HOCHSCHILD HOMOLOGY

VIVIAN KUPERBERG

1. Hochschild Homology: Definition and Examples

We're going to first take a relatively specific example and run with it as long as we can; keep in mind that this can be generalized.

For now, let k be a unital ring, let A be a k-algebra, and let M be an A-bimodule. We consider the module $C_{n}(A, M)$ defined by

$$
C_{n}(A, M)=M \otimes A^{\otimes n}
$$

where all tensors are taken over k. We then have a boundary map, defined as follows.
Definition 1.1. The Hochschild boundary is the k-linear map $b: M \otimes A^{\otimes n} \rightarrow M \otimes A^{\otimes n-1}$ given by the formula

$$
\begin{aligned}
b\left(m, a_{1}, \ldots, a_{n}\right)= & \left(m a_{1}, a_{2}, \ldots, a_{n}\right)+\sum_{i=1}^{n-1}(-1)^{i}\left(m, a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}\right) \\
& +(-1)^{n}\left(a_{n} m, a_{1}, \ldots, a_{n-1}\right)
\end{aligned}
$$

We will sometimes decompose b in terms of operators $d_{i}: M \otimes A^{\otimes n} \rightarrow M \otimes A^{\otimes n-1}$ given by

$$
d_{i}\left(m, a_{1}, \ldots, a_{n}\right)=\left(m, a_{1}, \ldots, a_{i} a_{i}+1, \ldots, a_{n}\right),
$$

with appropriate alterations for d_{0} and d_{n}, namely

$$
d_{0}\left(m, a_{1}, \ldots, a_{n}\right)=\left(m a_{1}, a_{2}, \ldots, a_{n}\right)
$$

and

$$
d_{n}\left(m, a_{1}, \ldots, a_{n}\right)=\left(a_{n} m, a_{1}, \ldots, a_{n-1}\right) .
$$

For notational simplicity, we will sometimes write a_{0} in place of m to denote the element of M.

Fact 1.2. The Hochschild boundary is a boundary map, i.e. $b \circ b=0$.
Definition 1.3. The Hochschild complex is the resulting complex, given by

$$
\begin{array}{r}
C(A, M)=C_{*}(A, M): \cdots \rightarrow M \otimes A^{\otimes n} \xrightarrow{b} M \otimes A^{\otimes n-1} \xrightarrow{b} \cdots \\
\cdots \xrightarrow{b} M \otimes A \xrightarrow{b} M,
\end{array}
$$

where the module $M \otimes A^{\otimes n}$ is in degree n. The nth Hochschild homology group of A with coefficients in M, denoted $H_{n}(A, M)$, is the nth homology group of the Hochschild complex $\left(C_{*}(A, M), b\right)$. The direct sum
Proposition 1.4. $H_{*}(A, M)$ is functorial in M and in A (in a certain sense).

Proof. The fact that it is functorial in M is straightforward; a bimodule homomorphism $f: M \rightarrow M^{\prime}$ induces a map $f_{*}: H_{*}(A, M) \rightarrow H_{*}\left(A, M^{\prime}\right)$ via

$$
f_{*}\left(m, a_{1}, \ldots, a_{n}\right)=\left(f(m), a_{1}, \ldots, a_{n}\right)
$$

Hochschild homology is also functorial in A in the following sense. Let $g: A \rightarrow A^{\prime}$ be a k-algebra map and M^{\prime} an A^{\prime}-bimodule. Then the module M^{\prime} can be considered as an A-bimodule via g, giving a map $g_{*}: H_{*}\left(A, M^{\prime}\right) \rightarrow H_{*}\left(A^{\prime}, M^{\prime}\right)$ defined by

$$
g_{*}\left(m, a_{1}, \ldots, a_{n}\right)=\left(m, g\left(a_{1}\right), \ldots, g\left(a_{n}\right)\right)
$$

The most important case is when $M=A$.
Example 1.5. When taking $M=A$, we write $C_{*}(A)=C_{*}(A, A)$, and $H H_{*}(A)=H_{*}(A, A)$. Any k-algebra map $f: A \rightarrow A^{\prime}$ induces a homomorphism $f_{*}: H H_{n}(A) \rightarrow H H_{n}\left(A^{\prime}\right)$. In this case, $H H_{n}$ is a covariant functor from associative k-algebras to k-modules which respects the product. In other words, it satisfies

$$
H H_{n}\left(A \times A^{\prime}\right)=H H_{n}(A) \oplus H H_{n}\left(A^{\prime}\right)
$$

