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1 August 25th

1.1 Basic Notions of Group Theory

Notions to know well: group, subgroup, normal subgroup, quotient groups.
Group homomorphisms, its kernel (a normal subgroup of the domain), its image (a sub-

group of the codomain), injectivity (when the kernel is trivial), surjectivity (when the image
is everything), isomorphisms (bijective homomorphisms). The inverse of an isomorphism is
also a homomorphism.

1.2 Isomorphism laws

Proposition 1.2.1 (1st Isomorphism Law). 1. Let N � G and π : G → G/N be the
canonical projection, i.e. π(g) = gN = Ng = g. Then π is a surjective homomorphism
and the kernel of π is N .

2. Let φ : G � Q be another surjective homomorphism with ker φ = N . Then the map
φ̂ : G/N → Q defined by φ̂(gN) = φ(g) is a well-defined isomorphism.

N G G/N

Q

π

∼=ϕ

Informally, quotient groups correspond to surjective homomorphisms.

Example. SL(n,F) ↪→ GL(n,F) � F×, where the second map is given by taking the deter-
minant. We conclude from the theorem that GL(n,F)/SL(n,F) ∼= F×.

Proposition 1.2.2 (Universal Property of the Quotient). Let N � G and φ : G → H be a
homomorphism, with N ⊆ ker φ. Then there exists a unique homomorphism φ̂ : G/N → H
such that φ̂ ◦ π = φ.

G

G/N

H
ϕ

π
ϕ̂

Moreover, ker φ̂ = ker φ/N , and im φ̂ = im φ.

Clearly, this proposition includes the previous proposition as a special case.

Remark. · Given subsets X, Y ⊆ G, let XY = {xy | x ∈ X, y ∈ Y } by definition.
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· Even if X ≤ G and Y ≤ G, we are not guaranteed that XY is a subgroup of G.

· NG(X) = {g ∈ G | gXg−1 = X} is the normalizer of X in G. For any X ⊆ G,
NG(X) ≤ G.

· We say Y normalizes X if Y ⊆ NG(X), i.e. if yXy−1 = X ∀y ∈ Y .

· Let Y ≤ G. Then Y normalizes X ⇐⇒ yXy−1 ⊆ X ∀y ∈ Y . Note that containment
in X is sufficient because applying the hypothesis to y−1 ∈ Y , we get containment in
the other direction for y, i.e. X ⊆ yXy−1 as well.

Proposition 1.2.3 (2nd Isomorphism Law). Let, N,H ≤ G be such that H normalizes N .
Then

1. NH = HN and this is a subgroup of G.

2. N �NH.

3. NH/N ∼= H/N ∩H.

Refer to the NH-diagram below.

NH

N H

N ∩H

Proof. 1. This directly follows from the fact that H normalizes N . This should be easy
for you.

2. H normalizes N by hypothesis. N normalizes N always. Thus NH normalizes N .

3. Refer to the diagram below. Define φ : H → NH/N , the restriction of π to H. Then
ker φ = H ∩ ker π. but ker π = N , so ker φ = H ∩ N . Now what about the image?
We claim φ is surjective, but this is nontrivial. An element of NH/N is of the form
nh = nh = 1h = π(h) = φ(h). Thus φ is surjective. By the 1st Isomorphism Law, we
then have H/N ∩H ∼= NH/N .

N ∩H

N

H

NH

H/(N ∩H)

NH/N

ϕ
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Proposition 1.2.4 (3rd Isomorphism Law). Let N,K �G, with N ⊆ K. Then

1. K/N �G/N .

2. G/N
K/N
∼= G/K.

Proof. Consider the canonical projection π : G � G/K. By hypothesis, N ⊆ K = ker π.
The universal property tells us that there exists a unique homomorphism π̂ : G/N →
G/K. Moreover, π̂ is surjective because π is, and its kernel is ker π/N = K/N , which
gives normality. Apply the first isomorphism law to π̂ to get (2).

G G/K

G/N

π

π̂

Proposition 1.2.5 (4th Isomorphism Law). Let N �G.

1. If N ≤ H ≤ G then H/N ≤ G/N .

2. If Q ≤ G/N , then ∃!H with N ≤ H ≤ G and H/N ∼= Q. In words, there is a bijective
correspondence between subgroups of the quotient G/N and intermediate subgroups of
G containing N .

3. This correspondence preserves inclusions and normality. H1 ≤ H2 ⇐⇒ H1/N ≤
H2/N , and H1 �H2 ⇐⇒ H1/N �H2/N .

1.3 Modularity

Let X, Y, Z ≤ G. Does this hold?

X ∩ Y Z = (X ∩ Y )(X ∩ Z)

No. What’s a counterexample? G = Z2 under addition, and X, Y, Z where Y is one
axis, i.e. pairs of the form (n, 0); Z the other axis, i.e. pairs of the form (0, n); and X
the line of pairs of the form (n, n). Then the question is whether X ∩ (Y + Z) = X, but
(X ∩ Y ) + (X ∩ Z) = 0.

However, a weaker form of that identity holds, and is called the modular law.

Proposition 1.3.1 (Dedekind’s modular law). Let X, Y, Z ≤ G, and assume X ⊇ Z. Then
X ∩ Y Z = (X ∩ Y )Z = (X ∩ Y )(X ∩ Z).
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Proof. ⊇: X ∩ Y ≤ X, Z ≤ X, so (X ∩ Y )Z ≤ X. Also (X ∩ Y )Z ≤ Y Z, so the left side
contains the right. ⊆: An element of X∩Y Z is of the form x = yz, with x ∈ X, y ∈ Y, z ∈ Z.
But then y = x−1z, so y ∈ X, and thus in X ∩ Y , and thus in (X ∩ Y )Z.

Remark. On posets. A poset (partially ordered set) is a lattice when the join (least upper
bound) and the meet (greatest lower bound) of any two elements exists. Explicitly, a join
of x, y is an element z such that x, y ≤ z, and whenever x, y ≤ z′, then z ≤ z′. The meet
is defined similarly. These don’t necessarily exist; when they do, they are unique, following
from the definition. We write x ∨ y as the join of x, y and x ∧ y as the meet of x, y. The
poset of *normal* subgroups of a group under inclusion is a lattice, where X ∧ Y = X ∩ Y
and X ∨ Y = XY ; note that this DOES NOT HOLD for the poset of all subgroups. This
lattice is not distributive, i.e. as explored above, X ∧ (Y ∨ Z) 6= (X ∧ Y ) ∨ (X ∧ Z). But
it is modular, where a modular lattice is one in which the identity in the above proposition
holds.

The poset of all subgroups is in fact still a lattice but under a different join and meet. We
must change X ∨Y to 〈X, Y 〉, or the subgroup generated by X, Y by definition. This lattice
is non-distributive and non-modular. A counterexample lies, for example, in the dihedral
group D4.

2 August 27th

2.1 Last Time

We refer to the NH diamond; it is easy to remember and very important.

NH

N H

N ∩H

Recall as well Dedekind’s modular law, that X ∩ Y Z = (X ∩ Y )(X ∩ Z) = (X ∩ Y )Z,
provided X ⊇ Z.

So now we will move on to the butterfly lemma.

2.2 The Butterfly Lemma

Given subgroups of a group G, A, A1, B, B1 as follows:

A B

A1 B1

G
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We want to use each of the following chains to refine the other, as follows.

A B

A1(A ∩B)

A1(A ∩B1)

A1

(A ∩B)B1

(A1 ∩B)B1

B1

Remark. We first intersected, then multiplied. If instead we first multiply, then intersect,
what would happen? Well, A∩A1B = A1(A∩B) by the Dedekind modularity, since A ≥ A1.

Proposition 2.2.1 (Zassenhaus Butterfly Lemma). Let A1 � A�G,B1 �B �G. Then

1. A1(A ∩B1)� A1(A ∩B) ≤ G and (A1 ∩B)B1 � (A ∩B)B1 ≤ G.

2. A1(A∩B)
A1(A∩B1)

∼= (A∩B)B1

(A1∩B)B1
.

Proof. 1. A1 � A, so A normalizes A1, so A ∩ B normalizes A1, so A1(A ∩ B) ≤ G.
For normality: check each factor normalizes the smaller subgroup. A1 normalizes
A1(A ∩ B1) because it is contained in it. A ∩ B normalizes A1(A ∩ B1) because A
normalizes A1, so the first factor is good, and the second factor is good because B
normalizes B1.

Thus A1(A ∩B1)� A1(A ∩B).

2. For this step we build the butterfly diagram.

A B

A1(A ∩B)

A ∩B

(A ∩B)B1

A1(A ∩B1) (A1 ∩B)B1

(A1 ∩B)(A ∩B1)

A1 B1

A1 ∩B A ∩B1

=

=

=
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We then claim that the top pieces are NH diamonds. Then the second law will yield
the isomorphism that we want. To see that the left piece is an NH diamond, we check:

A1(A ∩B1)(A ∩B) = A1(A ∩B), and

A1︸︷︷︸
Y

(A ∩B1)︸ ︷︷ ︸
Z

∩ (A ∩B)︸ ︷︷ ︸
X

= (A1 ∩ A ∩B)(A ∩B1 ∩ A ∩B), using Dedekind modularity

= (A1 ∩B)(A ∩B1).

The right hand piece works similarly.

2.3 Series

Let G be a group.

Definition 2.3.1. A series is a finite sequence of subgroups, each one contained in the
preceding and ranging from G to {1}, i.e.

G = G0 ≥ G1 ≥ · · ·Gn = {1}.

The length of such a series is n. It is proper if Gi 6= Gi+1 for all i = 0 . . . n − 1. It is
subnormal if Gi �Gi−1 for all i, and it is normal if Gi �G for all i.

Definition 2.3.2. A second series of G is a refinement of the first if it consists of the Gi’s,
plus possibly some intermediate cases.

Let G = G0�G1 · · ·�Gn = {1} be a subnormal series. The groups Gi−1/Gi, i = 1, . . . , n,
are the slices. Note that the series being proper is equivalent to all slices being nontrivial.

Two subnormal series are equivalent if their nontrivial slices are isomorphic, possibly
appearing in different orders.

Examples. 1. Dn = 〈ρ, σ : ρn = σ2 = 1, σρ = ρ−1σ〉, the dihedral group of order 2n.
There is a series Dn � 〈ρ〉� {1}. The slices are Z2 and Zn.

2. Z6 � 〈2〉� {0}. The slices are Z6/〈2〉 = Z/6Z
2Z/6Z

∼= Z/2Z = Z2.

Also, there is the series Z6� 〈3〉� {0}. The slices are, by similar arguments, Z6/〈3〉 ∼=
Z3, and 〈3〉 ∼= Z2. The two series are equivalent.

3. Sn �An � {1}. An is simple if n > 4, but we do have S4 �A4 � V4 � Z2 � {1}, where
V4 is the Klein four group, or as it lies in A4, {id, (12)(34), (13)(24), (14)(23)}. Z2 in
this series is {id, (12)(34)}.

4. GL(n,F) � SL(n,F) � µn(F) � {1}. The first slice is F×, as proven last time. The
second has a special name; it is PSL(n,F), the projective special linear group.
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µn(F) F×

GL(n,F)SL(n,F)

Remark. Any finite subgroup of F× is cyclic. If |F| = q < ∞, then µn(F) is cyclic.
Moreover, PSL(n,F) is simple as well, unless n = 2 and q = 2 or 3, or if n = 1.

Theorem 2.3.3 (Schreier’s Refinement Theorem). Let {Gi}0≤i≤n and {Hj}0≤j≤m be two sub-
normal series of a group G. There exist subnormal refinements {G′i}0≤i≤n′ and {H ′j}0≤j≤m′

of the two series, respectively, such that {G′i} ∼ {H ′j}.

Proof. For each i and j, insert Hj in between Gi and Gi+1, as we did for the butterfly
lemma. Let Gi,j be defined as Gi+1(Gi ∩Hj), and do this for every i and for every j. The
Hj’s decrease, so fix i and let j vary. We get the following: Gi ≥ Gi,0 ≥ · · · ≥ Gi,m ≥ Gi+1.
Note that the first and last are equalities, because H0 = G and Hm = {1}.

By the butterfly lemma, in fact, we get a subnormal chain. Piecing these chains together
over i = 0, . . . , n, we obtain a subnormal series of G, which is a refinement of the first
series {Gi}. We can do the same process for the other series, inserting Gi between Hj and
Hj+1, we obtain a subnormal series which is a refinement of {Hj}. Here the subgroups are
Hj,i = (Gi ∩Hj)Hj+1.

Again by the butterfly lemma, Gi,j/Gi,j+1 ∼ Hj,i/Hj,i+1 by the butterfly lemma applied
to Gi, Gi+1, Hj, Hj+1.

Remark. The following is an ongoing analogy:
group positive integer

subnormal series factorization
simple groups prime numbers

composition series prime factorization

2.4 Composition Series

Definition 2.4.1. A group G is simple if

· G 6= {1}

· The only normal subgroups of G are G and {1}.

Example. · A group is simple and abelian if and only if it is cyclic of prime order.

· An is simple if n 6= 1, 2, 4.

· PSL(n,Fq) is simple unless n = 2 and q = 2 or 3, and unless n = 1.
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3 September 1st

3.1 Composition Series, cont.

Definition 3.1.1. A composition series of a group is a subnormal series that is proper (no
repeated subgroups), and admits no proper refinements other than itself.

Equivalently, all slices are simple. The slices of a composition series have a special name,
they are called composition factors.

Along with the analogy mentioned just above, composition factors play the role of primes.

Examples. 1. Z doesn’t have a composition series; any such series would begin like: Z�
p1Z, so that the quotient is Zp1 . In the second step, we must then have p1Z� p1p2Z,
so that the second slice is Zp2 . But this process will never terminate at {0}, so Z has
no composition series.

Remark. Some infinite groups have composition series. For example, there exist infinite
groups G that are simple, which then have the composition series 1�G.

2. Z6 � 〈2〉� {0} and Z6 � 〈3〉� {0} are two composition series of Z6.

3. Any finite group has a composition series, by induction on the order of the group.

Theorem 3.1.2 (Jordan-Hölder). Let G be a group with a composition series. Then any
two composition series of G are equivalent.

Proof. Let {Gi} and {Hj} be two composition series for G.
By Schreier’s refinement theorem there are respective refinements {G′i} and {H ′j} such

that {G′i} ∼ {H ′j}. Since {Gi} has no proper refinements, {G′i} has to have the same
nontrivial slices as {Gi}. Hence {G′i} ∼ {Gi}. Similarly, {H ′j} ∼ {Hj}. Thus {Gi} ∼
{Hj}.

Remark. It follows that the composition factors are only dependent on the group G and not
on the composition series.

On the other hand, nonisomorphic groups may have the same composition factors. For
example, with Z6, the group S3 has the composition series S3 � 〈(123)〉 � {id}, which has
slices Z2, Z3.

The slices cannot always be permuted; for example, there’s no composition series of S3

with the slices in the other order.

Example. For n > 4, the composition factors of Sn are Z2 and An, Sn�An�{1}. For n = 4,
this can be refined with the Klein four group and a cyclic subgroup that it contains.

3.2 Solvable groups

Definition 3.2.1. A group is solvable if admits a subnormal series with all slices abelian.

Examples. · All abelian groups are solvable.
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· Dn is solvable: Dn � 〈p〉� {1}.
What are the basic properties of solvable groups?

Proposition 3.2.2. Let G be solvable and H ≤ G. Then

1. H is solvable.

2. If H �G, then G/H is solvable.

Proof. Start from a series with abelian slices. G = G0 � G1 � · · · � Gn = {1}. Then
H = H ∩ G0 � H ∩ G1 � · · · � H ∩ Gn = {1}. When H is normal, we use the canonical
projection π : G→ G/H to get G/H = π(G0)� · · ·�π(Gn) = {1}; the quotients are abelian
as well, so G/H is still solvable.

Proposition 3.2.3. Let N �G. Then G is solvable if and only if N and G/N are solvable.

Proof. (⇒) Previous prop.
(⇐). Stick together a series for N with abelian slices with the lift to G of a series for

G/N , using the fourth isomorphism law.

Proposition 3.2.4. Let G be solvable. Then every subnormal series has a refinement with
abelian slices.

Proof. Apply Schreier to the given series and the series with abelian slices that must exist
because G is solvable. Note that the slices of a refinement remain abelian. Given Gi �N �
Gi+1 with Gi/Gi+1 abelian, N/Gi+1 is the subgroup of an abelian group and thus abelian.

Quotients of abelian groups are abelian as well, so Gi/N ∼= Gi/Gi+1

N/Gi+1
is abelian. Thus the

slices remain abelian, so we have found our refinement.

Proposition 3.2.5. Let G be a group with a composition series. Then the following are
equivalent:

i G is solvable.

ii All composition factors are abelian.

iii All composition factors are cyclic of prime order.

Proof. (i)⇒ (ii) Apply the previous proposition to a composition series.
(ii)⇒ (iii) Simple abelian groups are cyclic of prime order.
(iii)⇒ (i) Take the composition series as the subnormal series with abelian factors.

Example. For n > 4, Sn is not solvable. An is not abelian.

Note then that solvable groups with a composition series are finite.
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3.3 The derived series

Definition 3.3.1. Let G be a group. The commutator of g, h ∈ G is [g, h] = ghg−1h−1 ∈ G.
The commutator of H,K ≤ G is [H,K], the subgroup generated by {[h, k] | h ∈ H, k ∈ K}.

Remark. The product of two commutators is not another commutator.

Lemma 3.3.2. Let N ≤ G. Then [G,G] ⊆ N ⇐⇒ N �G and G/N is abelian.

Proof. In Homework 2, exercise 11.

In particular, [G,G] = {1} if and only if G is abelian.

Definition 3.3.3. The derived subgroup of G is G(1) = [G,G]. We also set G(0) = G and
G(i) = [G(i−1), G(i−1)] = (G(i−1))(1) for all i ≥ 1. We write G′ = G(1), G′′ = G(2), and so on.

Note that G = G(0) ≥ G(1) ≥ · · · . By the lemma, we know something about the slices.
We know that G(i) �G(i−1), and the quotient is abelian. BUT our saving grace is that this
series may not terminate. We have not, in fact, proven that every group is solvable!

Proposition 3.3.4. Each G(i) is a characteristic subgroup of G. In particular G(i) �G.

Note that a subgroup is characteristic if it is invariant under all automorphisms of G.

Proof. Being characteristic is transitive (unlike normality). This is because given H ≤ K ≤
G with all inclusions characteristic, we apply an automorphism to G; it keeps K invariant,
so it is an automorphism of K, so it keeps H invariant. Thus H is characteristic in G.

Because of this transitivity, it suffices to show that G(1) is characteristic in G. Take
σ ∈ Aut(G). Then showing that σ([g, h]) is a commutator is sufficient. But σ(ghg−1h−1) =
σ(g)σ(h)σ(g−1)σ(h−1) = [σ(g), σ(h)] ∈ G(1). Thus we are done.

Proposition 3.3.5. Let G be a group. The following are equivalent.

i G is solvable.

ii ∃n ≥ 0 such that G(n) = {1}.

iii G has a normal series with abelian slices.

Proof. (i)⇒ (ii) Let G = G0�G1� · · ·�Gn = {1} be a subnormal series with abelian slices.

G/G1 is abelian, so by our lemma G(1) ≤ G1. Similarly, G
(1)
1 ≤ G2, so G(2) ≤ G

(1)
1 ≤ G2. By

induction, G(i) ≤ Gi, so eventually G(n) must be trivial.
(ii)⇒ (iii) The derived series works.
(iii)⇒ (i) This is clear simply because normal implies subnormal.

13



3.4 Nilpotent Groups

Definition 3.4.1. A group is nilpotent if it admits a normal series G = G0�G1� · · ·�Gn =
{1} such that Gi−1/Gi ⊆ Z(G/Gi)∀i.

