HOCHSCHILD HOMOLOGY

VIVIAN KUPERBERG

1. HOCHSCHILD HOMOLOGY: DEFINITION AND EXAMPLES

We're going to first take a relatively specific example and run with it as long as we can; keep in mind that this can be generalized.

For now, let *k* be a unital ring, let *A* be a *k*-algebra, and let *M* be an *A*-bimodule. We consider the module $C_n(A, M)$ defined by

$$C_n(A,M)=M\otimes A^{\otimes n},$$

where all tensors are taken over *k*. We then have a boundary map, defined as follows.

Definition 1.1. The *Hochschild boundary* is the *k*-linear map $b : M \otimes A^{\otimes n} \to M \otimes A^{\otimes n-1}$ given by the formula

$$b(m, a_1, \dots, a_n) = (ma_1, a_2, \dots, a_n) + \sum_{i=1}^{n-1} (-1)^i (m, a_1, \dots, a_i a_{i+1}, \dots, a_n) + (-1)^n (a_n m, a_1, \dots, a_{n-1}).$$

We will sometimes decompose *b* in terms of operators $d_i : M \otimes A^{\otimes n} \to M \otimes A^{\otimes n-1}$ given by

$$d_i(m, a_1, \ldots, a_n) = (m, a_1, \ldots, a_i a_i + 1, \ldots, a_n),$$

with appropriate alterations for d_0 and d_n , namely

 $d_0(m, a_1, \ldots, a_n) = (ma_1, a_2, \ldots, a_n)$

and

$$d_n(m, a_1, \ldots, a_n) = (a_n m, a_1, \ldots, a_{n-1}).$$

For notational simplicity, we will sometimes write a_0 in place of m to denote the element of M.

Fact 1.2. The Hochschild boundary is a boundary map, i.e. $b \circ b = 0$.

Definition 1.3. The *Hochschild complex* is the resulting complex, given by

$$C(A, M) = C_*(A, M) : \dots \to M \otimes A^{\otimes n} \xrightarrow{b} M \otimes A^{\otimes n-1} \xrightarrow{b} \dots$$
$$\dots \xrightarrow{b} M \otimes A \xrightarrow{b} M.$$

where the module $M \otimes A^{\otimes n}$ is in degree *n*. The *n*th Hochschild homology group of *A* with coefficients in *M*, denoted $H_n(A, M)$, is the *n*th homology group of the Hochschild complex $(C_*(A, M), b)$. The direct sum

Proposition 1.4. $H_*(A, M)$ is functorial in M and in A (in a certain sense).

Proof. The fact that it is functorial in *M* is straightforward; a bimodule homomorphism $f : M \to M'$ induces a map $f_* : H_*(A, M) \to H_*(A, M')$ via

$$f_*(m, a_1, \ldots, a_n) = (f(m), a_1, \ldots, a_n).$$

Hochschild homology is also functorial in *A* in the following sense. Let $g : A \to A'$ be a *k*-algebra map and *M'* an *A'*-bimodule. Then the module *M'* can be considered as an *A*-bimodule via *g*, giving a map $g_* : H_*(A, M') \to H_*(A', M')$ defined by

$$g_*(m, a_1, \ldots, a_n) = (m, g(a_1), \ldots, g(a_n)).$$

The most important case is when M = A.

Example 1.5. When taking M = A, we write $C_*(A) = C_*(A, A)$, and $HH_*(A) = H_*(A, A)$. Any *k*-algebra map $f : A \to A'$ induces a homomorphism $f_* : HH_n(A) \to HH_n(A')$. In this case, HH_n is a covariant functor from associative *k*-algebras to *k*-modules which respects the product. In other words, it satisfies

$$HH_n(A \times A') = HH_n(A) \oplus HH_n(A').$$

For an *A*-bimodule *M*, the group $H_0(A, M)$ is given by

$$H_0(A, M) = M_A = M / \{am - ma \mid a \in A, m \in M\},\$$

according to the chain complex definition. If [A, A'] is the submodule of A generated by all [a, a'] = aa' - a'a, then we further have that $HH_0(A) = A/[A, A]$. If A is commutative, then $HH_0(A) = A$.