For an A-bimodule M, the group $H_{0}(A, M)$ is given by

$$
H_{0}(A, M)=M_{A}=M /\{a m-m a \mid a \in A, m \in M\}
$$

according to the chain complex definition. If $\left[A, A^{\prime}\right]$ is the submodule of A generated by all $\left[a, a^{\prime}\right]=a a^{\prime}-a^{\prime} a$, then we further have that $H_{0}(A)=A /[A, A]$. If A is commutative, then $H H_{0}(A)=A$.
Example 1.6. Let $A=k$. Then the Hochschild complex for $M=k$ is

$$
\cdots \rightarrow k \xrightarrow{1} k \xrightarrow{0} \cdots \xrightarrow{1} k \xrightarrow{0} k
$$

Thus $H H_{0}(k)=k$, and $H H_{n}(k)=0$ for all $n>0$.
Hochschild homology has a lot of properties that we would want, you know, a homology theory to have. We can define relative Hochschild homology classes:

Remark 1.7. We can define Hochschild homology in a lot of generality. For most of our purposes k is tacitly assumed to be commutative and unital, but none of the above explicitly said that k should be commutative (gasp), and much of it works in cases where k is not unital. One fun side effect of the noncommutative setting is that we get a Morita equivalence, i.e. it is generally true for all r that $H_{n}\left(M_{r}(A), M_{r}(M)\right) \cong H_{n}(A, M)$, where $M_{r}(-)$ is the ring of $r \times r$ matrices with coefficients in the appropriate module. The Morita equivalence is pretty natural and runs pretty deep.

2. KÄHLER DIFFERENTIALS

For A unital and commutative, let $\Omega_{A / k}^{1}$ be the A-module of Kähler differentials, generated by the k-linear symbodls $d a$ for all $a \in A$, so that $d(\lambda a+\mu b)=\lambda d a+\mu d b$, with the relation that

$$
d(a b)=a(d b)+b(d a)
$$

Note that for all $u \in k, d u=0$.

Proposition 2.1. Let A be a unital, commutative ring. Then there is a canonical isomorphism $H H_{1}(A) \cong \Omega_{A / k}^{1}$. If M is a symmetric bimodule, then $H_{1}(A, M) \cong M \otimes_{A} \Omega_{A / k}^{1}$.
Proof. Since A is commutative, the map $b: A \otimes A \rightarrow A$ is trivial. Thus $H_{1}(A)$ is the quotient of $A \otimes A$ by the relation

$$
a b \otimes c-a \otimes b c+c a \otimes b=0
$$

since that's precisely the image of the map $b: A \otimes A \otimes A \rightarrow A \otimes A$. The map $H H_{1}(A) \rightarrow$ $\Omega_{A / k}^{1}$ is defined by sending the class of $a \otimes b$ to $a d b$. Note then that

$$
\begin{aligned}
a b \otimes c-a \otimes b c+c a \otimes b & \mapsto(a b) d c-a d(b c)+(c a) d b \\
& =(a b) d c-((a b) d c+(a c) d b)+(c a) d b=0
\end{aligned}
$$

so this map is well-defined because of the Kähler relation. But this map is an isomorphism, since the inverse $a d b \mapsto a \otimes b$ is also a well-defined module homomorphism, and these are inverses of each other.

The same proof extends to the bimodule case.

3. Differential Forms

Hochschild (co)homology is closely related to derivations and differential forms (as hinted at by the Kähler example). We'll restrict to the case where k is a field, A is a commutative and unital k-algebra, and M is a unitary A-module.

Definition 3.1. A derivation of A with values in M is a k-linear map $D: A \rightarrow M$ such that

$$
D(a b)=a(D b)+(D a) b
$$

for all $a, b \in A$. The module of all derivations is denoted $\operatorname{Der}(A, M)$.
Any element $u \in A$ defines a derivation $a d(u)$ called an inner derivation via

$$
a d(u)(a)=[u, a]=u a-a u .
$$

An inner derivation can be extended to $C_{n}(A, M)$ via the formula

$$
\operatorname{ad}(u)\left(a_{0}, \ldots, a_{n}\right)=\sum_{0 \leq i \leq n}\left(a_{0}, \ldots, a_{i-1},\left[u, a_{i}\right], a_{i+1}, \ldots, a_{n}\right),
$$

which commutes with the Hochschild boundary.
Proposition 3.2. Let $h(u): C_{n}(A, M) \rightarrow C_{n+1}(A, M)$ be the map defined by

$$
h(u)\left(a_{0}, \ldots, a_{n}\right)=\sum_{0 \leq i \leq n}(-1)^{i}\left(a_{0}, \ldots, a_{i}, u, a_{i+1}, \ldots, a_{n}\right) .
$$