Remark. 1. Abelian ⇒ nilpotent ⇒ solvable.

2. G nilpotent and G 6= {1} implies that Z(G) 6= {1}, since Gn−1 ⊆ Z(G).

Proposition 3.4.2. 1. G nilpotent and H ≤ G⇒ H nilpotent.

2. G nilpotent and N �G⇒ G/N nilpotent.

3. N ≤ Z(G) and G/N is nilpotent ⇒ G is nilpotent.

Proof. HW2, Exercise 9.

Example. HW2, Exercise 10. Dn is nilpotent if and only if n is a power of 2.

3.5 The Lower Central Series

Definition 3.5.1. Define subgroups of G as follows.

G[0] = G, . . . , G[i] =
[
G,G[i−1]

]
.

Note that G[1] = G(1), G[2] = [G, [G,G]], and so on.
Then G = G[0] �G[1] � · · · is the lower central series of G.

Proposition 3.5.2. 1. Each G[i] is characteristic in G.

2. G = G[0] �G[1] � · · · is well-defined.

3. G[i−1]/G[i] ⊆ Z(G/G[i])

Proposition 3.5.3. G is nilpotent if and only if ∃n ≥ 0 such that G[n] = {1}.

4 September 3rd

4.1 Group Actions

Definition 4.1.1. Let G be a group and let Ω be a set. Then a left action of G on the set
Ω is a function G×Ω→ Ω with (g, α) 7→ g · α such that 1 · α = α and g · (h · α) = gh · α. A
right action is defined analogously, but the function is from Ω×G→ Ω.
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Given α, β ∈ Ω, we write α ∼ β if ∃g ∈ G, g · α = β. Then ∼ is an equivalence relation
on the set Ω. The equivalence classes are called the orbits of the action. The orbit of α ∈ Ω
is denoted by

OG(α) = {β ∈ Ω | β ∼ α}
= {β ∈ Ω | ∃g ∈ G, g · α = β}
= {g · α | g ∈ G}

A companion notion is the stabilizer of an element α ∈ Ω. The stabilizer is denoted by

SG(α) = {g ∈ G | g · α = α}

Note that OG(α) ⊆ Ω and SG(α) ≤ G. Two basic facts are that distinct orbits are
disjoint, and that the union of all orbits is Ω; in other words, as stated above, the orbits are
equivalence classes.

Definition 4.1.2. The action is transitive when there is only one orbit. Equivalently, ∀α, β ∈
Ω,∃g ∈ G with g · α = β.

Examples. 1. G = (R,+),Ω = C. Let x · z := eixz, x ∈ R, z ∈ C. This is an action. The
orbit of a complex number z is OG(z) = {ω ∈ C | ∃x ∈ R, eixz = ω} = {ω ∈ C | |ω| =
|z|}, or the circle through the origin with radius equal to |z|. Moreover, SG(Z) = R if
z = 0, and 2πZ if z 6= 0.

2. Let G be any group and Ω = G, with g · h = ghg−1, or the action of conjugation.
SG(h) = {g ∈ G | ghg−1 = h} = centralizer of h in G, and OG(h) = {x ∈ G | ∃g ∈
G, x = ghg−1} = conjugacy class of h in G.

3. Sn acts on {1, 2, . . . , n} by σ · i = σ(i). This action is transitive because we can always
find a permutation sending i to j.

Proposition 4.1.3. Let G act on Ω, α ∈ Ω. Then

1. SG(α) ≤ G

2. |G/SG(α)| = |OG(α)| (orbit-stabilizer reciprocity)

3. If α ∼ β, then ∃g ∈ G such that gSG(β)g−1 = SG(α).

The proof of this is relatively simple and is omitted (at least for now).

Example. Let k ≤ n be nonnegative integers. Let Pk(n) = {A ⊆ {1, 2, . . . , n} | |A| = k}.
Sn acts on Pk(n) by σ · A = σ(A). Let A0 = {1, 2, . . . , k} ∈ Pk(n). Then OSn(A0) = Pk(n),
so the action is transitive. And SSn(A0) = {σ ∈ Sn | σ(A0) ⊆ A0} ∼= Sk × Sn−k under the
isomorphism σ 7→ (σ|A0 , σ|Ac

0
). Thus,

|Pk(n)| = |Sn/SSn(A0)| = n!

k!(n− k)!
=

(
n

k

)
.
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Proposition 4.1.4. Let G act on a finite set Ω, and suppose all stabilizers are trivial. Then
the number of orbits is |Ω|/|G|. In particular, G is finite and |G| divides |Ω|.

Proof. SG(α) = {1}∀α. Thus for a given α, |OG(α)| = |G/SG(α)| = |G|, so we know already
that G is finite. Let the distinct orbits be OG(α1), . . . , OG(αk). Then

Ω =
k⊔
i=1

OG(αi)

⇒ |Ω| =
k∑
i=1

|OG(αi)| = k|G|.

This completes the proof.

Example. Let H ≤ G, with G finite. Consider G × H → G, (g, h) 7→ gh. This is a right
action of H on G.

OH(g) = gH, so the orbits are the same as the H-cosets. In particular, the number of
orbits is [G : H] = |G/H|.

SH(g) = {h ∈ H | gh = g} = {1}, so the stabilizers are trivial.
Then by the proposition, |G/H| = |G|/|H|, the familiar Lagrange’s Theorem.

Example. Let Pn(F) be the n-dimensional projective space over a field F. This is the set of
lines through the origin in Fn+1. For n = 1, we examine lines in F2, the plane. It then looks
like a horizontal projective line, along with a point at infinity. HW3, Exercise 3 will include
a derivation of the result that

|Pn(Fq)| = 1 + q + q2 + · · ·+ qn.

Definition 4.1.5. For a group G acting on a set Ω, ΩG is the set of fixed points, {α ∈ Ω |
g · α = α∀g ∈ G}.

Theorem 4.1.6 (Fixed point lemma). Let G act on a finite set Ω. Suppose there exists a
prime p that divides the index of every proper subgroup of G. Then |ΩG| ≡ |Ω| (mod p).

Proof. List the orbits OG(α1), . . . , OG(αi), OG(αi+1), . . . , OG(αk), where the orbits up to
OG(αi) are trivial and the ones following it are not. Then |Ω| = |ΩG| + |G/SG(αi+1)| +
· · · + |G/SG(αk)|. But all of these are divisible by p, because the orbits are nontrivial and
thus the stabilizers are proper, except for the fixed points, so |Ω| ≡ |ΩG| (mod p).

This mode of thought will return when we study p-groups, and later on as well.

4.2 Actions and groups of permutations

Suppose G acts on Ω from the left. Given g ∈ G, let ϕg : Ω → Ω defined by ϕg(α) = g · α.
Then ϕg is bijective, with (ϕg)

−1 = ϕg−1 .
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Let S(Ω) be the group of permutations of Ω, or the group of bijections of Ω under
composition. Let ϕ : G → S(Ω) be defined by g 7→ ϕg. Then ϕ is a (homo)morphism of
groups. In other words, an action gives us a homomorphism from an action to a permutation
group. Conversely, starting from a group morphism ϕ : G → S(Ω), and definining g · α =
ϕ(g)(α), we obtain a left action of G on Ω.

The two constructions above are inverses of each other.

Remark. Right actions would give an anti-homomorphism.

Definition 4.2.1. Let G act on Ω and let ϕ : G→ S(Ω) be the discussed associated group
morphism. We say that ker ϕ is the kernel of the action. The action is faithful if ker ϕ is
trivial, or if the associated morphism is injective.

Remark. g ∈ ker ϕ ⇐⇒ ϕg = idΩ ⇐⇒ g · α = α∀α, or if g ∈ SG(α)∀α. In other words,

ker ϕ =
⋂
α∈Ω

SG(α).

Examples. 1. Let G act on itself by conjugation. Then SG(h) is the centralizer of h in G,
and ker ϕ =

⋂
h∈G SG(h) = Z(G).

2. Sn acts on {1, 2, · · · , n}. SG(i) = {σ ∈ Sn | σ(i) = i} ∼= Sn−1. However, ker ϕ = {σ ∈
Sn | σ(i) = i∀i} = {id}. The associated morphism is ϕ : Sn → Sn, the identity.

3. G acts on itself by left translations, i.e. g · h = gh. SG(h) = {g ∈ G | gh = h} = {1}.
All stabilizers are trivial, so the action must be faithful. The associated morphism
ϕ : G→ S(G), injective; this gives Cayley’s Theorem, that any group is isomorphic to
a subgroup of a permutation group.

4.3 Applications to the existence of normal subgroups

The idea is that actions correspond to this ker ϕ; kernels are normal subgroups, so we should
have a correspondence.

Proposition 4.3.1. Let H ≤ G with |G/H| = n. Then ∃N � G such that N ≤ H and
|G/N | divides n!.

Intuitively, subgroups can’t get too large before they start containing normal subgroups.

Proof. Let Ω = G/H = {xH | x ∈ G}. Define g · xH = gxH. This is an action of G on
Ω; let N be the kernel of this action. Then N � G. Since N is the kernel, by definition
N ⊆ SG(H), as H = 1H ∈ Ω. But SG(H) = H. Thus N ⊆ H, so N ≤ H. By the first
isomorphism law, G/N ↪→ S(Ω), which has order n!, so |G/N | divides n!.

Definition 4.3.2. N , as defined in the proof of the previous proposition, is the core of H
in G. (See HW 3, Exercise 1).
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Corollary 4.3.3. Let G be a finite group and let p be the smallest prime divisor of |G|. If
∃H ≤ G with |G/H| = p, then H �G.

Proof. Let N be the core of H in G. We’d want to show that H = N . By hypothesis,
[G : H] = p; if k = [H : N ], it suffices to show that k = 1. We know that [G : N ] = pk.
Then by the above proposition, pk divides p!. Cancelling p, we know that k divides (p− 1)!,
so all prime divisors of k are < p. But k divides |G|, because it is an index, so all prime
divisors of k are ≥ p, because the smallest prime divisor of |G| is p. Then k has no prime
divisors, so k = 1, and H = N , and we are done.

Corollary 4.3.4. Let G be finite. If ∃H ≤ G with |G/H| = 2, then H �G.

4.4 p-groups

Definition 4.4.1. Let p be a prime. A finite p-group is a finite group of order pk, for some
k ≥ 0.

Theorem 4.4.2 (Fixed point lemma for p-groups). Let G be a p-group, and Ω a finite set.
Suppose G acts on Ω. Then |Ω| ≡ |ΩG| (mod p).

Proof. All proper subgroups have index divisible by p. The index must be a prime power; if
the subgroup is proper, that power cannot be 1. We then apply the fixed point lemma.

5 September 8th

5.1 p- groups

Recall the definition from last time of a p-group. Note that we will assume for now that all
of our p-groups are finite. We also discussed the fixed-point lemma for p-groups.

Corollary 5.1.1. Let G be a nontrivial p-group. Then Z(G) 6= {1}.

Proof. Let G act on itself by conjugation. The fixed points of this action are

GG = {h ∈ G | ghg−1 = h,∀g ∈ G} = Z(G).

By the fixed point lemma, |Z(G)| ≡ |G| (mod p) ≡ 0 (mod p). Thus certainly |Z(G)| 6= 1,
and we are done.

Corollary 5.1.2. Every p-group is nilpotent.

Proof. G/Z(G) is a p-group, and |G/Z(G)| < |G| by the previous corollary, so we can argue
by induction on |G|, we may assume G/Z(G) is nilpotent by a previous proposition that
G/N is nilpotent if and only if G is nilpotent for N �G,N ⊆ Z(G).

The following is an important lemma that appeared in the homework.
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Lemma 5.1.3. Let G be a finite abelian group with p a prime divisor of |G|. Then G
contains an element of order p.

Proof. HW2 Exercise 18.

Theorem 5.1.4. Let G be a nontrivial p-group.

1. (big centers). If N �G, N 6= {1}, then N ∩ Z(G) 6= {1}.

2. (subgroups of all possible orders) If we have N �G and d a divisor of |N |, then N has
a subgroup of order d which is normal in G.

3. (normalizers grow) If H < G then H < NG(H).

4. If K < G is a maximal subgroup of G then K �G and [G : K] = p.

Proof. 1. Apply the fixed point lemma to the action of G on N by conjugation. The same
proof that tells us that Z(G) 6= {1} tells us that N ∩ Z(G) 6= {1}.

2. Write d = pα, and induct on α. If α = 0, nothing to do. Assume α ≥ 1. Then
N 6= {1}. By 1, p divides |N ∩ Z(G)|. By the lemma, N ∩ Z(G) has a subgroup
N1 of order p. Consider G/N1. We have N/N1 � G/N1 and pα−1 divides |N/N1|. By
induction hypothesis, N/N1 has a subgroup of order pα−1 that is normal in G. By the
fourth isomorphism law, this subgroup is of the form N2/N1 with N1 ≤ N2 ≤ N and
N2 �G.

Then |N2| = |N1||N2/N1| = p · pα−1 = pα, so we are done.

3. Let Ω = G/H. Consdier the action of H on Ω by translation: h · xH = (hx)H.
xH ∈ ΩH ⇐⇒ hxH = xH ∀h ∈ H, which is true if and only if x−1hx ∈ H for
every h ∈ H, which happens if and only if x−1Hx ⊆ H, or x ∈ NG(H). (Note the
subtle-but-unimportant-here-because-finite-groups difference between x−1Hx ⊆ H and
xHx = H.)

But note that in each case we care about the coset x, not the element, so ΩH =
NG(H)/H. The fixed point lemma then tells us that |NG(H)/H| ≡ |G/H| (mod p) ≡
0 (mod p), because H is proper. Then |NG(H)/H| 6= {1}, as desired.

4. By 3, K < NG(K); K is maximal, so NG(K) = G, and K�G. Now G/K is a p-group.
So it must have normal subgroups of all possible orders; but K is maximal, so G/K is
simple. This can only happen if there are no possible orders, so |G/K| = p, as desired.

5.2 Sylow Theorems

Definition 5.2.1. Let G be a finite group and p a prime. Write |G| = pαm with α ≥ 0 and
p does not divide m. A p-Sylow group is a subgroup S ⊆ G with |S| = pα. Let Sylp(G) be
the set of all p-Sylow subgroups of G.
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Theorem 5.2.2 (1st Sylow Theorem). G finite, p prime ⇒ Sylp(G) 6= ∅.

Proof. Induction on |G|.

(a) If G has a proper subgroup H of index coprime to p, then H = pαm′, so Sylp(H) 6= ∅
by the inductive hypothesis, and Sylp(H) ⊆ Sylp(G).

(b) If no such H exists, then all proper subgroups have index divisible by p. By the fixed
point lemma, |ΩG| ≡ |Ω| (mod p) whenever G acts on a finite Ω. If G has a nontrivial
normal p-subgroup N , then we apply the induction hypothesis to the quotient G/N .
Then there exists S/N ≤ G/N of order pα−β, then there exists S ≤ G and N ≤ S ≤ G
with |S| = pα.

(c) We now must show that either (a) or (b) happens. Consider the conjugation action of
G on itself; |Z(G)| ≡ |G| (mod p) ≡ 0 (mod p) (We can assume α ≥ 1). By the lemma,
Z(G) has a subgroup N of order p, so we’re done.

Corollary 5.2.3 (Cauchy). G finite, p divides |G|. Then ∃x ∈ G of order p.

Proof. Let S ∈ Sylp(G)⇒ |S| = pα. S has some element of order p, so G does as well.

Theorem 5.2.4 (2nd Sylow Theorem). Let G be finite, S ∈ Sylp(G). Then every other
p-Sylow is conjugate to S. Conversely, although this is easy, any subgroup conjugate to S is
a p-Sylow. In fact, let P ≤ G be a p-subgroup. Then there exists an element x ∈ G with
P ≤ xSx−1.

Proof. Let Ω = G/S. Let P act on Ω by translations, g · x = gx. (Note the bar notation for
cosets.) By the fixed point lemma, |ΩP | = |Ω| (mod p). Since S ∈ Sylp(G) ⇒ p does not
divide |Ω|. Then |ΩP | 6≡ 0 (mod p), so Ωp 6= ∅. Let x ∈ ΩP . Then gx = x for all g ∈ P ,
which happens if and only if x−1gx ∈ S for all g ∈ P . This is true iff x−1Px ⊆ S, which is
what we wanted, because P ⊆ xSx−1.

Corollary 5.2.5. Let S ∈ Sylp(G). Then S �G ⇐⇒ Sylp(G) = {S}.

Proof. The 2nd Sylow Theorem says the conjugates of S are the p-Sylows. S is normal if
and only if it coincides with all of its conjugates.

Lemma 5.2.6. G finite, T, S ∈ Sylp(G). If S normalizes T , then S = T .

Proof. S, T ∈ Sylp(NG(T )). But T �NG(T ), so S = T by the corollary.

NG(T )

G

TS
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Notation: np(G) = |Sylp(G)|.

Theorem 5.2.7 (3rd Sylow Theorem). |G| = pαm, p 6 |m. Then

(i) np(G) = |G/NG(S)|, where S is any p-Sylow.

(ii) np(G)|m.

(iii) np(G) ≡ 1 (mod p).

Proof. (i) Let Ω = {X ⊆ G | |X| = pα}. Let G act on Ω by conjugation and S ∈ Ω. Then
OG(S) = {gSg−1 | g ∈ G} = Sylp(G), and SG(S) = {g ∈ G | gSg−1 = S} = NG(S).
Then orbit-stabilizer reciprocity gives us exactly what we want.

(ii) We have a tower of indices of subgroups, and the smaller one divides the bigger one,
so np(G)|m.

G

NG(S)

S

(iii) Let Ω = Sylp(G). S acts on Ω by conjugation. Using the fixed point lemma, we get
that |ΩS| ≡ |Ω| (mod p). It suffices to prove that |ΩS| ≡ 1 (mod p). But we’ll show
there’s only one fixed point. T ∈ ΩS ⇐⇒ gTg−1 = T ∀g ∈ S, which is true if and
only if S normalizes T , which by the lemma is only true if S = T . Thus ΩS = {S}, so
|ΩS| = 1 ≡ 1 (mod p), and we’re done.

6 September 10th

6.1 Sylow Theorems, continued

Proposition 6.1.1 (Frattini’s Argument). Let G be an arbitrary group with N � G finite,
S ∈ Sylp(N) for some prime p, and H = NG(S). Then G = NH.

Proof. Take g ∈ G. Then gSg−1 ≤ gNg−1 = N . Thus gSg−1 ∈ Sylp(N). By the second
Sylow theorem (applied to N), ∃n ∈ N with gSg−1 = nSn−1. Then n−1gSg−1n = S, so
n−1g ∈ NG(S) = H, so g = (n)(n−1g) ∈ NH.
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6.2 Direct products: A New Hope

Definition 6.2.1. Given groups A and B, their direct product is A×B = {(a, b) | a ∈ A, b ∈
B} with product (a1, b1) · (a2, b2) = (a1a2, b1b2). The identity is (1, 1).

If A1 ≤ A and B1 ≤ B then A1×B1 ≤ A×B. Moreover, A1×B1�A×B if and only if
A1 �A, B1 �B. However, a word of caution: a subgroup of A×B need not be of the form
A1×B1. For example, letting A = B = Z, and taking the diagonal D = {(n, n) | n ∈ Z}, D
is not a product of two subgroups.

Okay, so given a group G, how can we tell whether or not G ∼= A×B for two groups A,
B?

In fact, this is always possible, with A = G and B trivial, but that’s lame. We want a
real decomposition. Like, a nontrivial one.

Remark. Let H,K ≤ G.

1. If H,K �G⇒ HK ≤ G

2. If H,K � G and H ∩ K = {1}, then hk = kh ∀h ∈ H, k ∈ K. You can see this by
looking at a commutator hkh−1k−1, which must be in both H and K.