Example 1.6. Let A = k. Then the Hochschild complex for M = k is

$$\cdots \to k \xrightarrow{1} k \xrightarrow{0} \cdots \xrightarrow{1} k \xrightarrow{0} k.$$

Thus $HH_0(k) = k$, and $HH_n(k) = 0$ for all n > 0.

Hochschild homology has a lot of properties that we would want, you know, a homology theory to have. We can define *relative Hochschild homology classes*:

Remark 1.7. We can define Hochschild homology in *a lot* of generality. For most of our purposes *k* is tacitly assumed to be commutative and unital, but none of the above explicitly said that *k* should be commutative (gasp), and much of it works in cases where *k* is not unital. One fun side effect of the noncommutative setting is that we get a *Morita equivalence*, i.e. it is generally true for all *r* that $H_n(M_r(A), M_r(M)) \cong H_n(A, M)$, where $M_r(-)$ is the ring of $r \times r$ matrices with coefficients in the appropriate module. The Morita equivalence is pretty natural and runs pretty deep.

2. KÄHLER DIFFERENTIALS

For *A* unital and commutative, let $\Omega^1_{A/k}$ be the *A*-module of *Kähler differentials*, generated by the *k*-linear symbods da for all $a \in A$, so that $d(\lambda a + \mu b) = \lambda da + \mu db$, with the relation that

$$d(ab) = a(db) + b(da).$$

Note that for all $u \in k$, du = 0.

Proposition 2.1. Let A be a unital, commutative ring. Then there is a canonical isomorphism $HH_1(A) \cong \Omega^1_{A/k}$. If M is a symmetric bimodule, then $H_1(A, M) \cong M \otimes_A \Omega^1_{A/k}$.

Proof. Since *A* is commutative, the map $b : A \otimes A \rightarrow A$ is trivial. Thus $HH_1(A)$ is the quotient of $A \otimes A$ by the relation

$$ab\otimes c - a\otimes bc + ca\otimes b = 0$$
,

since that's precisely the image of the map $b : A \otimes A \otimes A \to A \otimes A$. The map $HH_1(A) \to \Omega^1_{A/k}$ is defined by sending the class of $a \otimes b$ to *adb*. Note then that

$$ab \otimes c - a \otimes bc + ca \otimes b \mapsto (ab)dc - ad(bc) + (ca)db$$
$$= (ab)dc - ((ab)dc + (ac)db) + (ca)db = 0,$$

so this map is well-defined because of the Kähler relation. But this map is an isomorphism, since the inverse $adb \mapsto a \otimes b$ is also a well-defined module homomorphism, and these are inverses of each other.

The same proof extends to the bimodule case.

3. DIFFERENTIAL FORMS

Hochschild (co)homology is closely related to derivations and differential forms (as hinted at by the Kähler example). We'll restrict to the case where *k* is a field, *A* is a commutative and unital *k*-algebra, and *M* is a unitary *A*-module.

Definition 3.1. A *derivation* of A with values in M is a k-linear map $D : A \rightarrow M$ such that

$$D(ab) = a(Db) + (Da)b$$

for all $a, b \in A$. The module of all derivations is denoted Der(A, M).

Any element $u \in A$ defines a derivation ad(u) called an *inner derivation* via

$$ad(u)(a) = [u, a] = ua - au$$

An inner derivation can be extended to $C_n(A, M)$ via the formula

$$ad(u)(a_0,\ldots,a_n) = \sum_{0 \le i \le n} (a_0,\ldots,a_{i-1},[u,a_i],a_{i+1},\ldots,a_n)$$

which commutes with the Hochschild boundary.