Then

$$
b h(u)+h(u) b=-a d(u)
$$

so ad $(u)_{*}: H_{n}(A, M) \rightarrow H_{n}(A, M)$ is the zero map.
Proof. Let h_{i} be the insertion of u after the i th component, so that $h(u)=\sum_{0 \leq i \leq n}(-1)^{i} h_{i}$. We can similarly write $b=\sum_{i=0}^{n}(-1)^{i} d_{i}$ as above, and then get that

$$
d_{i} h_{i}-d_{i} h_{i-1}:\left(a_{0}, \ldots, a_{n}\right) \mapsto\left(a_{0}, a_{1}, \ldots, a_{i-1},-\left[u, a_{i}\right], a_{i+1}, \ldots, a_{n}\right)
$$

Then

$$
h(u) b+b h(u)=d_{0} h_{0}-d_{n+1} h_{n}+\sum_{i}\left(d_{i} h_{i}-d_{i} h_{i-1}\right)=-a d(u)
$$

as desired. The last fact follows from homological algebra in this setting.
Note that the symmetric group S_{n} acts on $C_{n}(A, M)$ on the left by permuting the indices of the A coordinates. This extends linearly to an action of the group algebra $k\left[S_{n}\right]$ on $C_{n}(A, M)$.

Definition 3.3. The antisymmetrization element $\varepsilon_{n} \in k\left[S_{n}\right]$ is the element given by

$$
\varepsilon_{n}=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \sigma .
$$

The antisymmetrization map is the map

$$
\varepsilon_{n}: M \otimes \Lambda^{n} A \rightarrow C_{n}(A, M)
$$

sending $a_{0} \otimes a_{1} \wedge \cdots \wedge a_{n} \mapsto \varepsilon_{n}\left(a_{0}, \ldots, a_{n}\right)$.
There is another boundary map on the $M \otimes \Lambda^{n} A$ side of the world, known as the Chevalley-Eilenberg map $\delta: M \otimes \Lambda^{n} A \rightarrow M \otimes \Lambda^{n-1} A$ which is given by the formula

$$
\begin{aligned}
\delta\left(a_{0} \otimes a_{1} \wedge \cdots \wedge a_{n}\right) & =\sum_{i=1}^{n}(-1)^{i}\left[a_{0}, a_{i}\right] \otimes a_{1} \wedge \cdots \wedge \hat{a}_{i} \wedge \cdots \wedge a_{n} \\
& +\sum_{1 \leq i<j \leq n}(-1)^{i+j-1} a_{0} \otimes\left[a_{i}, a_{j}\right] \wedge a_{1} \wedge \cdots \wedge \hat{a}_{i} \wedge \cdots \wedge \hat{a}_{j} \wedge \cdots \wedge a_{n}
\end{aligned}
$$

Proposition 3.4. The following square is commutative.

Definition 3.5. The A-module of differential n-forms is by definition the exterior product

$$
\Omega_{A / k}^{n}=\Lambda_{A}^{n} \Omega_{A / k}^{1} .
$$

It is spanned by the elements $a_{0} d a_{1} \wedge \cdots \wedge d a_{n}$ for $a_{i} \in A$.
We can also define π_{n}, a map in the other direction, via $\pi_{n}: C_{n}(A, M) \rightarrow M \otimes_{A} \Omega_{A / k}^{n}$ is defined by

$$
\pi_{n}\left(a_{0}, \ldots, a_{n}\right)=a_{0} d a_{1} \ldots d a_{n}
$$

There is a lemma (computation) taht says that $\pi_{n} \circ b=0$.
Theorem 3.6. Let A be a commutative k-algebra and M an A-module.

- The antisymmetrization map induces a canonical map $\varepsilon_{n}: M \otimes_{A} \Omega_{A / k}^{n} \rightarrow H_{n}(A, M)$. If $M=A$, it gives $\varepsilon_{n}: \Omega_{A / k}^{n} \rightarrow H H_{n}(A)$.
- The map $\pi_{n}: H_{n}(A, M) \rightarrow M \otimes_{A} \Omega_{A / k}^{n}$ is functorial in A and M. If $M=A$, it gives $\pi_{n}: H H_{n}(A) \rightarrow \Omega_{A / k}^{n}$.
- The composite map $\pi_{n} \circ \varepsilon_{n}$ is multiplication by n ! on $M \otimes_{A} \Omega_{A / k}^{n}$.
- (Hochschild-Kostant-Rosenberg) When A is finitely presented and smooth over k, then these are isomorphisms.