3. Assume H and K are finite. Then |HK| = |H||K|
|H∩K| .

4. Again with H, K finite. If gcd(|H|, |K|) = 1, then H ∩K = {1}.

Proposition 6.2.2. Let H,K �G be such that

(i) G = HK,

(ii) H,K �G,

(iii) H ∩K = {1}.

Then G ∼= H ×K. In this case we say that G is the internal direct product of H and K.

Proof. Let ϕ : H ∩ K → G be defined by ϕ(h, k) = hk. To check that ϕ is a homomor-
phism, we have ϕ(h1, k1)ϕ(h2, k2) = h1k1h2k2 = h1h2k1k2 = ϕ(h1h2, k1k2), because H and
K commute. ϕ is surjective by (i) and injective by (iii), so this is an isomorphism.

Remark. Suppose G = A × B for some groups A,B. Let H = {(a, 1) | a ∈ A} and let
K = {(1, b) | b ∈ B}. Then H,K ≤ G and G is the internal direct product of H and K.

OK, now back to nilpotent groups.
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6.3 The Nilpotent Groups Strike Back!

Theorem 6.3.1. Let G be a finite group. TFAE

(i) G is nilpotent

(ii) Normalizers grow (as we already know for p-groups, a special case)

(iii) All Sylow subgroups are normal, i.e. there is a unique p-Sylow for each prime p.

(iv) G is a direct product of p-groups for various primes p.

Proof. (i) ⇒ (ii): G = N0 � N1 � · · · � Nk = {1} with the property that Ni � G and
Ni−1/Ni ⊆ Z(G/Ni). Equivalently, [G,Ni−1] ≤ Ni. Let H < G. Then there exists i such
that Ni ≤ H but Ni−1 6≤ H. Then [H,Ni−1] ≤ [G,Ni−1] ≤ Ni ≤ H. So then Ni−1 ≤ NG(H).
But Ni−1 6⊆ H, so normalizers grow, i.e. H < NG(H).

G = N0

N1

Ni−1

Ni

Nk

H

(ii) ⇒ (iii): Let S ∈ Sylp(G). By HW3 Exercise 8, NG(NG(S)) = NG(S), so NG(S) = G,
because otherwise its normalizer would be strictly larger. So S is normal.

(iii) ⇒ (iv): We show by induction on |G| that G is the direct product of its nontrivial
Sylow subgroups. Let |G| = pα1

1 · · · pαr
r with pi distinct. Let Si be the unique pi-Sylow

subgroup. Let H = S1 · · ·Sr−1 and let K = Sr. Si � G, so H � G,K � G. |H| divides
|S1||S2| · · · |Sr−1| = pα1

1 · · · p
αr−1

r−1 , so |H| and |K| are coprime, so H ∩ K = {1}. We need
only check that G is the product of H and K. Each Si ≤ H, or Si ∈ Sylpi(H), so each pαi

i

divides |H|. These are the nontrivial Sylows of H and they are all normal; by the induction
hypothesis, H ∼= S1 × · · · × Sr−1. Moreover, we know in fact that |H| = pα1

1 · · · p
αr−1

r−1 , so

|HK| = |H||K|
|H∩K| = |G|, so HK = G. Thus G ∼= H ×K ∼= S1 × · · · × Sr, so we’re done.

(iv) ⇒ (i): HW4 Exercise 1. A direct product of nilpotent groups is nilpotent.

Corollary 6.3.2 (Lagrange converse). Let G be a finite nilpotent group. For each divisor d
of |G|, there exists N �G with |N | = d.
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Proof. G ∼= P1×· · ·×Pr, |G| = pα1
1 · · · pαr

r . Then d = pβ11 · · · pβrr with βi ≤ αi. ∃Ni�Pi with
|Ni| = pβii ; take N = N1 × · · · ×Nr.

Theorem 6.3.3. Let G be a finite group. Then G is nilpotent if and only if all maximal
subgroups are normal.

Proof. (⇒): Let K < G be maximal. Thus NG(K) = G since normalizers grow, (⇐): Let S
be a Sylow subgroup of G. Check S�G. Suppose NG(S) < G. Let K be a maximal subgroup
of G containing NG(S). By hypothesis K �G. By Frattini’s argument, G = KNG(S) = K,
a contradiction.

G

K

NG(S)

S

Note that this could prove the structure theorem for finite abelian groups. We won’t do
that with it, but we could.

6.4 Return of the Semidirect Products

Definition 6.4.1. Let G and A be groups. Suppose G acts on A, with G×A→ A. We say
that the action is by automorphisms if g · (ab) = (g · a)(g · b) for all g ∈ G, a, b ∈ A.

Remark. 1. In this case g · 1A = 1A.

2. Let ϕ : G→ S(A) be the associated morphism of groups. Then Aut(A) = {σ ∈ S(A) |
σ is an isomorphism of groups}; Aut(A) ≤ S(A) and the action is by automorphism
if and only if im ϕ ⊆ Aut(A). ϕg(ab) = g · ab = (g · a)(g · b) = ϕg(a)ϕg(b), so this is
equivalent to saying ϕg is an automorphism of A.

G S(A)

Aut(A)

ϕ

Example. G×G→ G, g · h = ghg−1 is by automorphisms. G×G→ G, g · h = gh is not by
automorphisms.
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Definition 6.4.2. Suppose G acts on A by automorphisms. Then we have the semi-direct
product AoG is defined such that the underlying set is A×G, and the product is (a, g)(b, h) =
(a(g · b), gh). The unit is (1A, 1G).

Proposition 6.4.3. AoG is a group. Proof an optional homework problem.

Remark. AoG depends on the action. If the action changes despite A and G remaining the
same, we can get a very different semidirect product.

If the action is trivial, i.e. g · a = a for every g, a, then this is a direct product.

But we have the same question as for direct products. Given G, how do we tell if
G ∼= A o B for some A,B and some action? That’s an exercise that isn’t optional, in the
homework.

7 September 15th

7.1 Hall subgroups

Definition 7.1.1. Let π be a set of primes and n a positive integer. The π-part of n is the
largest divisor of n involving only primes from π. The π′-part of n is the largest divisor of n
not involving any of the primes in π.

Example. If n = 60 = 22 · 3 · 5, and π = {2, 3}, then the π-part is 12 and the π′-part is 5.

Definition 7.1.2. Let G be a finite group and H ≤ G. Let π be a set of primes. We say H
is a Hall π-subgroup of G if |H| is the π-part of |G|.

Remark. 1. If π = {p} then π-Hall is the same concept as p-Sylow.

2. H ≤ G is Hall for some π if and only if gcd(|H|, |G/H|) = 1.

Our goal is to prove that if G is finite and solvable, then Hall π-subgroups exist for every
π.

Lemma 7.1.3. If G is finite and solvable, and M is a minimal normal subgroup of G, then
M is elementary abelian.

In particular, M is a p-group for some prime p.

Proof. HW2, Exercise 4.

Lemma 7.1.4. If G is finite and solvable, and N �G, then there exists a p-subgroup P ≤ G
for some prime p such that

N < NP �G.

Proof. N � G, so G/N 6= {1}, and G/N has a minimal normal subgroup. G is solvable, so
any quotient is solvable as well. By Lemma 7.1.3, that subgroup is elementary abelian. It
has to be of the form M/N for some N < M �G. Since |M/N | = pr for some prime p and
r > 0, so p divides |M |. We then choose a p-Sylow P of M .
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P

NP

N

M

But [M : P ] is prime to p, and [M : N ] is pr, so the last index in the diagram, [M : NP ],
must divide the gcd of pr and something prime to p, so [M : NP ] = 1 and M = NP . Then
we are done.

Theorem 7.1.5 (Schur-Zassenhaus). Let G be finite and N be a normal Hall subgroup of
G. Then N has a complement in G:
∃H ≤ G with G = NH, N ∩H = {1}.

Proof. This is a hard theorem that we won’t prove in this course, but we will prove the case
when G is solvable.

It suffices to find H ≤ G with |H| = |G/N |. For then |N ∩H| divides both |N | and |H|,
so |N ∩ H| = {1} since N is Hall. And then |NH/N | = |H/H ∩ N | = |H| = |G/N |, so
|NH| = |G|.

We proceed by induction on |G|. If |G| = 1, we have nothing to do; all relevant groups
are trivial and we can go home for lunch. If N = G, we again have nothing to do, because
we can take H = {1}. If N < G, then by Lemma 7.1.4, there exists a p-subgroup P such
that N < NP �G.

We then analyze the following diagram.

P

NP

N

G

N ∩ P

{1}

We then have:

1. |P | is a power of P

2. |P/N ∩ P | is a power of p

3. |NP/N | is a power of p (nontrivial, since N < NP )

4. |G/N | divisible by p

5. |N | prime to p, since N is Hall
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6. |N/N ∩ P | prime to p

7. |NP/P | prime to p

Thus P is a p-Sylow of NP .
Observe that N ∩ P = {1}, because its order divides both p and a number prime to

p. We now need only a complement of NP . We will apply Frattini’s argument. We let
K = NG(P ). Then we have the following picture:

P

NP K

G

Then G = NPK = NK. But we have to worry about the intersection between N and
K; otherwise, K would be a complement. K might be too big, though. So we’d like to find
a complement for N ∩K inside K; that complement may do the job. By induction, we can
find the complement provided that N ∩K ≤ K is a normal Hall subgroup and that K < G.
Normality is easy; N�G, so N∩K�K. What is its index? |K/N∩K| = |NK/N | = |G/N |,
which is prime to |N | and thus prime to all divisors of |N |, including |N ∩K|. Thus N ∩K
is a normal Hall subgroup of K, so we have two cases.

First, if K < G, we can proceed by induction to find a complement H of N ∩K in K,
by induction. This isn’t appealing to the more general Schur-Zassenhaus, because K ≤ G is
solvable whenever G is solvable. So then |H| = |K/N ∩K| = |G/N |, so we are done by our
first claim.

Now we only need consider the case when K = G, so we can’t use our induction hy-
pothesis. If K = G, we have P � G. So we consider G/P , and we claim that NP/P
is a normal Hall subgroup of G/P , to which we will finally be able to apply the induc-
tion hypothesis, because P is a p-Sylow and thus nontrivial. But first, we must verify our
claim. |NP/P | = |N/N∩P | = |N |, which is prime to |G/N |. Then |G/P |

|NP/P | = |G|
|NP | = |G/N |

|P | , so

|NP/P | is prime to |G/N ||P | because it was prime to the numerator. We now (finally, blessedly!)

apply the induction hypothesis to find a complement H/P of NP/P in G/P . Hopefully this

H will do the trick. |H/P | = |G/P |
|NP/P | = |G/N |

|P | , so |H| = |G/N | and we are (finally, blessedly!)
done by our first claim.

Theorem 7.1.6 (Hall). Let G be finite, solvable. For any set of primes π, there exists a
Hall π-subgroup H of G.

Example. |G| = 60 = 22 · 3 · 5. Then the Sylow theorems find subgroups of orders 4, 3, 5.
Hall’s theorem proves that there exist subgroups of orders 12, 15, 20 as well.

The homework has an exercise proving that A5 does not have subgroups of order 20 or
15, showing that Hall’s theorem does not necessarily hold when G is not solvable.
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Proof. Once more we induct on |G|. If G 6= {1}, let M be a minimal normal subgroup of
G. G being solvable implies that M is a p-group. G is solvable, so M is a p-group. By
the induction hypothesis, there exists a Hall π-subgroup of G/M . Let it be K/M for some
M ≤ K ≤ G. Is K a Hall π-subgroup of G?
|K| = |K/M ||M |, which involves only primes in π ∪ {p}, and |G/K| = |G/M |

|K/M | involves

only primes in π′. In the good case, p ∈ π, and we are done. Assume p 6∈ π. Then |K/M |
does not involve p, so gcd(|M |, |K/M |) = 1, and M is a Hall subgroup of K with M �K.
By Schur-Zassenhaus, there is a complement H of M inside K. Then |H| = |K/M |, so |H|
involves only primes in π. Meanwhile, |G/H| = |G|

|K/M | = |G/K| · |M |, which only involves

primes in π′ ∩ {p} = π′. H is the desired subgroup, and we are done.

7.2 Additional facts about solvable groups

· Complements of Hall’s Theorem:

– Any two π-Hall subgroups are conjugate.

– If K ≤ G with |K| involving only primes in a set π, then there exists a π-Hall H
such that K ≤ H.

· Hall converse: If π-Hall subgroups exist for all π, then G is solvable.

· If |G| = paqb, then G is solvable. (Burnside’s paqb-theorem).

· Feit-Thompson. All groups of odd order are solvable. (outside the scope of this course
by far).

· There are about 50 billion groups of order ≤ 2000. Of these, more than 99 percent
have order 1024.

8 September 17th

8.1 Simple groups

Let G act on Ω and let ϕ : G → S(Ω) be the associated homomorphism. Recall that the
following are intuitively equivalent:

· The action is faithful

· No nontrivial element of G fixes all elements of Ω

· ⋂
α∈Ω

SG(α) = {1}

· ker ϕ = {1}
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· G injects into S(Ω)

Recall further the definition that the action is transitive if and only if given any α, β ∈
Ω, ∃g ∈ G with g · α = β. In this case, all stabilizers are conjugate.

Now consider Ω2 \ ∆ = {(α, α′) ∈ Ω2 | α 6= α′}. Suppose that g · α = g · α′. Then by
acting on both sides with g−1, we see that α = α′. Thus G acts on Ω2 \∆ coordinate-wise,
and this action is well-defined.

Definition 8.1.1. The action of G on Ω is 2-transitive if its action on Ω2 \∆ is transitive.

Explicitly, this means that given α 6= α′ and β 6= β′ in Ω, there exists g ∈ G with g ·α = β
and also g · α′ = β′. Note that we can have α = β or α′ = β′.

Example. The action of S4 on [4] = {1, 2, 3, 4} is 2-transitive. Given a 6= a′ and b 6= b′ in
[4], we need a permutation that sends a to b and a′ to b′. Let σ = (a, b)(a′, b′). There are a
couple of adjustments to be done if b′ = a, or a′ = b, or whatever, but it’s very possible.

Proposition 8.1.2. Suppose the action of G on Ω is 2-transitive and |Ω| ≥ 2. Then

(a) It is transitive.

(b) All stabilizers are maximal subgroups of G.

Proof. (a) Given α, β ∈ Ω, we need g ∈ G such that g · α = β. Pick any α′ 6= α in Ω; this
is possible because Ω 6= {α}. Further pick any β′ 6= β, again possible because Ω 6= {β}.
By hypothesis there exists g with g · α = β.

(b) Let α ∈ Ω, H = SG(α). If H = G then Ω = {α}, a contradiction because |Ω| ≥ 2.
So H < G. Suppose that there exists K with H < K < G, and we will derive a
contradiction. With such a K, we know that there exists k ∈ K \ H and g ∈ G \ K.
Thus k · α 6= α because k 6∈ H, and g 6∈ K so g · α 6= α as well. By 2-transitivity, there
exists f ∈ G with f · α = α and f · k · α = g · α. Thus f ∈ H and k−1f−1g ∈ H. So
g ∈ fkH ⊆ K, but g 6∈ K, a contradiction.

Definition 8.1.3. G is perfect if G(1) = G, where we recall that G(1) = [G,G].

Remark. 1. G solvable and nontrivial means that G is not perfect, because the derived
series must terminate.

2. If G is simple, it is always either perfect or abelian, and never both. Being nonabelian
makes G(1) 6= {1}, and G(1) �G.

3. Not every perfect group is simple. For example, let S be simple and nonabelian. Take
G = S × S. G is not simple, because S × {1} and {1} × S is normal. However, G is
perfect, because G(1) = S(1) × S(1) = S × S = G.
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Theorem 8.1.4 (Iwasawa’s Lemma). Let G be a nontrivial perfect group. Suppose G acts
on a set Ω such that

(a) The action is faithful and 2-transitive.

(b) There exists a point with stabilizer H containing a subgroup A such that

(i) A�H

(ii) A is abelian

(iii) The set ⋃
g∈G

gAg−1

generates G.

Then G is simple.

Remark. Under (a), all stabilizers are conjugate. Thus for hypothesis (b), any stabilizer H
should work.

Proof. First we note that G is nontrivial and the action is faithful, so Ω has at least two
points. We will then happily appeal to the previous proposition, which tells us that stabilizers
are maximal given 2-transitivity.

Suppose ∃N with 1 < N � G. Then there exists a stabilizer H with N 6≤ H; if not, N
would be in the intersection of all stabilizers, but this intersection is trivial by the fidelity of
the action. Thus H < NH, so NH = G because H is maximal. As explained in the remark,
we can assume that H satisfies the hypothesis by containing the appropriate subgroup A.
We pick any g ∈ G with g = nh, n ∈ N , h ∈ H. Then

gAg−1 = nhAh−1n−1

= nAn−1, because A�H

⊆ NAN = NNA = NA, by normality of N.

So G = NA, because gAg−1 generates when ranging over g ∈ G. Then G/N = NA/N ∼=
A/N ∩A, which is abelian because A is abelian. So [G,G] ≤ N , so G(1) = G ≤ N and N is
trivial, a contradiction.

Note that the converse like definitely doesn’t hold, but this is a nice sufficient criterion
for simplicity. The simplest (ha, ha) application is to the simplicity of A5, but first we will
have a couple of basic facts about An.

Fact 8.1.5 (Facts About An). · The (2, 2)-cycles form a conjugacy class of An for n ≥
4.

· The 3-cycles generate An for n ≥ 3.
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· The (2, 2)-cycles generate An for n ≥ 5.

· An is perfect for n ≥ 5. Since [(a, b, c), (a, b, d)] = (a, b)(c, d), the (2, 2)-cycles are in
the derived subgroup; for n ≥ 5, this means that the derived subgroup generates.

Corollary 8.1.6. A5 is simple.

Proof. A5 acts on [5] = {1, 2, 3, 4, 5}. This action is faithful, because the map to the group
of permutations is just an inclusion. It’s also 2-transitive; take a 6= a′ and b 6= b′, and let
σ = (a, b)(a′, b′). If a 6= a′ and b 6= b′, then σ ∈ A5, and this is fine. If a = b, choose
σ = (c, d)(a′, b′) where c and d are the other two elements in [5]. Similarly if a′ = b′. If a = b
and a′ = b′, we pick the identity.

Now let H = SA5(5), so H ∼= A4. Let A = {1, (12)(34), (13)(24), (14)(23)}, the Klein
group. Then A � H and A ∼= V4 and thus A is abelian. The conjugates of A are all
(2, 2)-cycles in A5, which generate.

Thus by Iwasawa’s Lemma, A5 is simple.

We will now prove one last result, that An is simple for n ≥ 5.

Corollary 8.1.7. An is simple for all n ≥ 5.

Note that we can’t use Iwasawa, because we won’t find a normal abelian subgroup of any
stabilizer.

Proof. By induction on n. The base case is done above, by Iwasawa. Take n ≥ 6. Suppose
there exists N with {1} < N � An. Take the action of An on [n] and take H = SAn(n).
Then H ∼= An−1, so by hypothesis H is simple. But N ∩ H � H. Either N ∩ H = {1} or
N ∩H = H.

If N ∩ H = H, then H ≤ N , so all conjugates of H are in N as well. Stabilizers are
conjugate, so all stabilizers are in N ; among many, many other elements, this includes all
(2, 2)-cycles, which generate An. Thus An ⊆ N , so we are done.

If N ∩H = {1}, we have further that N ∩ SAn(i) = {1}. If a permutation in N fixes any
point, it fixes all of them. Let σ ∈ N be nontrivial, because {1} < N . σ has no fixed points,
so either σ is entirely transpositions, i.e. σ = (ab)(cd) · · · , or σ = (abc · · · ) · · · . Choose
x 6= y ∈ [n] with x, y 6= a, b, c, d, possible because n ≥ 6. Conjugate σ by γ = (cxy), and
define τ = γσγ.

