HOCHSCHILD HOMOLOGY

VIVIAN KUPERBERG

1. HOCHSCHILD HOMOLOGY: DEFINITION AND EXAMPLES

We’re going to first take a relatively specific example and run with it as long as we can;
keep in mind that this can be generalized.
For now, let k be a unital ring, let A be a k-algebra, and let M be an A-bimodule. We
consider the module C, (A, M) defined by
Ca(A,M) = M® A®",
where all tensors are taken over k. We then have a boundary map, defined as follows.

Definition 1.1. The Hochschild boundary is the k-linear map b : M ® A®" — M@ A®"~1
given by the formula

n—1
b(m,ay,...,a,) = (may,ay,...,a,) + Z(—l)l(m,ﬂl,...,aiﬂi+1,. e ly)
i=1
+(=1)"(aym,ay,...,a,_1).
We will sometimes decompose b in terms of operators d; : M ® A®" — M@ A" given
by
di(m,ay,...,ap) = (m,aq,...,48;+1,...,a,),
with appropriate alterations for dy and d,, namely
do(m,ay,...,a,) = (may,ay,...,a,)
and
dy(m,ay,...,a,) = (apm,ay,...,a,_1).
For notational simplicity, we will sometimes write a¢ in place of m to denote the element

of M.
Fact 1.2. The Hochschild boundary is a boundary map,i.e. bob = 0.

Definition 1.3. The Hochschild complex is the resulting complex, given by

C(A,M):C*(A,M):---—>M®A®”_b>M®A®”—1_b>,,,

A MeaAl M

where the module M ® A" is in degree n. The nth Hochschild homology group of A with
coefficients in M, denoted H, (A, M), is the nth homology group of the Hochschild complex
(C+(A, M), D). The direct sum

Proposition 1.4. H.(A, M) is functorial in M and in A (in a certain sense).
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Proof. The fact that it is functorial in M is straightforward; a bimodule homomorphism
f: M — M induces amap f. : H.(A, M) — H.(A, M) via
fu(m,ay,...,a,) = (f(m),aq,...,a,).

Hochschild homology is also functorial in A in the following sense. Let g : A — A’ be
a k-algebra map and M’ an A’-bimodule. Then the module M’ can be considered as an
A-bimodule via g, giving a map g« : H.(A, M) — H.(A’, M') defined by

ex(m,ay,...,ay) = (m,g(a1),...,8(ay)).

The most important case is when M = A.

Example 1.5. When taking M = A, we write C,(A) = C«(A, A),and HH.(A) = H.(A, A).
Any k-algebra map f : A — A’ induces a homomorphism f, : HH,(A) — HH,(A"). In
this case, HH, is a covariant functor from associative k-algebras to k-modules which
respects the product. In other words, it satisfies

HH,(AxA") = HH,(A) & HH,(A").
For an A-bimodule M, the group Hy(A, M) is given by
Ho(A,M) =My =M/{am—ma|ac A,me M},
according to the chain complex definition. If [A, A’] is the submodule of A generated by

all [a,a'] = aa’ — a’a, then we further have that HHy(A) = A/[A, A]. If A is commutative,
then HHy(A) = A.

Example 1.6. Let A = k. Then the Hochschild complex for M = k is

R N T S
Thus HHy(k) = k, and HH,, (k) = 0 for all n > 0.

Hochschild homology has a lot of properties that we would want, you know, a homology
theory to have. We can define relative Hochschild homology classes:

Remark 1.7. We can define Hochschild homology in a lot of generality. For most of our
purposes k is tacitly assumed to be commutative and unital, but none of the above explicitly
said that k should be commutative (gasp), and much of it works in cases where k is not
unital. One fun side effect of the noncommutative setting is that we get a Morita equivalence,
i.e. it is generally true for all r that H, (M, (A), M,(M)) = H,(A, M), where M,(—) is the
ring of r xr matrices with coefficients in the appropriate module. The Morita equivalence
is pretty natural and runs pretty deep.