Proposition 3.2. Let $h(u) : C_n(A, M) \to C_{n+1}(A, M)$ be the map defined by

$$h(u)(a_0,\ldots,a_n) = \sum_{0 \le i \le n} (-1)^i (a_0,\ldots,a_i,u,a_{i+1},\ldots,a_n).$$

Then

$$bh(u) + h(u)b = -ad(u),$$

so $ad(u)_* : H_n(A, M) \to H_n(A, M)$ is the zero map.

Proof. Let h_i be the insertion of u after the *i*th component, so that $h(u) = \sum_{0 \le i \le n} (-1)^i h_i$. We can similarly write $b = \sum_{i=0}^n (-1)^i d_i$ as above, and then get that

$$d_ih_i - d_ih_{i-1} : (a_0, \ldots, a_n) \mapsto (a_0, a_1, \ldots, a_{i-1}, -[u, a_i], a_{i+1}, \ldots, a_n).$$

1

VIVIAN KUPERBERG

Then

$$h(u)b + bh(u) = d_0h_0 - d_{n+1}h_n + \sum_i (d_ih_i - d_ih_{i-1}) = -ad(u),$$

as desired. The last fact follows from homological algebra in this setting.

Note that the symmetric group S_n acts on $C_n(A, M)$ on the left by permuting the indices of the *A* coordinates. This extends linearly to an action of the group algebra $k[S_n]$ on $C_n(A, M)$.

Definition 3.3. The *antisymmetrization element* $\varepsilon_n \in k[S_n]$ is the element given by

$$\varepsilon_n = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \sigma.$$

The antisymmetrization map is the map

$$\varepsilon_n: M \otimes \Lambda^n A \to C_n(A, M)$$

sending $a_0 \otimes a_1 \wedge \cdots \wedge a_n \mapsto \varepsilon_n(a_0, \ldots, a_n)$.

There is another boundary map on the $M \otimes \Lambda^n A$ side of the world, known as the *Chevalley-Eilenberg* map $\delta : M \otimes \Lambda^n A \to M \otimes \Lambda^{n-1} A$ which is given by the formula

$$\delta(a_0 \otimes a_1 \wedge \dots \wedge a_n) = \sum_{i=1}^n (-1)^i [a_0, a_i] \otimes a_1 \wedge \dots \wedge \hat{a_i} \wedge \dots \wedge a_n \\ + \sum_{1 \le i < j \le n} (-1)^{i+j-1} a_0 \otimes [a_i, a_j] \wedge a_1 \wedge \dots \wedge \hat{a_i} \wedge \dots \wedge \hat{a_j} \wedge \dots \wedge a_n.$$

Proposition 3.4. *The following square is commutative.*

Definition 3.5. The A-module of differential n-forms is by definition the exterior product

$$\Omega^n_{A/k} = \Lambda^n_A \Omega^1_{A/k}.$$

It is spanned by the elements $a_0 da_1 \wedge \cdots \wedge da_n$ for $a_i \in A$.

We can also define π_n , a map in the other direction, via $\pi_n : C_n(A, M) \to M \otimes_A \Omega^n_{A/k}$ is defined by

 $\pi_n(a_0,\ldots,a_n)=a_0da_1\ldots da_n.$

There is a lemma (computation) taht says that $\pi_n \circ b = 0$.

Theorem 3.6. Let A be a commutative k-algebra and M an A-module.

 The antisymmetrization map induces a canonical map ε_n : M ⊗_A Ωⁿ_{A/k} → H_n(A, M). If M = A, it gives ε_n : Ωⁿ_{A/k} → HH_n(A).

- The map $\pi_n : H_n(A, M) \to M \otimes_A \Omega^n_{A/k}$ is functorial in A and M. If M = A, it gives $\pi_n : HH_n(A) \to \Omega^n_{A/k}.$ • The composite map $\pi_n \circ \varepsilon_n$ is multiplication by n! on $M \otimes_A \Omega^n_{A/k}.$ • (Hochschild-Kostant-Rosenberg) When A is finitely presented and smooth over k, then
- these are isomorphisms.