There are two cases for τ . If σ = (ab)(cd) · · · , then τ = (γ(a)γ(b))(γ(c)γ(d)) · · · =
(ab)(xd) · · · . Otherwise, τ = (γ(a)γ(b)γ(c) · · · ) · · · = (abx · · · ) · · · . In both cases, τ 6= σ by
choice of x, so στ−1 6= 1. But, στ−1 fixes b.

Thus N contains a permutation that is nontrivial but has a fixed point, so we have a
contradiction.

Thus no such N exists, and An is simple.
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9 September 22nd

9.1 The projective linear groups

Definition 9.1.1. Let F be a field. Then we define the projective general linear group as
PGL(n,F) = GL(n,F)/Z(GL(n,F)), and the projective special linear group as PSL(n,F) =
SL(n,F)/Z(SL(n,F)).

Remark. Refer to the Homework problem stating that Z(GL(n,F)) = {a · In | a ∈ F×} and
that Z(SL(n,F)) = {a · In | a ∈ µn(F)}. We use the notation that GL(n, q) = GL(n,Fq),
and so on.

Remark. 1. |GL(n, q)| = (qn − 1)(qn − q) · · · (qn − qn−1)

2. F×2 = {1}, so GL(n, 2) = SL(n, 2) = PSL(n, 2) = PGL(n, 2). In general, we have a
diagram

GL(n,F)

SL(n,F) PGL(n,F)

PSL(n,F)

si

is

where arrows labeled by i are injective and those labeled by s are surjective.

3. PGL(1,F) = {1}; PSL(2, 2) ∼= S3; PSL(2, 3) ∼= A4 (these last two are on the home-
work). Our goal is to show that in all other cases, i.e. with n > 2 and any q or n = 2
and q > 3, PSL(n, q) is simple.

We will use Iwasawa’s Lemma, as discussed last time, which is basically our only tool.
But for now we have other lemmas!

Lemma 9.1.2. Let F be any field. SL(2,F) is generated by matrices of the form

(
1 ∗
0 1

)
and(

1 0
∗ 1

)
. These matrices are called transvections or shear mappings; although those words

are mainly used to apply to the transformations represented by those matrices.

Proof. Take

(
a b
c d

)
∈ SL(2,F). There are three cases to consider.

b 6= 0: (
a b
c d

)
=

(
1 0
d−1
b

1

)(
1 b
0 1

)(
1 0
a−1
b

1

)
.
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c 6= 0: (
a b
c d

)
=

(
1 a−1

c

0 1

)(
1 0
c 1

)(
1 d−1

c

0 1

)
.

b = c = 0: (
a b
c d

)
=

(
1 0

d− 1 1

)(
1 1
0 1

)(
1 0

a− 1 1

)(
1 −d
0 1

)
.

Note that all these equations hold in the context that ad − bc = 1. They’re found via
row-reduction. Yay....

For the purposes of today, let U = {
(

1 b
0 1

)
| b ∈ F} and B = {

(
a b
0 1

a

)
| a ∈ F×, b ∈ F}.

Lemma 9.1.3. (a) U �B � SL(2,F), and B ∼= U o F×.

(b) U is abelian

(c) U and its conjugates generate SL(2,F).

Proof. (a) Exercise

(b)

(
1 b
0 1

)(
1 β
0 1

)
=

(
1 b+ β
0 1

)
so U ∼= (F,+).

(c)

(
0 −1
1 0

)(
1 b
0 1

)(
0 1
−1 0

)
=

(
1 0
−b 1

)

Lemma 9.1.4. If |F| ≥ 4 (where F isn’t necessarily finite), then SL(2,F) is perfect.

Proof. It suffices to show that any

(
1 ∗
0 1

)
is a commutator; in that case the derived subgroup

contains U , and thus all its conjugates because the derived subgroup is normal, but U and
its conjugates generate SL(2,F), so SL(2,F)′ = SL(2,F). Perfection!

Consider [(
a 0
0 1

a

)
,

(
1 b
0 1

)]
=

(
1 (a2 − 1)b
0 1

)
.

Then it suffices to show that ∀c ∈ F,∃a ∈ F×, b ∈ F with c = (a2 − 1)b.
For this, it suffices to find a ∈ F× with a2 − 1 6= 0; then b = c

a2−1
. So we need a ∈ F

with a3− a 6= 0. The polynomial x3− x has at most 3 roots in F, one of which is 0, so since
|F| ≥ 4 we can always find a scalar that is not a root.

Recall SL(2,F) acts on F2 by A ·v = Av and hence also on P1(F) = set of 1-dim subspaces
of F2.

Lemma 9.1.5. (a) The action is 2-transitive.
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(b) The stabilizer of the x-axis is B.

(c) The kernel of the action is the center of the group.

Proof. (a) Let (l1, l2) and (r1, r2) be pairs of lines through the origin, with l1 6= l2 and
r1 6= r2. We need A ∈ SL(2,F) such that Al1 = r1 and Al2 = r2. Choose v1 ∈ l1, v2 ∈
l2, w1 ∈ r1, w2 ∈ r2, all non-zero. Then {v1, v2} and {w1, w2} are bases of F2. So there is
T ∈ GL(F2) with T (v1) = w1 and T (v2) = w2. Let A be the matrix of T in the canonical
basis, and D = det(A) 6= 0. Let S ∈ GL(F2) be such that S(w1) = 1

D
w1, S(w2) = w2.

Then BAv1 = Bw1 = 1
D
w1, so BAl1 = r1, and BAv2 = Bw2 = w2, so BAl2 = r2.

Moreover, det(BA) = det(B) det(A) = 1.

(b) By verification.

(c) By verification.

Theorem 9.1.6. If |F| ≥ 4, PSL(2,F) is simple.

Proof. Apply Iwasawa’s Lemma to the action of PSL(2,F) on P1(F), noting that quotients
will inherit the 2-transitivity and the perfection.

Remark. Why PSL? GL also acts on P1(F). Well, recall the diagram as before.

GL(n,F)

SL(n,F) PGL(n,F)

PSL(n,F)

si

is

GL is not perfect; GL′ ≤ SL. The action is also not faithful. SL is perfect, but the action
isn’t faithful; PGL isn’t perfect and has a faithful action.

Compare with

Sn

An

i

and the canonical action on [n]. The action of Sn is faithful but Sn is not perfect; the action
of An is faithful and An is perfect. (nb: n > 5). This is the limiting nonexistent case, of a
field of 1 element.
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Theorem 9.1.7. If n ≥ 3, PSL(n,F) is simple.

Proof. · PSL(n,F) acts on Pn−1(F).

· The action is 2-transitive and the kernel is Z(SL(n,F)).

· The stabilizer of the 1-dimensional subspace spanned by (1, 0, . . . , 0) ∈ Fn, or{(
a v
0 A

)
| a ∈ F×, A ∈ GL(n− 1,F), v ∈ Fn−1, a det(A) = 1

}
.

It contains a normal abelian subgroup U =

{(
1 v
0 In−1

)
| v ∈ Fn−1

}
, called transvec-

tions. U ∼= (F,+), so it is abelian.

· U and its conjugates generate SL(n,F) because any matrix of determinate 1 is a product
of matrices of the form Eij(λ) = In + λeij with i 6= j, and any Eij(λ) is a conjugate
of an element of U . E1j(λ) ∈ U , and any two matrices Eij(λ), varying i and j, are
conjugate for n ≥ 3.

· For n ≥ 3, SL(n,F) is perfect.1 λ 0
0 1 0
0 0 1

 ,

1 0 0
0 1 1
0 0 1

 =

1 0 λ
0 1 0
0 0 1

 = E13(λ),

so the commutator subgroup contains the set of generators.
More comments will follow next time.

10 September 24th

10.1 Projective Linear Groups, continued

Recall from last time that we were mired in the proof that PSL(n, q) is simple when n > 2
or when n = 2 and q > 3.

Note that |GL(n, q)| = (qn−1)(qn−q) · · · (qn−qn−1), so |PSL(n, q)| = |GL(n, q)|/ gcd(n, q−
1) · (q − 1). We have the following table of orders.

n\q 2 3 4 5 7
2 6 12 60 60 168
3 168 5616 20160 372000
4 20160

The entries in red represent the groups that aren’t simple. Note the following facts:

Fact 10.1.1. 1. PSL(2, 2) ≡ S3, PSL(2, 3) ≡ A4 (HW)
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2. There is a unique simple group of order 60, so PSL(2, 4) ∼= PSL(2, 5) ∼= A5.

3. There is a unique simple group of order 168, so PSL(2, 7) ∼= PSL(3, 2).

4. PSL(4, 2) ∼= A8 but PSL(3, 4) is not isomorphic to them.

Our short-term goal is to understand number 3. But first, we will comment on number
2. Given a simple group G of |G| = 60, find H ≤ G of |G/H| = 5, which can be counted by
Sylows. Then G acts on G/H, which is a map from G→ S5, and so on.

10.2 Projective Geometries

Definition 10.2.1. An incidence geometry of rank 2 (briefly, a plane) is G = (G0,G1, R)
where G0 and G1 are sets and R is a relation between G0 and G1. The elements of G0 are
called points, and the elements of G1 are called lines. Given p ∈ G0 and l ∈ G1, if pRl, we
say one of “p lies in l,” “l goes through p,” or “p and l are incident.”

Definition 10.2.2. A plane is projective if

· Given two distinct points, ∃! line going through them.

· Given two distinct lines, ∃! point lying in both.

· There are at least 3 noncollinear points.

Example. · The smallest projective plane is a triangle with points G0 = {r, p, q}, lines
G1 = {l,m, n}, and R the triangle relation as shown in figure below.

r

qp

lm

n

· The Fano plane, F . Assume that there are at least 4 points, no three of which are
collinear; by adding points and lines until we get a minimal plane, we end up with the
picture below.
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It’s often referred to as the smallest projective geometry, becomes sometimes people
exclude by definition the triangle. But we don’t.

· Let F be a field. Let PG(2,F) be the plane with points the one-dimensional subspaces
in F3 = P2(F), lines the two-dimensional subspaces in F3, and incidence defined by
containment.

Proposition 10.2.3. PG(2,F2) ∼= F , the Fano plane.

Proof. We may think of F3
2 as {(000), (001), (010), (100), (110), (101), (011), (111)}. The num-

ber of points in PG(2,F2) is the number of lines through the origin in F3
2. But each nonzero

element spans its own line, consisting of itself and the origin, so there are 7. We claim there
are also 7 lines in this geometry. The lines are 2-dimensional subspaces; there are the three
coordinate planes. There are then three more consisting of one coordinate axis and the cube’s
opposite edge. The last plane is {(000), (110), (101), (011)}, with equation x+ y + z = 0.

By direct inspection, containment follows the Fano plane picture.

Definition 10.2.4. A symmetry of a plane G is a σ = (σ0, σ1) where σ0 : G0 → G0 and
σ1 : G1 → G1 such that p is incident to l if and only if σ0(p) is incident to σ1(l).

Let Aut(G) be the group of symmetries of G.

Lemma 10.2.5. |Aut(F)| ≤ 168.

Proof. Choose 3 noncollinear points p, q, r. A symmetry σ is determined by the values σ0(p),
σ0(q), σ0(r), because all other points in the plane can be filled in eventually as the last point
in some line that must already be defined.

Thus the map Aut(F)→ {(x, y, z) ∈ F3 | x 6= y 6= z, x 6= z}, with σ 7→ (σ0(p), σ0(q), σ0(r)),
is injective. Thus |Aut(F)| ≤ 7 ∗ 6 ∗ 5 = 210. But that’s not quite what we wanted. Recall
further that p, q, r weren’t collinear. Thus their images must also be noncollinear, so r can’t
be mapped to the last point on the line containing p and q; this allows only 4 remaining
options for the image of r. Thus |Aut(F)| ≤ 7 ∗ 6 ∗ 4 = 168.

Proposition 10.2.6. Aut(F) ∼= PSL(3, 2) = GL(3, 2).

Proof. GL(3, 2) acts on F3
2 linearly. It sends i-subspaces to i-subspaces and it preserves

containment, so GL(3, 2) acts on PG(2,F2) by symmetries.
So we get a map GL(3, 2)→ Aut(PG(2,F2)).
Generally the action of GL(n+ 1,F) on Pn(F) is not faithful. The kernel is the space of

scalar matrices. But we are in the case where the field has two elements, so the action is
faithful in our case.

Thus GL(3, 2) ↪→ Aut(PG(2,F2)). But |GL(3, 2)| = 168 and |Aut(PG(2,F2))| ≤ 168, so
the sizes must be equal and the map is an isomorphism.

Remark. One can define incidence (and projective) geometries of higher rank. PG(n,F) is a
projective geometry of rank n for which:

· points = 1-subspaces of Fn+1
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· lines = 2-subspaces of Fn+1

· planes = 3-subspaces of Fn+1

and so on.

This gives us

Fact 10.2.7 (The Fundamental Theorem of Projective Geometry). Aut(PG(n,F)) ∼= PGL(n+
1,F) o Aut(F).

Fact 10.2.8. Let G be a simple group of order 168. Then G ∼= PSL(3, 2).

Proof. Not really a full proof, but here’s the key idea. We have to come up with an action
on the Fano plane. Let C be the collection of subgroups of G isomorphic to V4.

There are 14 such subgroups. You can see this via looking at Sylows, or something.
They come in 2 conjugacy classes of size 7. Call these two classes H and K and let G be

the plane for which H is the set of points, K is the set of lines, and H is incident to K if
there is a 2-Sylow D containing both H and K.

Then one can claim that G ∼= F . We have then an action on the plane by conjugation,
which leads to a map from G to Aut(G), which ends up being an isomorphism.

10.3 Other simple groups

This will be just a rough outline.

· Cyclic groups of prime order, Zp

· Alternating groups, An

· Linear PSL(n, q) (type A)

· Orthogonal groups PSO(2n+ 1, q) (type B) and PSO+(2n, q) (type D, with oriflamme
geometry)

· Symplectic PSp(2n, q) (type C, involving polar geometries)

· Unitary PSU(n, q)

and so on and so forth. These are Chevalley groups, and Steinberg groups. There are 19
families in total, plus 26 sporadic cases including the monster and the baby monster.
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11 September 29th

11.1 Words and Free Monoids...Free Groups to Come!

Definition 11.1.1. A monoid is a set M with a binary operation that is associative (just
like a group!) and unital, i.e. it has an identity (just like a group!). A group is simply a
monoid with inverses.

Definition 11.1.2. Let S be a set and let

S∗ = {(s1, . . . , sn) | si ∈ S, n ≥ 0}

=
⋃
n≥0

Sn,

or the set of all finite sequences including the empty sequence. Then concatenation is
defined as follows:

(s1, . . . , si) · (t1, . . . , tj) = (s1, . . . , si, t1, . . . , tj).

Proposition 11.1.3. 1. S∗ is a monoid under concatenation. The unit is the empty
sequence.

2. Let M be a monoid and m : S → M be an arbitrary map. Then there exists a unique
morphism of words m̂ : S∗ → M such that the following diagram commutes, where
i(s) = s.

S S∗

M

i

m̂m

Proof. Define m̂(s1, . . . , sn) = m(s1) · · ·m(sn); the rest of the proof of both parts is just
checking axioms.

A bit of terminology that we use is that an element of S∗ is a word. An element of S is
a letter an S is the alphabet. Given elements {ms}s∈S and a word w ∈ S∗, the evaluation of
w at {ms}s∈S in M is w(ms)s∈S = m̂(w) ∈M , where m : S →M is m(s) = ms.

For instance, if S = {a, b}, given S →M sending a 7→ α and b 7→ β, and w = (a, b, b, a, a),
then the evaluation of w at m is αβ2α2.

We want to move from monoids to groups, so we’ll start moving in that direction. Con-
sider a group G and g : S → G a map. Let S−1 = {s−1 | s ∈ S}, or another copy of S.
We then extend g to S ∪ S−1 by g(s−1) = g(s)−1. By the proposition, there exists a unique
morphism of monoids ĝ : (S ∪ S−1)∗ → G that extends g, in the sense that the diagram
commutes.
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Proposition 11.1.4. The image of ĝ is a subgroup of G. Moreover, it is the smallest
subgroup of G containing g(S), so it is the subgroup of G generated by g(S).

Proof. Since ĝ is a morphism of monoids, we are guaranteed that its image im ĝ is a
submonoid. So we need only check that it is closed under inverses. ĝ(t1, . . . , tn)−1 =
(g(t1) · · · g(tn))−1 = g(tn)−1 · · · g(t1)−1 = g(t−1

n ) · · · g(t−1
1 ) = ĝ(t−1

n , . . . , t−1
1 ) ∈ im ĝ, and is

thus a subgroup.
The rest can be checked pretty easily.

So now we have to look very quickly at monoid quotients before we get our group. We’re
almost there. We have the right type of universal mapping property.

11.2 Monoid quotients

Definition 11.2.1. Let M be a monoid and ∼ an equivalence relation. We say the relation
is left compatible if a ∼ b implies xa ∼ xb for all x, a, b ∈ M . It is right compatible if a ∼ b
implies ax ∼ bx for all x, a, b ∈ M . It is two-sided compatible if a ∼ b and x ∼ y implies
ax ∼ by for all x, y, a, b ∈M .

Remark. Left and right compatible is the same as two-sided.

Proof. Assume ∼ is left and right compatible, and let a ∼ b and x ∼ y. Then ax ∼ bx and
bx ∼ by, so ax ∼ by and ∼ is two-sided compatible. The converse implication is even simpler
and easier!

Let M/ ∼ be the set of equivalence class a, for a ∈ M . Consider defining an operation
on M/ ∼ by a · b = ab.

Proposition 11.2.2. This operation is well-defined if and only if ∼ is two-sided compatible.
In this case, the quotient M/ ∼ is in fact a monoid.

Proof. Left as an exercise.

Note that we don’t have to care about any of this for groups. That’s because two-sided
relations are exactly those given by cosets of a normal subgroup, so that’s special. Precisely,
we have the following.

Proposition 11.2.3. Let G be a group and ∼ an equivalence relation on G. Then

(i) ∼ is left compatible if and only if there exists H ≤ G such that a ∼ b if and only if
a−1b ∈ H.

(ii) ∼ is right compatible if and only if there exists H ≤ G such that a ∼ b if and only if
ab−1 ∈ H.

(iii) ∼ is two-sided compatible if and only if there is an N �G such that either of the above
holds. In this case, both hold, and the quotient is a group.

We’re not going to prove this, because it’s kind of beside the point, but it’s a fun exercise.
Okay okay okay, now we can finally get to what we all know we’ve wanted to be talking

about all along.
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11.3 Free Groups

Our goal, informally, is that given a set S, we will construct a group F (S) such that

· F (S) is generated by S

· There are no relations among the elements of S other than those forced by the group
axioms.

Example. Let a, b ∈ S. abb−1a−1 = 1 is what we would call a forced relation. It holds in any
group. But aba−1 = b2 is not forced.

Definition 11.3.1. Let S be a set, G a group and g : S → G a map. (Equivalently, let
{gs}s∈S be a collection of elements of G). Given two words w1, w2 ∈ (S ∪ S−1)∗, we say
{gs} satisfies the relation w1 = w2 if w1(gs)s∈S = w2(gs)s∈S in G. We say that the relation
w1 = w2 is forced if it is satisfied by all families g : S → G in all groups G.

Okay so formally, our goal is:
Given a set S, construct a group F (S) and a map i : S → F (S) such that

(i) F (S) is generated by i(S)

(ii) Given two words w1, w2 ∈ (S ∪ S−1)∗, if the elements {is}s∈S satisfy the relation
w1 = w2, then the relation w1 = w2 is forced, just like our smiles!

