that k should be commutative (gasp), and much of it works in cases where k is not
unital. One fun side effect of the noncommutative setting is that we get a Morita equivalence,
i.e. it is generally true for all r that Hn(Mr(A), Mr(M)) ∼= Hn(A, M), where Mr(−) is the
ring of r×r matrices with coefficients in the appropriate module. The Morita equivalence
is pretty natural and runs pretty deep.

2. KÄHLER DIFFERENTIALS

For A unital and commutative, let Ω1
A/k be the A-module of Kähler differentials, generated

by the k-linear symbodls da for all a ∈ A, so that d(λa + µb) = λda + µdb, with the relation
that

d(ab) = a(db) + b(da).
Note that for all u ∈ k, du = 0.
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Proposition 2.1. Let A be a unital, commutative ring. Then there is a canonical isomorphism
HH1(A) ∼= Ω1

A/k. If M is a symmetric bimodule, then H1(A, M) ∼= M⊗A Ω1
A/k.

Proof. Since A is commutative, the map b : A⊗ A → A is trivial. Thus HH1(A) is the
quotient of A⊗ A by the relation

ab⊗ c− a⊗ bc + ca⊗ b = 0,

since that’s precisely the image of the map b : A⊗ A⊗ A→ A⊗ A. The map HH1(A)→
Ω1

A/k is defined by sending the class of a⊗ b to adb. Note then that

ab⊗ c− a⊗ bc + ca⊗ b 7→ (ab)dc− ad(bc) + (ca)db
= (ab)dc− ((ab)dc + (ac)db) + (ca)db = 0,

so this map is well-defined because of the Kähler relation. But this map is an isomorphism,
since the inverse adb 7→ a⊗ b is also a well-defined module homomorphism, and these are
inverses of each other.

The same proof extends to the bimodule case. �

3. DIFFERENTIAL FORMS

Hochschild (co)homology is closely related to derivations and differential forms (as
hinted at by the Kähler example). We’ll restrict to the case where k is a field, A is a
commutative and unital k-algebra, and M is a unitary A-module.

Definition 3.1. A derivation of A with values in M is a k-linear map D : A→ M such that

D(ab) = a(Db) + (Da)b

for all a, b ∈ A. The module of all derivations is denoted Der(A, M).
Any element u ∈ A defines a derivation ad(u) called an inner derivation via

ad(u)(a) = [u, a] = ua− au.

An inner derivation can be extended to Cn(A, M) via the formula

ad(u)(a0, . . . , an) = ∑
0≤i≤n

(a0, . . . , ai−1, [u, ai], ai+1, . . . , an),

which commutes with the Hochschild boundary.

Proposition 3.2. Let h(u) : Cn(A, M)→ Cn+1(A, M) be the map defined by

h(u)(a0, . . . , an) = ∑
0≤i≤n

(−1)i(a0, . . . , ai, u, ai+1, . . . , an).

Then
bh(u) + h(u)b = −ad(u),

so ad(u)∗ : Hn(A, M)→ Hn(A, M) is the zero map.

Proof. Let hi be the insertion of u after the ith component, so that h(u) = ∑0≤i≤n(−1)ihi.
We can similarly write b = ∑n

i=0(−1)idi as above, and then get that

dihi − dihi−1 : (a0, . . . , an) 7→ (a0, a1, . . . , ai−1,−[u, ai], ai+1, . . . , an).
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Then
h(u)b + bh(u) = d0h0 − dn+1hn + ∑

i
(dihi − dihi−1) = −ad(u),

as desired. The last fact follows from homological algebra in this setting. �

Note that the symmetric group Sn acts on Cn(A, M) on the left by permuting the indices
of the A coordinates. This extends linearly to an action of the group algebra k[Sn] on
Cn(A, M).

Definition 3.3. The antisymmetrization element εn ∈ k[Sn] is the element given by

εn = ∑
σ∈Sn

sgn(σ)σ.

The antisymmetrization map is the map

εn : M⊗Λn A→ Cn(A, M)

sending a0 ⊗ a1 ∧ · · · ∧ an 7→ εn(a0, . . . , an).

There is another boundary map on the M ⊗ Λn A side of the world, known as the
Chevalley-Eilenberg map δ : M⊗Λn A→ M⊗Λn−1A which is given by the formula

δ(a0 ⊗ a1 ∧ · · · ∧ an) =
n

∑
i=1

(−1)i[a0, ai]⊗ a1 ∧ · · · ∧ âi ∧ · · · ∧ an

+ ∑
1≤i<j≤n

(−1)i+j−1a0 ⊗ [ai, aj] ∧ a1 ∧ · · · ∧ âi ∧ · · · ∧ âj ∧ · · · ∧ an.

Proposition 3.4. The following square is commutative.

M⊗Λn A

M⊗Λn−1A Cn−1(A, M)

Cn(A, M)
εn

εn−1

δ b

Definition 3.5. The A-module of differential n-forms is by definition the exterior product

Ωn
A/k = Λn

AΩ1
A/k.

It is spanned by the elements a0da1 ∧ · · · ∧ dan for ai ∈ A.

We can also define πn, a map in the other direction, via πn : Cn(A, M)→ M⊗A Ωn
A/k is

defined by
πn(a0, . . . , an) = a0da1 . . . dan.

There is a lemma (computation) taht says that πn ◦ b = 0.

Theorem 3.6. Let A be a commutative k-algebra and M an A-module.
• The antisymmetrization map induces a canonical map εn : M⊗A Ωn

A/k → Hn(A, M). If
M = A, it gives εn : Ωn

A/k → HHn(A).
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• The map πn : Hn(A, M) → M⊗A Ωn
A/k is functorial in A and M. If M = A, it gives

πn : HHn(A)→ Ωn
A/k.

• The composite map πn ◦ εn is multiplication by n! on M⊗A Ωn
A/k.

• (Hochschild-Kostant-Rosenberg) When A is finitely presented and smooth over k, then
these are isomorphisms.
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