2. KAHLER DIFFERENTIALS

For A unital and commutative, let Q) /i be the A-module of Kihler differentials, generated

by the k-linear symbodls da for all a € A, so that d(Aa + ub) = Ada + udb, with the relation
that

d(ab) = a(db) + b(da).
Note that forall u € k, du = 0.
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Proposition 2.1. Let A be a unital, commutative ring. Then there is a canonical isomorphism
HHy(A) = Q}A/k. If M is a symmetric bimodule, then H1 (A, M) = M ® 4 Q}q/k'

Proof. Since A is commutative, the map b : A® A — A is trivial. Thus HH;(A) is the
quotient of A ® A by the relation
ab®c—a®bc+ca®b=0,

since that’s precisely the image of themapb: A® A® A - A® A. The map HH;(A) —
o)) /i 18 defined by sending the class of @ ® b to adb. Note then that

ab®c—a®bc+ca®b— (ab)dc — ad(bc) + (ca)db
= (ab)dc — ((ab)dc + (ac)db) + (ca)db =0,
so this map is well-defined because of the Kahler relation. But this map is an isomorphism,
since the inverse adb — a ® b is also a well-defined module homomorphism, and these are

inverses of each other.
The same proof extends to the bimodule case. U

3. DIFFERENTIAL FORMS

Hochschild (co)homology is closely related to derivations and differential forms (as
hinted at by the Kdhler example). We'll restrict to the case where k is a field, A is a
commutative and unital k-algebra, and M is a unitary A-module.

Definition 3.1. A derivation of A with values in M is a k-linear map D : A — M such that
D(ab) = a(Db) + (Da)b
forall a,b € A. The module of all derivations is denoted Der(A, M).
Any element u € A defines a derivation ad(u) called an inner derivation via
ad(u)(a) = [u,a] = ua — au.

An inner derivation can be extended to C,,(A, M) via the formula

ad(u)(ag,...,an) = Z (ag,...,a;_1,[u,ai],ai41,...,an),
0<i<n

which commutes with the Hochschild boundary.
Proposition 3.2. Let h(u) : C,(A, M) — C,11(A, M) be the map defined by

h(u)(ag, ..., a0) = Y (=1)(ag, ... a;,u,ai11,...,4,).
0<i<n
Then
bh(u) + h(u)b = —ad(u),
soad(u)s : Hy(A, M) — H,(A, M) is the zero map.
Proof. Let h; be the insertion of u after the ith component, so that h(u) = Yg<;<,,(—1)h;.
We can similarly write b = )/ ,(—1)'d; as above, and then get that

dihi _dihi—l : (ﬂo,...,an) — (110,511,...,lli_l,—[u,lli],lli+1,...,tln).
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Then
h(u)b + bh(u) = dohg — dy1hy + Z(dzhz - dihi—l) = —ad(u),
i
as desired. The last fact follows from homological algebra in this setting. U

Note that the symmetric group S, acts on C,(A, M) on the left by permuting the indices
of the A coordinates. This extends linearly to an action of the group algebra k[S,] on
Cu(A,M).

Definition 3.3. The antisymmetrization element €,, € k[S,] is the element given by

en= ) sgn(o)o.

oEeSsy,
The antisymmetrization map is the map

e&n: MR AN"A — Cy (A, M)
sending ag @ ay A -+ - Aay — €n(aog, ..., an).

There is another boundary map on the M ® A" A side of the world, known as the
Chevalley-Eilenberg map 6 : M ® A" A — M ® A"~! A which is given by the formula

n .
Slag@ay A Aag) =Y (=1)'[ag,a;] @ay A~ Adi A+ Nay
1
+ Y (D) lag@ [ a ] Ay A NG A NdjA - Aay.

Proposition 3.4. The following square is commutative.

En
M® A"A ———— Cy(A, M)

€n—1
M® A"1A ”4) Cn—l(A/M)

Definition 3.5. The A-module of differential n-forms is by definition the exterior product

1
Ak = NaQa e
It is spanned by the elements apda; A - - - Ada, for a; € A.

We can also define 71, a map in the other direction, via 71, : C,(A, M) = M ®4 O’ Ik is
defined by
mty(ag, ..., ay) = apday ... day,.
There is a lemma (computation) taht says that 77, 0o b = 0.
Theorem 3.6. Let A be a commutative k-algebra and M an A-module.

o The antisymmetrization map induces a canonical map e, : M ®a V) ;. — Hu(A, M). If
M = A, it gives e, : QU — HH,(A).
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® The map 7ty : Hy(A, M) — M ®4 Y}, is functorial in A and M. If M = A, it gives
7tn : HHy(A) — Q) 1

e The composite map 7ty o €, is multiplication by n! on M ® 4 Yy ;.

o (Hochschild-Kostant-Rosenberg) When A is finitely presented and smooth over k, then
these are isomorphisms.



	1. Hochschild Homology: Definition and Examples
	2. Kähler Differentials
	3. Differential Forms