Note that we can’t set F (S) = (S ∪ S−1)∗, because this monoid is not a group. For
example, (s) · (s−1) = (s, s−1) 6= (). But that’s all that fails, so all we have to do is fix it.

Define an equivalence relation on (S ∪ S−1)∗ by w ∼ w′ if and only if we can obtain one
word from the other by finitely many insertions or deletions of subwords of the form (s, s−1),
s ∈ S ∪ S−1.

Example.
(a, b−1, a, a−1, b) ∼ (a, b−1, b) ∼ (a) ∼ (b, b−1, a).

Fact 11.3.2. Did you know? Free groups are called free because you get them for free! Unlike
other groups, which are on average sold at a price of $2.28 an element, the establishment
will just give you free groups!

Proposition 11.3.3. The relation ∼ on the monoid (S ∪ S−1)∗ is two-sided compatible.

Proof. Let’s be real it’s pretty clear.

Definition 11.3.4. Let F (S) = (S ∪ S−1)∗/ ∼. It is a monoid. Let [s1, . . . , sn] denote the
equivalence class of (s1, . . . , sn) with si ∈ S ∪ S−1.

Proposition 11.3.5. F (S) is a group. Moreover, if we let i : S → F (S) be i(s) = [s], then
the two formal properties are satisfied.
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Proof. Let’s find some inverses. We claim that [s1, . . . , sn]−1 = [s−1
n , . . . s−1

1 ].

[s1, . . . , sn][s−1
n , . . . , s−1

1 ] = [s1, . . . , sn, s
−1
n , . . . , s−1

1 ]

= [s1, . . . , sn−1, s
−1
n−1, . . . , s

−1
1 ]

...

= [s1, s
−1
1 ]

= [].

So it’s a group.
Now we claim that given w ∈ (S ∪ S−1)∗, î(w) = [w] ∈ F (S). We have the diagram

S S ∪ S−1 (S ∪ S−1)∗

F (S)

i
i î

If w = (s1, . . . , sn), then î(w) = i(s1) · · · i(sn) = [s1] · · · [sn] = [s1 · · · sn] = [w]. Thus î
is surjective. But we saw before that the image of î is the subgroup generated by i(S). So
F (S) is generated by i(S), so we have the first thing we wanted to have.

Now let w1, w2 ∈ (S ∪ S−1)∗ and suppose that the elements {is}s∈S satisfy w1 = w2.
Then î(w1) = î(w2), so [w1] = [w2], so w1 ∼ w2. We can assume that we can pass between
w1 and w2 by a single insertion or deletion, and proceed inductively. More precisely, we’re
assuming that w1 = (s1, . . . , sn) and w2 = (s1, . . . , s, s

−1, . . . , sn), for some s ∈ S∪S−1. Now
if G is any group and {gs}s∈S are arbitrary elements of G, we have w1(gs)s∈S = gs1 · · · gsn
and w2(gs)s∈S = gs1 · · · g(s)g(s−1) · · · gsn = gs1 · · · g(s)g(s)−1 · · · gsn = gs1 · · · gsn = w1(gs)s∈S,
so the relation w1 = w2 is satisfied in all groups and it’s forced and we’re done.

12 October 1st

12.1 Free Groups, continued

Recall that given a set S:

1. S∗ is a monoid and given a map m : S →M to another monoid, there is a unique mor-
phism of monoids m̂ : S∗ →M extending m, so that the following diagram commutes.

S S∗

M

i

m̂m
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2. F (S) = (S ∪ S−1)∗/ ∼, where ∼ is the relation generated by insertion or deletion of
pairs (s, s−1) for s ∈ S ∪ S−1. We also have i : S → F (S) given by i(s) = [s]. The
appropriate diagram is as follows.

S S ∪ S−1 (S ∪ S−1)∗

F (S)

ii î

We know:

· F (S) is a group.

· It is generated by i(S).

· î(w) = [w] for all w ∈ (S ∪ S−1)∗.

· Let g : S → G be a map to another group. If î(w1) = î(w2), then ĝ(w1) = ĝ(w2),
with ĝ the equivalent map in the appropriate diagram. (i.e. take the diagram
above, just simply replacing all the i’s with g’s.

Proposition 12.1.1. Let G be a group and g : S → G a map. Then there exists a unique
morphism of groups g̃ : F (S)→ G such that the diagram

S F (S)

G

i

g̃g

commutes.

Proof. Define g̃([w]) = ĝ(w). Is this well-defined? Suppose [w1] = [w2]. Then î(w1) = î(w2),
so ĝ(w1) = ĝ(w2), so then g̃([w1]) = g̃([w2]), so g̃ is well-defined.

Now we show commutativity of the diagram. Take s ∈ S. (g̃ ◦ i)(s) = g̃([s]) = ĝ((s)) =
g(s), so the diagram commutes.

To check that g̃ is a group morphism, take [w], [w′] ∈ F (S). g̃([w] · [w′]) = g̃([w · w′]) =
ĝ(w · w′) = ĝ(w)ĝ(w′) = g̃([w])g̃([w′]).

All that remains is uniqueness. For uniqueness, we use uniqueness of ĝ.

Proposition 12.1.2. Let F be a group and j : S → F a map. Suppose that (j, F ) satisfies
the universal property in place of (i, F (S)). Then there exists a unique isomorphism of groups
F (S)→ F such that the following diagram commutes.

43



F (S) F

S

ji

∼=

Proof. Consider j̃ : F (S) → F , the universal property for F (S) applied to j, and ĩ : F →
F (S), the universal property for F . Use the uniqueness for both to deduce that j̃ ◦ ĩ = idF ,
ĩ ◦ j̃ = idF (S).

So any group satisfying the property is isomorphic to F (S), which we then can morally
call *the* free group on S.

Definition 12.1.3. A pair of consecutive letters in a word w ∈ (S ∪ S−1)∗ is cancellable if
it is of the form (s, s−1) for some s ∈ S ∪ S−1.

Definition 12.1.4. A word w is reduced if it contains no cancellable pairs.

Proposition 12.1.5. Each equivalence class of words contains a unique reduced word. Thus,
the set F (S) is in bijection with the set of reduced words. Note that Dummit and Foote defines
the free group this way. We don’t.

Proof. Existence: Given a class, choose a representative w. If it is reduced, we are done. If
not; there is some cancellable pair. Delete that pair; we then get a smaller element of the
same class as our new word. But this process only ever shortens the word, so eventually it
must terminate. When it terminates, we have a reduced word.

Uniqueness: Suppose w1 and w2 are two words in the same class. They are connected
by a sequence of insertions and deletions of cancellable pairs. (This proof is like making
mountains out of molehills.)

w1

w2

An increasing segment in the above imaginary picture corresponds to an insertion, and a
decreasing segment corresponds to a deletion. For uniqueness, it suffices to show that there
is a path of only deletions and then only insertions (i.e. a valley), where either of the two
sides, or both, may have length 0 (all cases are pictured below). Why? Well, if both w1

and w2 are reduced, the only possible case is w1 = w2; all others imply the existence of a
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cancellable pair in at least one of the two words; going from w1 or w2 involves going “down”
on both sides of the following picture.

w1

w2

w1

w2

w1

w2

w1 w2

Okay, but to prove *that* it suffices to show that any peak can be resolved into a valley.
Combinatorially, then, we can kill every peak until there are no peaks left (see below). This
property is called confluence.
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Let’s prove us some confluence! To show confluence, it is enough to show the special case
when either side of the peak has length 1, as below.

But for *that* it is sufficient to show the special case in which both sides have length 1,
provided we can resolve in at most one step, as below.
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Okay, finally, let’s prove that! This case may arise in two ways. First, w1 = (u, v, t, t−1, w),
with u, v, w words; an insertion gives (u, s, s−1, v, t, t−1, w) and w2 = (u, s, s−1, v, w). In this
disjoint case, the insertions and deletions pretty clearly commute, so we can make it a valley
in one step. If however they’re nondisjoint, we have something like w1 = (u, s, v), adding to
get (u, s, s−1, s, v), and deleting to get (u, s, v) = w2, in which case we can simply collapse
the molehill to a point. There are a couple of other cases, but they all boil down to the same
thing.

So we’re done.

Corollary 12.1.6. i : S → F (S), i(s) = [s] is injective.

Proof. If i(s) = i(t), we have two reduced representatives for the same word, so we must
have s = t.

12.2 Group presentations

Let S be a set and take words w1, . . . , wn and w′1, . . . , w
′
n in (S ∪ S−1)∗. Let N be the

smallest normal subgroup of F (S) containing [wi][w
′
i]
−1 for all i. Then we define a new

group 〈S | wi = w′i∀i〉 = F (S)/N . This is called the “group generated by S and subject to
the relations wi = w′i for all i.”

Proposition 12.2.1. Let g : S → G be a map to a group G such that the g̃ coming from
the universal mapping property satisfies g̃([wi]) = g̃([w′i]). Then there is a unique morphism
of groups g : 〈S | wi = w′i〉 → G such that the following diagram commutes.

S 〈S | wi = w′i〉

G

j

gg

Proof. Use the universal properties of free groups and of quotients.
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Example. 1. G = 〈a, b | a7 = 1, b3 = 1, bab−1 = a2〉. Let A = 〈a〉, and B = 〈b〉. A � G,
and A has order 1 or 7, and B has order 1 or 3. A ∩ B = {1} because of the orders,
and AB = G. So immediately G = Ao B. We claim |G| = 21. Consider Z7 o Z3; we
will construct a map from this to G. We need an action by automorphisms of Z3 on
Z7. Send 1 to the map consisting of multiplication by 2. 2 has order 3 in Z7, so this is
well-defined. We then map G → Z7 o Z3, with a 7→ (1, 0), b 7→ (0, 1). Generators are
mapped to generators; it’s easy to see this is an isomorphism.

2. G = 〈a, b | a7 = 1, b3 = 1, bab−1 = a3〉. We want to do the same analysis, but it doesn’t
work. In this group, a2 = 1.

13 October 8th

Today marks a bridge of a transition in the course between groups and other algebraic
objects, via Zorn’s Lemma. But there is one more thing to say about groups, in particular
group presentations, that will be covered in an extra class after the break.

13.1 Zorn’s Lemma

Definition 13.1.1. A poset is a set along with a partial ordering on it. Let X be a poset.
A subset C of X is a chain if it is totally ordered by the ordering of X: given x, y ∈ C,
either x � y or y � x. Given a subset S of X, an upper bound for S is an element u ∈ X
such that x � u for all for all x ∈ S.

Remark. 1. A chain may be uncountable.

2. ∅ is a chain in X.

3. ∅ has an upper bound in X if and only if X 6= ∅.

Definition 13.1.2. For a poset X, an element m ∈ X is said to be maximal if there is no
element x ∈ X with m ≺ x. It is a maximum if for all x ∈ X, x � m.

Remark. 1. A maximum is maximal.

2. Maximal elements need not exist or be unique.

3. If a maximum element exists, it is unique.

Proposition 13.1.3 (Baby Zorn’s Lemma). Let X be a finite non-empty poset. Then X
has a maximal element.

Proof. Choose x0 ∈ X, with X 6= ∅. If x0 is not maximal, choose x1 with x0 � x1; proceed
by induction.
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Theorem 13.1.4 (Zorn’s Lemma). Let X be a poset such that every chain in X has an
upper bound. Then X has a maximal element.

Remark. X 6= ∅ is implied by the hypothesis.

Before we prove this, examine the following propositions, all of which are helpful appli-
cations.

Proposition 13.1.5. Any finitely generated nontrivial group has a maximal (proper) sub-
group.

Proof. Let X be the poset of proper subgroups of G, ordered by inclusion. X 6= ∅ because
{1} < G because G is nontrivial. Let C = {Hα}α∈I be a chain in X, with I totally ordered.
Then let

H =
⋃
α∈I

Hα.

The key is to check that H ≤ G. This uses that I is totally ordered, so any multiplication
lies in some Hα. Moreover, we have to check crucially that H is proper, so that it’s an
element of our poset and hence an upper bound for our chain.

Suppose H = G. G is finitely generated, so choose generators {g1, . . . , gr} for G. If
H = G, then gi ∈ H for all i, so gi ∈ Hαi

for some αi. Let α be the maximum of the αi’s.
Then Hα is a maximum, so gi ∈ Hα for all i, so Hα = G, contradicting Hα ∈ X.

Thus every chain has an upper bound, so we apply Zorn’s Lemma to get our result.

Definition 13.1.6. Let R be a ring and M a left R-module (definition presumably seen in
previous courses). A basis of M is a subset that is both linearly independent, i.e. the only
zero linear combination is the trivial one, and generating.

Proposition 13.1.7. Let R be a division ring, i.e. a ring in which every nonzero element
is invertible. Then any non-trivial R-module has a basis.

Proof. Let X be the poset of linearly independent subsets of M . If C =
⋂
s∈C s is an upper

bound in X. It is linearly independent because a linear combination only involves finitely
many elements at a time. Now check that a maximal linearly independent subset B of M is
generating. If not, there exists m ∈M that is not generated by B. We claim that B ∪ {m}
is still linearly independent, but is bigger than B (a contradiction). B ∪ {m} is still linearly
independent because any linear combination is of the form

λ1b1 + · · ·+ λnbn + λm = 0, λi, λ ∈ R.

λ 6= 0, because B is linearly independent. Dividing by λ, which is possible because we are
in a division ring, we know that m is generated by b1, . . . , bn, a contradiction.

Thus every chain has an upper bound, so by Zorn’s Lemma we have the desired result.

Remark. If every left module over a ring R has a basis, then R is a division ring. This is left
as an exercise.
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Fact 13.1.8. Fun fact: Division rings arise alongside projective geometries, by adding the
Desargues axiom. Look it up!

Proposition 13.1.9. Let R be a non-trivial ring with identity 1, i.e. 0 6= 1 ∈ R. Then R
has a maximal ideal (left, right, or two-sided).

Proof. Let X be the poset of proper (left) ideals of R. If C = {Iα}α∈A is a chain in X, then⋃
α∈A Iα is a (left) ideal. We need to check that I is proper; if I = R, then 1 ∈ I so 1 ∈ Iα,

so R ⊆ Iα, a contradiction.
We then apply Zorn’s Lemma.

Clearly this lemma is the bees’ knees of lemmas. It’s so important, maybe we’d even
want to choose it as an axiom! Now we’ll go through the proof. To do so, we’ll need a couple
more definitions.

Definition 13.1.10. A poset is well-ordered if it is totally ordered and every nonempty
subset S has a minimum m ∈ S.

Proposition 13.1.11 (Transfinite induction). Let A be a well-ordered poset, and let P be
a property on A, where a property is a function P : A → {T, F} (think ‘True,’ ‘False.’)
Suppose for any b ∈ A, that if P holds for all a ≺ b, then it holds for b, or that P is inductive.
Then P holds for all elements of A.

Proof. Otherwise, the nonempty set {x ∈ A | P (x) = F} has a minimum b. But P is
inductive, so P holds for b, a contradiction.

Why is it that we don’t seem to need a base case? Well, that’s sort of inherent in our
definition of inductive. If b = min(A), then vacuously for all a ≺ b, P holds; there is no such
element a.

Interlude: A brief ode to induction. Sung to the tune of “Do You Hear the People
Sing,” from “Les Miserables.” Songwriting creds to Luke Sciarappa and Susan Durst.

You can prove a theorem’s true,
Prove it for arbitrary n

If you can show that every instance means that it occurs again!
First you prove it for the base,

now assume n, and you’ll be done
if you can show that the result holds for n+ 1.

Will you rise among the ranks of the mathematical elite?
Definitions by recursion can be magical and neat!

You’ll find that transfinite induction is totally sweeeeet!

Lastly, we introduce the very important Axiom of Choice.
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Axiom of Choice. Let X be a set and {Aα}α∈X a family of nonempty sets. Then

Πα∈XAα 6= ∅.

In other words, there exists f : X →
⋃
α∈X Aα such that f(α) ∈ Aα for all α. Such an f is

called a choice function.
Now we dive in to the proof of Zorn’s Lemma.

Proof. Suppose X has no maximal element. Choose for each x ∈ X an element x+ such
that x ≺ x+. This is possible by the assumption that X has no maximal element and by the
Axiom of Choice. Now for each chain C in X, we Choose an upper bound u(C) ∈ X, again
possible by the hypothesis and by the Axiom of Choice.

Let A be a well-ordered set. We define a sequence {xa}a∈A in X such that if a < b in A,
then xa ≺ xb in X. We do this by transfinite induction. Suppose we have defined xa for all
a < b. We have an increasing sequence {xa}a<b in X. This is a chain in X, so we can define
xb = u({xa}a<b)+. Then xb > u({xa}a<b) ≥ xa for all a < b. By transfinite induction, we
have {xa}a∈A strictly increasing in X. This contradicts Hartog’s Lemma, a result from set
theory on high to which we will appeal.

Lemma 13.1.12 (Hartog’s Lemma). Given a set X, there exists a well-ordered set A such
that there is no injection A ↪→ X.

This lemma isn’t too hard to prove with the Axiom of Choice, or with the well-ordering
principle, but (fun fact!) it’s independent of the Axiom of Choice. Our sequence is in
particular an injective map A ↪→ X, so we can’t do this for every well-ordered A. We have
a contradiction, so X must have a maximal element.

14 October 15th

14.1 RINGS

Definition 14.1.1. A ring (R,+, 0, ·, 1) consists of an abelian group (R,+, 0) and a monoid
(R, ·, 1) such that for all a, b, c ∈ R,

· a · (b+ c) = a · b+ a · c and

· (a+ b) · c = a · c+ b · c,

referred to as distributivity.

Examples. · Z and Zn

· R[x], or polynomials with coefficients in a ring R.

· Mn(R), or n× n matrices with entries in a ring R.
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· RX , or functions from a set X to a ring R with pointwise operations (see problem 15
on HW 7).

Remark. This will be mainly notation.

1. The inverse of an element a in (R,+, 0) is denoted −a and called the opposite of a.

The inverse of a in (R, ·, 1) is denoted a−1. The set of invertible elements in (R, ·, 1) is
denoted R×; (R×, ·, 1) is then a group.

2. For any a ∈ R, a · 0 = 0 = 0 · a, a property known as absorption. Sometimes a near-
ring is defined, where instead of having an abelian group with addition, we just take a
monoid; in this case absorption must be an axiom. In fact, in the standard definition
of a ring, one can prove that the ring under addition must be abelian. The proof of
absorption is one line and is left as an exercise.

3. Can 0 = 1 in a ring R? Suppose 0 = 1. Take a ∈ R. Then a = a · 1 = a · 0 = 0,
so every element in R is trivial. So there’s exactly one ring R with 0 = 1; namely,
R = {0} = {1}, the trivial ring. I have heard this referred to not as the trivial ring
but as the “stupid” ring, in an only-slightly-less-formal setting.

4. An element z ∈ R is a zero-divisor if there exists w ∈ R, w 6= 0, with zw = 0 or
wz = 0. Note that while sometimes 0 is not defined as a zero-divisor, this definition
includes 0 as a zero-divisor except in the stupid ring. We denote by Rz the set of
zero-divisors in R.

5. Assume R 6= {0}. Then 0 ∈ Rz; also, 1 ∈ R×. We think of zero-divisors as “like zero”
and invertible elements as “like one.” In fact, R× ∩Rz = ∅.

Examples. 1. R = Z. Rz = {0} and R× = {±1}.

2. R = Mn(F), for F a field. R× = GL(n,F). Rz = Mn(F)\GL(n,F). Take A 6∈ GL(n,F),
so there exists x ∈ ker A, x ∈ Fn, x 6= 0. Let B be n copies of x; then AB = 0.

Definition 14.1.2. A nontrivial ring R is a domain if Rz = {0}. It is a division ring if
R× = R \ {0}. Division rings are also called skew fields. It is an integral domain if it is a
commutative domain. Finally, a commutative division ring is a field.

So we have a schematic

division rings ⊂ domains ⊂ rings
∪ ∪ ∪

fields ⊂ integral domains ⊂ commutative rings

Definition 14.1.3. Let R be a ring. A subset S ⊆ R is a subring if it is a subgroup of
(R,+, 0) and a submonoid of (R, ·, 1). In this case, S is a ring.
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Definition 14.1.4. Let R1, R2 be rings. A function ϕ : R1 → R2 is a morphism of rings if
it is a morphism of groups and monoids. Explicitly,

ϕ(a+ b) = ϕ(a) + ϕ(b)

ϕ(ab) = ϕ(a)ϕ(b)

ϕ(1) = 1.

As a consequence, ϕ(0) = 0, ϕ(−a) = −ϕ(a), and ϕ(a−1) = ϕ(a)−1, when such an
element exists.

Definition 14.1.5. Let R be a ring and I ⊆ R a subgroup of (R,+, 0). I is a left ideal if for
any a ∈ R, x ∈ I, we have ax ∈ I. Right ideals and two-sided ideals are defined similarly.

Let I be a two-sided ideal of R. Write a ≡ b (mod I) if a− b ∈ I. This is an equivalence
relation, and it is compatible with both + and ·.

Why is the above equivalence relation compatible with +? Well, I is a subgroup of an
abelian group, so it is a normal subgroup of (R,+, 0). Why’s it compatible with ·? By
distributivity. This is a tiny exercise. It’s worth checking.

Hence, R/I, the set of equivalence classes, is a ring, with a+ b = a+ b, and a · b = a · b.
This is the quotient of R by I.

Example. Zn = Z/nZ, where nZ is notably an ideal of Z.

Now for the ring isomorphism theorems. Proofs are omitted given that they’re all easy
and all really similar to the group proofs.

Proposition 14.1.6 (1st isomorphism theorem). Let ϕ : R → R′ be a morphism of rings.
Then

1. ker ϕ = {x ∈ R : ϕ(x) = 0} is a two-sided ideal of R.

2. im ϕ is a subring of R′.

3. R/ker ϕ ∼= im ϕ, with a 7→ ϕ(a).

Example. Let ϕ : R[x] → C be ϕ(p(x)) = p(i). Then ϕ is a surjective homomorphism of
rings with kernel ker ϕ generated by x2 + 1, so R[x]/〈x2 + 1〉 ∼= C.

Proposition 14.1.7 (The other isomorphism theorems). Let R be a ring.

1. Let S be a subring and I a two-sided ideal of R. Then

(a) S + I is a subring of R.

(b) S ∩ I is a two-sided ideal.

(c) (S + I)/I ∼= S/(S ∩ I).

2. Let I and J be two-sided ideals of R, with I ⊆ J . Then
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(a) J/I is a two-sided ideal of R/I.

(b) R/I
J/I
∼= R/J .

3. Let I Be a fixed two-sided ideal of R. Then there is a bijective correspondence between
the set of two-sided ideals J of R containing I and the set of two-sided ideals of the
quotient R/I, with J 7→ J/I.

There are variants for left and right ideals or subrings.

Definition 14.1.8. For two ideals I, J , we have

I + J = {a+ b | a ∈ I, b ∈ J}

I · J =

{
n∑
i=1

aibi | ai ∈ I, bi ∈ J, i = 1, . . . , n, n ≥ 0

}
.

Note that IJ, JI ⊆ I ∩ J .

Definition 14.1.9. Let R be a nontrivial ring. A proper ideal I of R (left, right, two-sided...)
is maximal if it is a maximal element of the poset of proper ideals of R under inclusion.

Proposition 14.1.10. A nontrivial ring has at least one maximal ideal (left, right, two-
sided...). More generally, any proper ideal is contained in a maximal one.

Proof. The first statement is an application of Zorn’s Lemma. A similar proof gives a second
statement, using the bijective correspondence from that one isomorphism law.

Proposition 14.1.11. Let R be nontrivial and assume that R is commutative (multiplica-
tively; for addition we don’t need to specify, so we never do). The following are equivalent:

1. R is a field

2. {0} is the only proper ideal

3. {0} is a maximal ideal

Proof. Left as an exercise. It’s very simple, but it’s important to be able to do it eyes
closed.

Corollary 14.1.12. Let I be an ideal of a commutative ring R. I is maximal if and only if
the quotient R/I is a field.

Proposition 14.1.13. Let R be nontrivial. Then TFAE:

1. R is a division ring

2. 0 is the only proper left ideal

3. 0 is the only proper right ideal
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Definition 14.1.14. A ring is simple if it is nontrivial and 0 is the only proper two-sided
ideal.

Remark. Division rings are simple, but the converse does not necessarily hold. For example,
Mn(F) is simple but is not a division ring. See homework 8, problem 15. If n > 1, this is
not a division ring.

Definition 14.1.15. Let I and J be two two-sided ideals of a ring R. They are called
comaximal if I + J = R. Equivalently, no proper ideal contains both I and J .

Theorem 14.1.16 (Chinese Remainder Theorem). Let I and J be comaximal two-sided
ideals of a ring R. Let ϕ : R→ R/I ×R/J be ϕ(a) = (a, a).

1. ϕ is surjective and ker ϕ = I ∩ J .

2. R/(I ∩ J) ∼= R/I ×R/J , an isomorphism of rings.

3. I ∩ J = IJ + JI.

Proof. 1. Given a, b ∈ R, we need x ∈ R with x = a in R/I and x = b in R/J . In other
words, we need x ≡ a (mod I) and x ≡ b (mod J). I + J = R, so 1 = e+ f for some
e ∈ I, f ∈ J . Thus e ≡ 0 (mod I) and e ≡ 1 (mod J); meanwhile f ≡ 1 (mod I) and
f ≡ 0 (mod J). Let x = be + af ; this x works. Thus the mapping is surjective. The
kernel being the intersection is immediate from the definition.

2. A consequence of 1, and the first isomorphism law.

3. Needs a sentence; think about it on your own, or maybe it will be covered next time.

15 October 20th

15.1 And God liked the integers, so He put a ring on them: Rings
Part 2

For future reference, if we say “ideals” without specifying left or right, we mean two-sided.

Theorem 15.1.1 (Chinese Remainder Theorem). Let I, j be comaximal ideals of a ring R,
and consider ϕ : R→ R/I ×R/J with a 7→ (a, a). Then

1. ϕ is surjective and ker ϕ = I ∩ J .

2. R/(I ∩ J) ∼= R/I ×R/J

3. I ∩ J = JI + IJ
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Proof. Last time, we did all but number 3, so we’ll do that now. 1 = e+ f , for e ∈ I, f ∈ J .
If x ∈ I ∩J , then x = xe+xf . xe ∈ JI and xf ∈ IJ , so x ∈ JI+ IJ . Now, JI+ IJ ⊆ I ∩J
holds always, regardless of comaximality, because IJ ⊆ I, and IJ ⊆ J , and JI ⊆ I, etc.,
etc.

Examples. 1. R = Z. We know nZ is an ideal, and every ideal is of this form for a unique
n ∈ N. Also, nZ ⊆ mZ if and only if m|n. Thus, the poset of ideals (under inclusion,
as always) of Z is anti-isomorphic to the poset of Z under divisibility. So the Chinese
Remainder Theorem is as follows. Let I = nZ and let J = mZ. The following picture
applies.

I + J

I J

I ∩ J

IJ

gcd(n,m)

n m

lcm(n,m)

nm

←→

Explicitly, if gcd(n,m) = 1, then x ≡ a (mod n) and x ≡ b (mod m) has a unique
solution modulo nm.

2. R = FX , with X a finite set and F a field. We know from the homework that every
ideal of FX is of the form I(S) for a unique S ⊆ X, where I(S) = {f ∈ FX : f |S = 0}.
Also, FX/I(S) ∼= FS. Moreover, the poset of ideals of FX is anti-isomorphic to the
poset of subsets of X. Let I = I(S), J = I(T ). The picture below applies.

I + J

I J

I ∩ J

IJ

S ∩ T

S T

S ∪ T

S ∪ T

←→

The Chinese Remainder Theorem tells us that if S ∩ T = ∅, then FS∪T ∼= FS × FT .
Explicitly, if S ∩ T = ∅, then a function of S ∪ T is the same as two functions, one on
S and the other on T .
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15.2 Noetherian Rings

Remark. I’ve heard it said that Emmy Noether was quite the BAMPh – Brilliant Algebraist,
Mathematician, and Physicist. Citation to Ruthi Hortsch for this cool acronym.

Definition 15.2.1. A poset satisfies the ascending chain condition or ACC if every countable
ascending chain x0 ≤ x1 ≤ x2 ≤ · · · stabilizes, i.e. if ∃n ≥ 0 with xN = xN+1 = · · · .

Proposition 15.2.2. A poset X satisfies the ascending chain condition if and only if every
nonempty subset S ⊆ X has a maximal element (by which we mean an element m ∈ S such
that if m < x, then x 6∈ S).

Proof. First suppose that X satisfies the ACC and that ∃S 6= ∅ without a maximal element.
Choose x0 ∈ S; by assumption there exists x1 ∈ S, x0 < x1. Inductively, we define a strictly
increasing chain x0 < x1 < x2 < · · · , which violates the hypothesis. Note that for this proof
we need at least the axiom of countable choice.

Now we show the converse. Given an ascending chain x0 ≤ x1 ≤ x2 ≤ · · · , let S = {xi :
i ∈ N}. S has a maximal element xN by hypothesis, so xM = xN for all M ≥ N . Thus we
have the ascending chain condition.

Definition 15.2.3. A ring is left-noetherian if the poset of left ideals satisfies the ACC.
Right-noetherian is defined in exactly the same way.

Fun fact! Rings can be left-noetherian but not right-noetherian. These definitions are
far too zany for that drivel.

Definition 15.2.4. Given a subset A of a ring R, the left ideal generated by A is the set

RA =

{∑
i∈F

riai | F is any finite set, ri ∈ R, ai ∈ A,∀i ∈ F

}
.

It is the smallest left ideal containing A. A left ideal I of R is finitely generated if there
exists a finite A ⊆ R such that I = RA. It is principal if ∃a ∈ R such that I = R{a}.

Proposition 15.2.5. Let R be left noetherian, and let I be a two-sided ideal. Then R/I is
left noetherian.

Proof. A chain of left ideals in R/I is I0 ⊆ I1 ⊆ · · · , where I0 ⊆ I1 ⊆ I2 ⊆ · · · is a chain of
left ideals in R containing I. R is noetherian so this stabilizes, and thus the given chain in
R/I stabilizes as well.

Proposition 15.2.6. A ring is left noetherian if and only if every left ideal is finitely gen-
erated.

Proof. (⇒): Let I be a left ideal of R. Let F = {RA | A a finite subset of I}. F 6= ∅,
because {0} ∈ F , so F has a maximal element RA. We claim that RA = I. If not, ∃x ∈ I,
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x 6∈ RA. Let A′ = A ∪ {x}. A′ is a finite subset of I, and RA ( RA′, because one but not
the other contains x. This is a contradiction.

(⇐): Let I0 ⊆ I1 ⊆ · · · be a chain of left ideals. Then let I =
⋃
n≥0 In, which is also a

left ideal. I is an ideal, so it is finitely generated by some generating set A = {a1, . . . , ak}.
Then ai ∈ Ini

for some ni; let N = max(ni). All generators are in IN , so I ⊆ IN , and thus
IM ⊆ IN for all M ≥ N , and we have stabilization.

Examples. 1. Any division ring is (left and right) noetherian. The only ideals are {0} and
R.

2. Any PID (principal ideal domain, an integral domain for which every ideal is principal)
is noetherian.

The next two are non-examples:

3. R[x1, x2, . . . ], the ring of polynomials in countably many variables is not an example.
The chain Rx1 ⊂ R{x1, x2} ⊂ R{x1, x2, x3} ⊂ · · · does not stabilize.

4. Let X be an infinite set. RX is not (left) noetherian. Let X0 ⊃ X1 ⊃ X2 ⊃ · · · be an
infinite strictly decreasing chain of subsets of X. Then I(X0) ⊂ I(X1) ⊂ · · · is the
chain of ideals that does not stabilize.

Depending on which mathematical road you travel by, these concepts will be either really
really relevant all the time, or not.

Theorem 15.2.7 (Hilbert’s Basis Theorem). Let R be a left noetherian ring. Then R[x] is
also left noetherian.

Proof. Let I be a left ideal of R[x]. We show it is finitely generated. Suppose not. In
particular, I 6= {0}, so we can choose a polynomial f0 ∈ I of minimal degree. Now I 6=
R[x]{f0}, so we can choose f1 ∈ I \ R[x]{f0}, again of minimal degree. f0 was of minimal
dgree of all polynomials in I, and f1 ∈ I, so deg(f0) ≤ deg(f1). Iterate the process to
get a bunch of fi’s. Given f0, f1, . . . , fn−1, I 6= R[x]{f0, f1, . . . , fn−1}, so we can choose
fn ∈ I \R[x]{f0, f1, . . . , fn−1} and of minimal degree. By induction, we get fn for all n ∈ N.
Let dn = deg(fn). Note that dn ≤ dn+1 for all n. Write fn = anx

dn + lower terms, with
an ∈ R nonzero. We’ll use the notation LT(fn) = anx

dn , where LT stands for “leading term”.
Consider the chain of left ideals in R, R{a0} ⊆ R{a0, a1} ⊆ R{a0, a1, a2} ⊆ · · · . R is left

noetherian, so it stabilizes, say at N ∈ N. Thus an ∈ R{a0, a1, . . . , aN} for all n ≥ N . In
particular, aN+1 =

∑N
i=0 riai. Consider the polynomial

g =
N∑
i=0

rifix
dN+1−di ,

which is well-defined as a polynomial because the di’s are increasing.
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Now

LT(g) =
N∑
i=0

riLT(fi)x
dN+1−di

=
N∑
i=0

riaix
dN+1

= aN+1x
dN+1

= LT(fN+1).

So deg(fN+1−g) < deg(fN+1). But g ∈ R[x]{f0, . . . , fN}, and fN+1 ∈ I\R[x]{f0, . . . , fN},
so fN+1 − g ∈ I \R[x]{f0, . . . , fN}, which contradicts the minimality of fN+1.

16 October 22nd

16.1 Modules

Definition 16.1.1. Let R be a ring. A left R-module consists of an abelian group (M,+, 0)
with R×M →M , (a,m) 7→ a ·m, such that for all a, b ∈ R and for all m ∈M ,

(i) a · (b ·m) = (ab) ·m, 1 ·m = m

(ii) a · (m+ n) = a ·m+ a · n

(iii) (a+ b) ·m = a ·m+ b ·m

Remark. 1. If R is a field, then an R-module is a vector space over R.

2. If we replace m ∈ M in the definition by c ∈ R, we obtain the ring axioms. In
particular, M = R is a left R-module.

3. (i) holds if and only if the monoid (R, ·, 1) acts on the set M . (ii) holds if and only if
the action is by endomorphisms of (M,+, 0). (ii) and (iii) hold if and only if the map
R×M →M is biadditive, preserving addition in both variables.

As seen in homework 7. If (M,+, 0) is an abelian group, then EndZ(M) = {f : M →
M | f is a group homomorphism} is a ring under (f + g)(m) = f(m) + g(m), and (f ◦
g)(m) = f(g(m)). A map R × M

·→ M gives rise to a map R
l→ MM = {f : M →

M | f is a function}. Under this, a 7→ la, where la(m) = a · m. (ii) holds if and only if
la ∈ EndZ(M), and (i) and (iii) hold if and only if l : R→ EndZ(M) is a morphism of rings.
To conclude, given an abelian group M , a left R-module structure on it is equivalent to a
ring homomorphism R→ EndZ(M).

Proposition 16.1.2. 1. Let R be a ring. There exists a unique ring homomorphism
Z → R (we say as a result that Z is the initial ring, the one ring to bring them all,
and in the darkness bind them).
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2. Let M be an abelian group. ∃! (left) Z-module structure on M . (Hence Z-modules ≡
abelian groups).

Proof. 1. Define ϕ : Z→ R by

ϕ(n) =


0 if n = 0,

1 + · · ·+ 1 n times, if n ≥ 1,

−ϕ(−n) if n ≤ −1.

2. By 1, ∃! ring homomorphism Z→ EndZ(M).

Definition 16.1.3. Let M be a left R-module. A subset N ⊆ M is a submodule if it is a
subgroup of (M,+, 0) and a · n ∈ N for all a ∈ R, n ∈ N . In this case, N is a left R-module
(N ≤M). Also, M/N is a left R-module with a ·m = a ·m.

Example. 1. Let M = R be the canonical left R-module. Then the submodules of M are
the left ideals of R.

2. Let R = Z and M an abelian group. Then the submodules of M are precisely the
subgroups of M .

Definition 16.1.4. Let M be a left R-module and A ⊆ M a subset. The R-submodule
generated by A is

RA = {
∑
i∈F

riai | F finite,ri ∈ R, ai ∈ A}.

A module M is finitely generated if there exists a finite A ⊆ M such that M = RA. It
is cyclic if ∃a ∈M , M = R{a}.

Definition 16.1.5. Let M,N be left R-modules. A homomorphism is a function f : M → N
such that f(m1 +m2) = f(m1) + f(m2) and f(a ·m) = a · f(m).

This leads us to products and sums, a new subsection in our lives.

16.2 Products and sums

Definition 16.2.1. Let I be a set and {Mi}i∈I a collection of left R-modules. On the
cartesian product

∏
i∈IMi, define operations

(mi)i∈I + (m′i)i∈I := (mi +m′i)i∈I ,

and
a · (mi)i∈I = (a ·mi)i∈I .

Then
∏

i∈IMi is a left R-module, called the direct product of {Mi}i∈I .
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Definition 16.2.2. Let
⊕

i∈IMi be the subset of
∏

i∈IMi consisting of sequences (mi)i∈I
with finite support, i.e. with {i ∈ I | mi 6= 0} finite. Then

⊕
i∈IMi ≤

∏
i∈IMi. The left

R-module
⊕

i∈IMi is called the direct sum of the {Mi}i∈I . If I is finite, then clearly the
direct sum and direct product are the same.

For each j ∈ I, there are morphisms of R-modules πj :
∏
Mi →Mj, with (mi)i∈I 7→ mj,

and morphisms σj : Mj →
⊕

Mi, with m 7→ (mi)i∈I , where mi = m if i = j and 0 otherwise.

Proposition 16.2.3. Let {Mi}i∈I be a collection as before. Let M be another R-module.

1. For each j ∈ I, let ϕj : M → Mj be a morphism of R-modules. Then there exists a
unique morphism of R-modules ϕ : M →

∏
i∈IMi such that πj ◦ ϕ = ϕj.

M
∏
Mi

Mj

ϕj

ϕ

πj

2. For each j ∈ I, let ψj : Mj → M be a morphism of R-modules. Then there exists a
unique morphism of R-modules ψ :

⊕
Mi → M such that all diagrams such as below

commute.

M
⊕

Mi

Mj

ψj

ψ

σj

Proof. 1. Define ϕ(m) = (ϕi(m))i∈I . This works.

2. Define ψ((mi)i∈I) =
∑

i∈I ψi(mi). Note that this is finite because the I-tuple has finite
support.

Remark. The following is a general category-theoretic organization of thoughts.
General Categories Category of R-modules Category of Groups Category of Sets

product direct product direct product cartesian product
coproduct direct sum free product disjoint union

Moreover the universal property tells us for products that a map to the product is a
bunch of maps to each factor, and for the coproduct that a map from the coproduct is a
bunch of maps from each factor.

Note also for modules that M ⊕ N ∼= M × N , but for groups G ∗H 6∼= G ×H, and for
sets X t Y 6∼= X × Y .
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Proposition 16.2.4. Let M be a left R-module and {Mi}i∈I a collection of submodules of
M . Suppose

1. The {Mi} are independent: given (mi)i∈I of finite support with mi ∈Mi, if
∑

i∈I mi =
0, then mi = 0 for all i.

2. The {Mi} generate M : given m ∈ M , ∃(mi)i∈I of finite support with mi ∈ Mi such
that m =

∑
i∈I mi.

Then M ∼=
⊕

i∈IMi.

Proof. Let ψi : Mi ↪→M be the inclusion . The UMP gives a morphism of R-modules

M
⊕

Mi

Mj

ψj

ψ

σj

But (mi)i∈I =
∑
σi(mi), so ψ((mi)i∈I) =

∑
i∈I ψ(σi(mi)) =

∑
i∈I mi. (1) and (2) say

precisely that ψ is injective and surjective, and thus an isomorphism.

Conversely, for arbitrary modulesMi, you can find independent generating sets (basically)
inside the direct sum.

17 October 27th

17.1 Free modules

Definition 17.1.1. Let I be a set. For each i ∈ I, let Mi = R be the canonical left
R-module. The free R-module on I is by definition

R(I) =
⊕
i∈I

Mi.

For each j ∈ I, let ej ∈ R(I) be the tuple ej = (ai)i∈I with ai = 1 if i = j, and 0 if not.

Proposition 17.1.2. Let I be a set and M a left R-module. Given a collection {mi}i∈I with
mi ∈ M for all i, there exists a unique morphism of R-modules ϕ : R(I) → M such that
ϕ(ej) = mj for all j ∈ I.

R(I)I

M

ϕ
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Proof. Let ϕj : Mj → M be ϕj(a) = a ·mj. This is a morphism of R-modules; apply the
universal property of the direct sum to obtain ϕ. Then ϕ(ej) = ϕσj(1) = ϕj(1) = 1·mj = mj.
Uniqueness is easy.

Definition 17.1.3. Let M be a left R-module and S ⊆ M a subset. For each s ∈ S, let
Ms = R{s}. We say that S is linearly independent if {Ms}s∈S is independent. Moreover,
S generates M if {Ms}s∈S generates M , and S is a basis if it is linearly independent and
generates M .

Proposition 17.1.4. Let I be a set.

1. The set {ei}i∈I is a basis of the left R-module R(I)

2. Suppose M is a left R-module with a basis I. Then M ∼= R(I).

Proof. Both statements reduce to earlier propositions, proven for direct sums.

Note that the free R-module on I is strictly contained in the set RI =
∏

i∈IMi.

17.2 Noetherian Modules

Definition 17.2.1. A left R-module is neotherian if the poset of submodules satisfies the
ascending chain condition. Equivalently, if every nonempty set of submodules has a maximal
element.

Remark. R is left noetherian (as a ring) if and only if it is noetherian as a left R-module.

Proposition 17.2.2. A left R-module M is noetherian if and only if every R-submodule of
M is finitely generated.

In particular, M is noetherian ⇒ M is finitely generated.

Proof. Same as for ideals, so we omit.

Proposition 17.2.3. Let M be a left R-module and N ≤M . Then M is noetherian if and
only if N and M/N are noetherian.

Proof. (⇒) : Submodules of N are submodules of M , so they must be finitely generated.
Submodules of M/N are of the form L/N for N ≤ L ≤ M . L is also finitely generated, so
basically everything under the sun must be finitely generated and nothing goes wrong. (⇐) :
Let L ≤ M , so L ∩ N ≤ N , so L ∩ N = R{x1, . . . , xr}. Let π : M → M/N . Then π(L) ≤
M/N , so π(L) = R{y1, . . . , ys}. It is an easy check that L = R{x1, . . . , xr, y1, . . . , yr}.

Proposition 17.2.4. Let {Mi}i∈I be noetherian left R-modules. Suppose I is finite. Then⊕
i∈IMi is noetherian.

Proof. By induction, we reduce to the case when I = {1, 2}. Let M = M1 ⊕M2. We have
M1 ≤M and M/M1

∼= M2, so by the previous proposition the module M is noetherian, and
we are done.
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Proposition 17.2.5. Let R be left noetherian and M a left R-module. If M is finitely
generated, then M is noetherian.

Proof. Let M = R{x1, . . . , xk}. Then Rk → M with ej 7→ xj is a surjection. So M is a
quotient of Rk and Rk is notehrian because it is a finite direct sum of noetherian modules.

Remark. Let R be arbitrary and let M be a finitely generated left R-module. Is every
submodule of M also finitely generated?

NO. Take any non-noetherian ring R and M = R.

17.3 Tensor Products of Modules

Or Kronecker products, Outer products, etc., etc., etc.
Let R be a commutative ring. Let M and N be R-modules. A homomorphism of R-

modules M → N is also called a linear map. Their set is HomR(M,N). Let M,N,L be
R-modules.

Definition 17.3.1. A function β : M × N → L is bilinear if β(m + m′, n) = β(m,n) +
β(m′, n), and β(m,n + n′) = β(m,n) + β(m,n′), and β(am, n) = aβ(m,n) = β(m, an), for
all m,m′ ∈ M , n, n′ ∈ N , a ∈ R. We denote by HomR(M,N ;L) the set of these bilinear
maps.

We can similarly define multilinear maps HomR(M1, . . . ,Mn;L) as maps that are linear
in each variable.

Modules and linear maps constitute a category, the study of which is linear algebra.
Modules and multilinear maps constitute a multicategory, the study of which is sometimes
called multilinear algebra. So that’s fun.

Tensor products reduce bilinear maps to linear maps, i.e.

HomR(M,N ;L) ∼= HomR(M ⊗N,L).

But linear maps and bilinear maps really aren’t the same thing, so tensor products need
to do something. Let’s construct it.

Proposition 17.3.2. Given R-modules M,N , there exists an R-module X with a bilinear
map θ : M×N → X such that given any other R-module L with a bilinear map β : M×N →
L, there is a unique linear map β̂X → L making the following diagram commute.

M ×N

X

L
β

θ
β̂

Moreover, (X, θ) are unique up to isomorphism.
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Proof. First we cover existence. (In the beginning we proved the existence of the heavens
and the earth...)

Let F be the free R-module on the set M ×N . Then F has a basis {e(m,n) | m ∈M,n ∈
N}. Let F ′ be the submodule generated by all elements of the forms

· e(m+m′,n) − e(m,n) − e(m′,n),

· e(m,n+n′) − e(m,n) − e(m,n′),

· e(am,n) − ae(m,n), and

· e(m,an) − ae(m,n).

Let X = F/F ′, and let θ : M × N ↪→ F � F/F ′ = X, with (m,n) 7→ e(m,n) 7→ e(m,n).
We claim that θ is bilinear, and that (X, θ) satisfy the desired universal property. We won’t
write out the details, but you can extend any map β to a map F → L, and then bilinearity
tells you you can keep going to the quotient.

This reduces to the universal property for free modules plus the universal property for
quotients.

Definition 17.3.3. X, as in the proof above, is called the tensor product of M and N ,
and is denoted M ⊗ N . It’s unique up to isomorphism, so this definition makes sense.
When convenient, if there are like FIVE DISTINCT GOLDEN RIIIIINGS around getting
us confused, we can write M ⊗R N . We write m⊗R N for the element θ(m,n) ∈M ⊗N .

Note that a general element of M ⊗ N is of the form
∑

i∈Ami ⊗ ni, where A is a finite
set and mi ∈M , ni ∈ N . This is the same as

∑
i∈A e(mi,ni).

Example. Zm ⊗Z Zn ∼= Zd, with d = gcd(m,n). Define ϕ : Zd → Zm ⊗Z Zn, with a 7→
a · 1⊗ 1 = a⊗ 1 = 1⊗ a.

Is this well-defined? We need that d · 1⊗ 1 = 0⊗ 0. Well, d = gcd(m,n), so d = rm+ sm
for r, s ∈ Z. Then

d · 1⊗ 1 = (rm+ sn) · 1⊗ 1

= r ·m⊗ 1 + s · 1⊗ n
= r · 0⊗ 1 + s · 1⊗ 0

= 0⊗ 0 = 0.

Now we define ψ : Zm⊗ZZn → Zd. We want to say that a⊗b 7→ ab, but that’s not actually
defining it on all elements of the tensor product. So we first define a map Zm × Zn → Zd,
with (a, b) 7→ ab, and we check that it is well-defined and bilinear. This will show that a
linear ψ exists by the universal property. This can be checked.

Then the two maps ϕ and ψ compose to the identity, which can also be checked. So yay!
Isomorphism.
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18 October 29th

18.1 Divisibility

We assume that R is an integral domain.

Definition 18.1.1. Let a, b ∈ R. We say that

· b divides a if a = bc for some c ∈ R, and we write b | a.

· a and b are associates if b | a and a | b, and we write a ∼ b.

Let u ∈ R. We say u is a unit if u | 1.

Proposition 18.1.2. 1. u is a unit ⇐⇒ u is invertible.

2. b | a ⇐⇒ (a) ⊆ (b), where (a) is the ideal generated by a and (b) is the ideal generated
by (b).

3. a ∼ b ⇐⇒ (a) = (b) ⇐⇒ ∃ a unit u ∈ R, a = ub.

Proof. Left as a simple exercise.

Definition 18.1.3. Let p ∈ R. Assume that p 6= 0, and p is not a unit. Then

· p is irreducible if whenever p = ab, either a or b is a unit.

· p is prime if whenever p | ab, either p | a or p | b.

Proposition 18.1.4. Every prime element is irreducible.

Proof. Let p be a prime. Suppose p = ab; then p | ab, so p | a or p | b. Assume without loss
of generality that p | a. But a | p, because p = ab, so a ∼ p, so p = ua for some unit u ∈ R.
Then p = ua = ba, so u = b because we’re working in a domain. Thus if p = ab, either a or
b is a unit, so p is irreducible.

There are a lot of similar little arguments in this section. We’re going to tackle some
more interesting ones.

Proposition 18.1.5. Suppose p ∼ q.

1. p prime ⇒ q prime.

2. p irreducible ⇒ q irreducible.

The proof, neither particularly difficult nor particularly interesting, is omitted.
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Proposition 18.1.6 (Uniqueness of Prime Factorization). Let I and J be finite sets. Let
{pi}i∈I and {qj}j∈J be primes. In general, including right now, when writing elements in
this form we’re not necessarily assuming that the pi or qj are distinct.

Suppose ∏
i∈I

pi ∼
∏
j∈J

qj.

Then there exists a bijection σ : I → J such that pi ∼ qσ(i).

Proof. By induction on |I|. If |I| = 0 we have 1 ∼
∏

j∈J qj. If we have that |J | 6= 0, then
there exists j ∈ J . Then qj | 1, so qj is a unit, q contradiction. Thus |J | = 0, completing
the base case.

Suppose |I| ≥ 1. Then ∃i0 ∈ I, so pi0 |
∏

i∈I pi = u
∏

j∈J qj. pi0 is prime, so pi0 | qj0 for
some j0 ∈ J , since a prime can’t divide a unit. Thus qj0 = pi0c for some c ∈ R. But qj0 is
irreducible and pi0 is not a unit, so c is a unit and pi0 ∼ qj0 .

We then have that ∏
i∈I

pi = u
∏
j∈J

qj ⇒
∏
i 6=i0

pi = uc
∏
j 6=j0

qj ∼
∏
j 6=j0

qj.

By our inductive hypothesis there exists a bijection σ : I \{i0} → J \{j0} such that pi ∼ qσ(i)

for all i ∈ I \ {i0}. Extend σ by σ(i0) = j0, to get the desired bijection.

Remark. 1. The above result is begging for the result that factorization into irreducibles
is unique, but this is not necessarily the case.

2. Suppose {pi} are prime and {qj} are irreducible; then the above proof still works, so
there is a bit of a partial result.

Proposition 18.1.7 (Existence of Irreducible Factorizations). Let R be noetherian. Let
a ∈ R, a 6= 0, a not a unit. There is a finite set I and irreducibles {pi}i∈I such that
a =

∏
i∈I pi.

Proof. Suppose not. Let F = {(x) | x 6= 0, x 6= unit,x 6= finite product of irreducibles}.
Then (a) ∈ F , so F 6= ∅. Since R is noetherian, there exists a maximal element (x) ∈ F .
x is not a finite product of irreducibles, so x is not irreducible. Also x 6= 0 and is not a
unit. Thus there exist y, z ∈ R with x = yz, y, z not units. Since x 6= 0, y, z 6= 0. If both y
and z are a product of irreducibles, so is x. Thus one of y and z is not a finite product of
irreducibles; without loss of generality, say y. Then (y) ∈ F . But (x) ⊆ (y). By maximality,
(x) = (y). Thus x = uy for a unit u, a contradiction because z was not a unit!

This completes the proof. ,

Remark. This can also be done using König’s Lemma, which says that an infinite tree with
finite branching has to have an infinite branch. One looks at the tree of divisibility.
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18.2 Unique Factorization Domains

Consider, as before, integral domains R.

Fact 18.2.1. UFD’s, while a fairly natural thing to look at, are surprisingly thought of as
particularly alien. In fact, a misreading of the acronym UFD as “UFO” led to many science
fiction tales regarding misconceptions about these strange objects.

Proposition 18.2.2. Consider the following statements about R.

(1) Every a ∈ R, a nonzero and nonunit, admits a factorization into irreducibles.

(2) Any factorization into irreducibles is unique up to units and reordering.

(3) Every irreducible is prime.

Then (1) and (2) hold if and only if (1) and (3) hold.

Proof. (⇐): Uniqueness holds for prime factorizations; but (3) tells us that prime and irre-
ducible are equivalent concepts. Thus (2) holds.

(⇒): Let p ∈ R be irreducible. Suppose p | ab. We want either p | a or p | b. If a = 0,
done. If a is a unit, then p | ab ∼ b, so p | b. We can then assume that both a and b are
nonzero nonunits.

p | ab, so ab = pc. If c = 0, then ab = 0 so a = 0 or b = 0, a contradiction. If c is
a unit, then ab ∼ p, so either a is a unit or b is a unit, another contradiction. Thus c is
another nonzero nonunit. By (1), we can factor. Let’s say a =

∏
i∈I pi, b =

∏
j∈J qj, and

c =
∏

h∈H rh. But ab = pc, so ∏
i∈I

pi
∏
j∈J

qj = p ·
∏
h∈H

rh.

By (2), p ∼ pi or p ∼ qj. Thus p | a or p | b, as desired.

This leads to the definition of a unique factorization domain.

Definition 18.2.3. An integral domain is a unique factorization domain, or UFD, if (1)
and (2) hold, as in the proposition. Equivalently, an integral domain is a UFD if (1) and (3)
hold.

Thus in a UFD, every nonzero nonunit has a unique factorization into irreducibles/primes.

Remark. · There are UFDs that are not noetherian (HW 11): F[x1, x2, x3, . . . ].

· There are noetherian domains that are not UFDs (HW1 10): Z[
√
−3].

Proposition 18.2.4. An integral domain is a UFD if and only if (3) and (4) hold, where
(3) is as in Proposition 18.2.2 and (4) is that the principal ideals satisfy the ascending chain
condition.

Proof. Seen in the Homework.
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18.3 Principal Ideal Domains

Definition 18.3.1. An integral domain is a principal ideal domain or PID if every ideal is
principal.

Proposition 18.3.2. Let R be an integral domain and p ∈ R.

1. p is prime if and only if (p) is a prime ideal.

2. p is irreducible if and only if (p) is maximal among the proper principal ideals.

Proofs are left as homework problems.

Corollary 18.3.3. PID ⇒ UFD.

(Hahaha! Take that for brevity! You never knew it, but the soul of wit was in a particular
statement of a well-known and somewhat rote theorem in commutative algebra all along!)

Proof. PID ⇒ noetherian ⇒ (4), from the previous section. Let p be irreducible; then (p)
is maximal among principal ideals, which is all ideals. Thus (p) is maximal, so (p) is prime,
and so p is prime, so (3) holds, and we have a UFD.

18.4 Euclidean domains

Definition 18.4.1. Let R be an integral domain. A Euclidean norm on R is a function
δ : R \ {0} → N such that for all a ∈ R and for all b ∈ R \ {0}, there exists q, r ∈ R with

(i) a = bq + r

(ii) if r 6= 0, then δ(r) < δ(b).

Definition 18.4.2. A Euclidean domain is an integral domain with a Euclidean norm.

Proposition 18.4.3. ED ⇒ PID.

Our friend brevity is here once again, especially in the proof of this proposition, which
we omit.

Examples. 1. Z is a ED with δ(a) = |a|.

2. If F is a field, then F [x] is a ED with δ(a) = deg(p(x)) ∈ N.

3. Z[i] is a ED with δ(z) = |z|2 ∈ N.
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19 November 3rd

19.1 Integrality

Definition 19.1.1. Let R ⊆ S be integral domains and α ∈ S. We say that α is integral
over R if there is a monic polynomial p(x) ∈ R[x] such that p(α) = 0. Recall that a monic
polynomial is one with leading coefficient 1.

Remark. If α ∈ R, then α is integral over R; it is the root of x− α ∈ R[x], for example.

Example.
√

2 ∈ R is integral over Z, because it is the root of x2 − 2 ∈ Z[x].

Definition 19.1.2. Let R be an integral domain and let F be its field of fractions. We say
that R is integrally closed if the only elements of F that are integral over R are elements of
R.

Example. Z is integrally closed. Indeed, let α ∈ Q be integral over Z, and let p(x) =
xn + an−1x

n−1 + · · ·+ a1x+ a0 ∈ Z[x] be such that p(α) = 0. Write α = a
b

with a, b ∈ Z and
gcd(a, b) = 1. Then multiplying out by b, we have

an + an−1a
n−1b+ · · ·+ a1ab

n−1 + a0b
n = 0

⇒ an ≡ 0 (mod b),

so b|an. Since gcd(a, b) = 1, we then know that b = ±1. What is the reasoning here? Well,
if b 6= ±1, there exists a prime p|b. Thus p|an ⇒ p|a⇒ p| gcd(a, b) = 1, a contradiction.

Since b = ±1, a ∈ Z.
As a corollary,

√
2 6∈ Q, because

√
2 6∈ Z.

Proposition 19.1.3. Any UFD is integrally closed. The same argument works.

Example. Z[
√
−3] = {a+ b

√
−3 | a, b ∈ Z}, and Q[

√
−3] = {a+ b

√
−3 | a, b ∈ Q}. Q[

√
−3]

is the field of fractions of Z[
√
−3]. Let ω = −1+

√
−3

2
. Then ω2 + ω + 1 = 0, so ω is integral

over Z[
√
−3]. But w ∈ Q[

√
−3]/Z[

√
−3], because 1

2
∈ Q/Z. Thus Z[

√
−3] is not closed, so

it is not a UFD.

In fact, Z[
√
−3] is a nice small example of an integral domain that is not a UFD.

19.2 Quadratic integers

Given α ∈ C, let Q(α) be the smallest subfield of C containing α, and Z[α] be the smallest
subring of C containing α.

Definition 19.2.1. α ∈ C is a quadratic integer if there exists a monic polynomial p(x) ∈
Z[x] of degree 2 such that p(α) = 0: α2 +mα + n = 0, for some m,n ∈ Z.
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If α is a quadratic integer, then Q(α) = {a+bα | a, b ∈ Q} and Z[α] = {a+bα | a, b ∈ Z}.
Note that Q(α) = Q(

√
d) where d = m2− 4n ∈ Z. We can write d = K2D where K ∈ Z

and D is square-free (a product of distinct primes with no repetition). Then Q(
√
d) =

Q(
√
D). From now on, assume that D is squarefree and look at Q(

√
D). Let β = −1+

√
D

2
∈

Q(
√
D). Then β2 + β + D−1

4
= 0.

If D ≡ 1 (mod 4), then β is integral over Z, but β 6∈ Z[
√
D]. Hence in this case Z[

√
D]

is not integrally closed, and thus not a UFD.

Definition 19.2.2. D is assumed to be squarefree. The ring of quadratic integers of dis-
criminant D is

O(D) =

{
Z[
√
D] if D ≡ 2, 3 (mod 4)

Z
[
−1+

√
D

2

]
if D ≡ 1 (mod 4)

.

O(−1) = Z[i] is the ring of Gaussian integers; O(−3) = Z
[
−1+

√
−3

2

]
is the ring of

Eisenstein integers, with ω = −1+
√
−3

2
. O(−2) still definitely exists, it just doesn’t have a

fancy name.

Fact 19.2.3. · O(D) is integrally closed.

· O(D) is a UFD ⇐⇒ it is a PID.

· The Stark-Heegner Theorem tells us that for D < 0, O(D) is a UFD if and only
if D ∈ {−1,−2,−3,−7,−11,−19,−46,−67,−163}. (side note: what the heck?!).
Moreover, O(D) is a euclidean domain if and only if D ∈ {−1,−2,−3,−7,−11}.
This is hard to prove. Also, what the heck?!

· The class number h(D) is an invariant that measures how far O(D) is from being a
UFD. h(D)→ +∞ as D → −∞.

· O(D) is always a Dedekind domain, and any domain that is both a UFD and Dedekind
is a PID.

So we have the following concept diagram, with inclusion going from right to left.

Fields ED PID

DD

UFD

ID

Where given F a field, we have:

· Z, F[x], Z[i], Z[ω] are ED’s

· O(−19) is a PID
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· O(−5) and O(10) are DD’s

· Z[x1, x2, . . . ] and Z[x1, . . . , xn] are UFD’s.

Conjecture 19.2.4 (Gauss). O(D) is a UFD for infinitely many values D > 0.

There is also a theorem, depending on the generalized Riemann Hypothesis, saying that
if it holds, then for D > 0, O(D) is Euclidean exactly when it is a UFD.

19.3 Polynomial rings over integral domains

· If R is an integral domain, then R[x] is an integral domain as well. Moreover, deg(f ·
g) = deg(f) + deg(g). Also, f(x) ∈ R[x]× ⇐⇒ f(x) = u, with u a unit in R.

· If F is a field, then F [x] is a Euclidean domain, with δ(f(x)) = deg(f). In particular,
it is a PID.

· R is a PID 6⇒ R[x] is a PID. As a counterexample, Z[x] is not a PID. The ideal
generated by 2 and x is not principal.

Our goal is to show that if R is a UFD, then R[x] is a UFD.

A brief preview of that which is to come: Given a UFD R, let F be the field of
fractions of R. We will relate factorizations and irreducibles in F [x] to factorizations and
irreducibles in R[x]. The following are the key facts to keep in mind:

· If f(x) ∈ R[x] factors in F [x], then you can juggle constants to get a factorization in
R[x].

· Irreducibles in R[x] are the same as in F [x], except for “obvious” differences involving
constants.

Example. 1. Consider f(x) = 8x2 + 2x − 15 ∈ Z[x]. Roots are 5
4

and −3
2

, so f(x) =
8(x− 5

4
)(x+ 3

2
) in Q[x]. So the point is, we can break the 8 into two pieces and bring it

inside, to make both factors integral. In this case, we have f(x) = 4(x− 5
4
) ·2(x+ 3

2
) =

(4x− 5)(2x+ 3). We want to prove that this is always the case. The fact that this can
be done is called Gauss’s Lemma, which we will prove next time.

2. f(x) = 2 ∈ Z[x] and g(x) = 2x+ 4 ∈ Z[x].

(a) f(x) is irreducible in Z[x] but not in Q[x], because it’s a unit in Q[x].

(b) g(x) is irreducible in Q[x] but not in Z[x]. In Z[x], we can factor out the 2; in Q[x],
factoring out the 2 doesn’t make g not irreducible, because 2 is a unit in Q[x].

Next time, we will prove the one, the only, the ultimate...
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Theorem 19.3.1 (Gauss’s Lemma). Let R be a UFD, and let F be the field of fractions of
R. Let h(x) ∈ R[x]. Suppose that there exists f(x), g(x) ∈ F [x] such that h(x) = f(x)g(x).
Then there exists A,B ∈ F× such that

(i) f̃(x) = Af(x) ∈ R[x], and g̃(x) = Bg(x) ∈ R[x]

(ii) h(x) = f̃(x)g̃(x)

20 November 5th

20.1 Gauss’s Lemma: A Continuation Of The Study Of UFD’s

Theorem 20.1.1 (Gauss’s Lemma). Let R be a UFD, and let F be the field of fractions of
R. Let h(x) ∈ R[x]. Suppose that there exists f(x), g(x) ∈ F [x] such that h(x) = f(x)g(x).
Then there exists A,B ∈ F× such that

(i) f̃(x) = Af(x) ∈ R[x], and g̃(x) = Bg(x) ∈ R[x]

(ii) h(x) = f̃(x)g̃(x)

Proof. ∃d 6= 0 in R such that dh(x) = f1(x)g1(x), where

· f1(x), g1(x) ∈ R[x]

· f1(x) and g1(x) are multiples of f(x) and g(x).

If d ∈ R×, multiply by 1
d
∈ R×, and we’re done. Otherwise, d factors into irreducibles (=

primes) of R. We claim that if p is a prime in R that divides d, then either p divides all
coefficients of fi(x) or all coefficients of g1(x). We can then cancel p from both sides.

To prove this claim, set R = R/(p), which is an integral domain because p is a prime.
Consider the homomorphism R[x] → R[x] given by reducing all coefficients modulo p. We
have dh(x) = f1(x)g1(x), so 0 = f1(x)g1(x).

Recall (from homework 10), that given a, b in a UFD R, gcd(a, b) exists, and it is unique
up to units.

Fact 20.1.2. If d ∈ gcd(a, b), then a = da′, b = db′, with gcd(a′, b′) = 1.

We can also use gcd(a1, . . . , an).

Definition 20.1.3. A polynomial f(x) =
∑n

i=0 aix
i ∈ R[x]\{0} is primitive if gcd(a0, a1, . . . , an) ∈

R×.

Given any f(x) ∈ R[x]\{0}, we can write f(x) = c(f)·f1(x) where c(f) ∈ gcd(a0, . . . , an)
and f1(x) is primitive. c(f) is called the constant of f(x).

Corollary 20.1.4. Let R be a UFD, and F be its field of fractions. Let h(x) ∈ R[x] ⊆ F [x].
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1. Suppose deg(h) = 0. Write h(x) = p ∈ R. Then h(x) is irreducible in R[x] if and only
if p is irreducible in R.

2. Suppose deg(h) ≥ 1. Then h(x) is irreducible in R[x] if and only if h(x) is irreducible
in F [x] and h(x) is primitive, i.e. h(x) = 2x+ 4.

Proof. 1. Use R[x]× = R×. This is left as an exercise.

2. (⇒): We have h(x) = c(h) · h1(x). h is irreducible, so c(h) or h1(x) must be in R[x]×.
But deg(h1) = deg(h) ≥ 1, so h1(x) 6∈ R[x]×. Thus c(h) ∈ R[x]× = R×, so h(x) is
primitive.

Suppose that h(x) = f(x)g(x) with f(x), g(x) ∈ F [x]. Gauss tells us that h(x) =

f̃(x)g̃(x), with f̃(x), g̃(x) ∈ R[x]. deg(f̃) = deg(f) and deg(g̃) = deg(g), so f̃(x) or
g̃(x) ∈ R[x]× = R×, so f(x) or g(x) ∈ F×.

(⇐): Suppose h(x) = f(x)g(x) with f(x), g(x) ∈ R[x] ⊆ F [x]. Then f(x) or g(x) ∈
F [x]× = F×. Suppose the former; then f(x) = a ∈ R, so a|c(h) ∈ R×, so a ∈ R×.

Examples. 1. Let a, b ∈ R, with a 6= 0. The linear polynomial ax+ b is irreducible in R[x]
if and only if gcd(a, b) 3 1.

2. For any m ≥ 0, xm + y is irreducible in K[x, y], with K a field. Indeed, y + xm is a
linear polynomial in K[x][y] and 1 ∈ gcd(1, xm).

But what was our motivation behind this? Well, we wanted the following theorem.

Theorem 20.1.5. Let R be a UFD. Then R[x] is a UFD.

Proof. We will show existence of factorizations into irreducibles, and we know that every
irreducible is prime from the homework. This is sufficient.

Let f(x) ∈ R[x], f(x) 6= 0, f(x) 6= R[x]×. We write f(x) = c(f) · f1(x) with f1 primitive.
Either c(f) ∈ R× or we can factor c(f) =

∏
i∈I pi into irreducible elements in R. By the

corollary, each pi is also irreducible in R[x]. So, it suffices to factor f1(x) into irreducibles in
R[x]. Let F be the field of fractions. Since F [x] is a UFD (in fact, a ED), we can factor, so
f1(x) = p1(x) · · · pn(x) into irreducibles in F [x]. Applying Gauss’s Lemma several times, we
obtain that f1(x) = p̃1(x) · · · p̃n(x) with p̃i(x) ∈ R[x] a nonzero multiple of pi(x).

Hence p̃i(x) ∼ pi(x) in F [x], so p̃i(x) is irreducible in F [x]. Since c(p̃i)|c(f1), p̃i(x) must
be primitive. By the corollary, each p̃i(x) is irreducible in R[x].

20.2 Modules over a PID

Definition 20.2.1. Let R be an integral domain and M an R-module. The rank of M is

rk(M) = max{|S| | S a linearly independent subset of M}.
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Proposition 20.2.2. Suppose M ∼= Rr with r <∞ (Note that R is still an integral domain).
Then

(i) rk(M) = r

(ii) Any basis of M has r elements.

Proof. (i) Assume that M = Rr = R⊕ · · ·⊕R. Let F be the field of fractions of R. Then
M ⊆ F r = F ⊕ · · · ⊕ F . We claim that if S ⊆ M is linearly independent over R, it’s
also linearly independent over F . Take

∑
s∈S ass = 0 with as ∈ F for all s ∈ S. Choose

some d ∈ F× such that das ∈ R for all s. Then
∑

s∈S dass = 0, so we have a linear
dependence in R, so das = 0 for all s; since we’re in a domain and d ∈ F×, as = 0 for
all s.

Thus rk(M) ≤ dimF F
r = r.

But {e1, . . . , er} is a basis of M over R, so the rank rk(M) ≥ r, so rk(M) = r.

(ii) Suppose T is a basis of M , and |T | = t. Then M ∼= R(T ) = Rt, so by (i) rk(M) =
rk(Rt) = t, so r = t. One has to be careful to check that t is finite - this follows because
t ≤ r, since a basis is linearly independent and we can check the definition of rank.

Remark. If R is a PID, every non-zero ideal is a free R-module of rank 1.

Proof. I = (a), a 6= 0. So {a} generates I by definition. If ra = 0, then r = 0, because R is
a domain, so clearly {a} is linearly independent. Thus it is a basis, so we have a free module
of rank 1.

Lemma 20.2.3. R a general ring. Let M be a left R-module and N ≤ M . Suppose M/N
is a free R-module. Then M ∼= N ⊕M/N .

Proof. Exercise.

Proposition 20.2.4. Let R be a PID. Let M be a free R-module of rank r <∞ and N ≤M .
Then N is free and of rank s ≤ r.

Proof. Assume M = Rr. We proceed by induction on r.
Let r = 1 (if r = 0, there’s really nothing going on). Then N is a submodule of R, so it

is an ideal. Thus N is free of rank 1 if N is nonzero, and of rank 0 if it is the zero ideal. So
we are fine.

Let r ≥ 2. Consider ϕ : Rr → R be the projection onto the last coordinate, with
(a1, . . . , ar) 7→ ar. Let I = ϕ(N) ≤ R, an ideal of R. By the base case, I is free of rank 1 or
0.
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ker ϕ Rr R

N ∩ ker ϕ N I

f

ker ϕ = {(a1, . . . , ar) | ar = 0} ∼= Rr−1, which is free. By the induction hypothesis,
N ∩ ker ϕ is free of rank s ≤ r − 1. Since I is free, by the lemma,

N ∼= (N ∩ ker ϕ)⊕ I
∼= Rs ⊕Rε ∼= Rs+ε

Thus s+ ε ≤ r − 1 + 1 = r.

21 November 10th

21.1 Last time: PIDs

Let M be a free R-module for R a PID and N ≤M . Then recall that N is free.

Remark. 1. Let W ≤ V vector spaces. Given a basis of V , does there exist a subset which
is a basis of W? Not necessarily. For example, if V is R2 under any basis, take W
diagonal space.

But there is some basis of V containing a basis of W .

2. Is the previous fact true for general free R-modules? Well, no. Take R = Z,M =
Z, N = 2Z. Or, take R = Z, M = Z2, and N = {(a, b) | a = b even}.
But, there is a basis of M that is “stacked upon” a basis of N . What do we mean by
that? Well. This calls for the stacked basis theorem.

Theorem 21.1.1 (Stacked basis theorem). Let R be a PID, and let M be a free R-module
with rank r <∞, and N ≤M . Then there exist bases {m1, . . . ,mr} of M and {n1, · · · , ns}
of N (for some s with 0 ≤ s ≤ r) and elements a1, . . . , as ∈ R \ {0} such that

(i) ni = ai ·mi for all i = 1, . . . , s.

(ii) a1|a2| · · · |as.

Before we prove this, here is a corollary.
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Corollary 21.1.2 (Structure theorem for finitely generated modules over a PID, invariant
factor version). Let R be a PID, M a finitely generated R-module. Then there exist r, s ≥ 0
and elements a1, . . . , as ∈ R such that ai 6= 0, ai nonunits for all i, and

(i) M ∼= Rr ⊕R/(a1)⊕ · · · ⊕R/(as)

(ii) a1|a2| · · · |as

Proof. Let {x1, . . . , xk} be generators of M . There is a projection π : Rk → M , with
π(ei) = xi. Then M ∼= Rk/N , where N = ker π. Choose stacked bases {m1, . . . ,mk} of Rk

and {n1, . . . , nh} of N . ni = ai ·mi for some ai ∈ R \ {0}; a1|a2| · · · |ah.
Then Rk = Rm1 ⊕ · · · ⊕Rmk, and N = Rn1 ⊕ · · · ⊕Rnh, so Rk/N = Rm1/Rn1 ⊕ · · · ⊕

Rmh/Rnh ⊕ · · · ⊕Rmk. In general, if Ni ≤Mi, then ⊕Mi/⊕Ni
∼= ⊕(Mi/Ni).

Now, R ∼= Rmi via 1 7→ mi. This map sends a 7→ a ·mi. Hence it sends ai 7→ ai ·mi = ni,
and thus (ai) 7→ Rni, so R/(ai) ∼= Rmi/Rni, and M ∼= Rk/N ∼= R/(a1) ⊕ · · · ⊕ R/(ah) ⊕
R⊕ · · · ⊕R. If some ai ∈ R×, then (ai) = R, so the quotient is 0 and we can simply remove
it from the sum. This then gives us the desired result.

There are a couple of comments about this that lead to another version of the structure
theorem.

Given a ∈ R, a 6= 0, a nonunit. Write a ∼ pα1
1 · · · p

αk
k with each pi irreducible, and pi and

pj nonassociate for i 6= j, and αi ≥ 0. Then 1 ∈ gcd(pα1
1 , p

αj

j ), so (pαi
i ) + (p

αj

j ) = R. Also,

(a) = (pα1
1 ) · · · (pαj

j ).
By the Chinese Remainder Theorem, there is an isomorphism of (commutative) rings

R/(a) ∼= R/(pα1
1 )× · · · ×R/(pαk

k ),

with x 7→ (x, . . . , x). This is also an isomorphism of R-modules.

Definition 21.1.3. A partition λ = (l1, . . . , ln) is a sequence of positive integers such that
l1 ≥ · · · ≥ lh. h is the number of parts.

Given a partition λ and an irreducible p ∈ R, let R/pλ = R/(pl1) ⊕ · · · ⊕ R/(pln). We
then have

Corollary 21.1.4 (Structure theorem, elementary divisor version). Let R be a PID, and M
a finitely generated R-module. Then there exists r ≥ 0 and irreducibles p1, . . . , pk ∈ R and
partitions λ1, . . . , λk (of various lengths) such that

M ∼= Rr ⊕R/pλ11 ⊕ · · · ⊕R/p
λk
k .

Proof. We have
M ∼= Rr ⊕R/(a1)⊕ · · · ⊕R/(as),

by the previous corollary.
We write as ∼ pαs1

1 · · · pαsk
k , then the same for as−1, and so on, up to a2 ∼ pα21

1 · · · pα2k
k and

a1 ∼ pα11
1 · · · pα1k

k . Since we’re allowing some of the αi’s to be 0, we can make sure we always
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have a square matrix. Each pi is irreducible and αsi ≥ · · · ≥ α2i ≥ α1i ≥ 0, because of the
divisibility condition on the ai’s. Let λi be this sequence, with any tailing 0’s removed. The
remarks above concerning partitions, and rearrangement, give the desired result. Specifically,
R/(ai) ∼= R/(pαi1

1 )⊕ · · · ⊕R/(pαik
k ), which we can plug in and rearrange.

Remark. Both theorems concerned existence. But in fact, for both results, uniqueness holds.
The integer r in both cases is the rank of the module M , so it is uniquely determined by
the module M . The elements ai are uniquely determined by M , up to associates. They are
called the invariant factors of M ; the irrducibles pi and the partitions λi are also uniquely
determined. The p

αij

i are the elementary divisors.

So now to turn to the proof of the Stacked Basis Theorem.

21.2 Stacked Basis Theorem

We repeat, for convenience, the statement of the theorem here.

Theorem 21.2.1 (Stacked basis theorem). Let R be a PID, and let M be a free R-module
with rank r <∞, and N ≤M . Then there exist bases {m1, . . . ,mr} of M and {n1, · · · , ns}
of N (for some s with 0 ≤ s ≤ r) and elements a1, . . . , as ∈ R \ {0} such that

(i) ni = ai ·mi for all i = 1, . . . , s.

(ii) a1|a2| · · · |as.

We need some preliminary discussion on dual modules. Let R be a ring and let M be a left
R-module. Let M∗ = HomR(M,R), the set of left R-module homomorphisms ϕ : M → R.

Then

· M∗ is a right R-module via (ϕ · a)(x) = ϕ(x)a, for all ϕ ∈ M∗, a ∈ R, x ∈ M . Note
(ϕ · a)(bx) = ϕ(bx)a = bϕ(x)a = b(ϕ · a)(x), so ϕ · a is a homomorphism of left
R-modules.

· If R is commutative (which, let’s be honest, it will be), then (ϕ · a)(x) = ϕ(x)a =
aϕ(x) = ϕ(a · x), so we can afford to be careless with where we put our variables.

· Given x ∈M , let εx : M∗ → R be εx(ϕ) = ϕ(x). Then εx is a homomorphism of right
R-modules.

· Suppose now that M is free of rank r and {x1, . . . , xr} is a basis. For each i = 1, . . . , r,

define πi : M → R by πi

(∑r
j=1 aj · xj

)
= ai. This is well-defined because we had a

basis of xi’s. πi is a homomorphism of left R-modules, so πi ∈M∗.

With the πi’s above, we have the following useful lemma.
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Lemma 21.2.2. {π1, . . . , πr} form a basis of M∗. In particular, M∗ is free. We say that
{π1, . . . , πr} is the dual basis of {x1, . . . , xr}. Often, we write x∗i instead of πi. This is
misleading! πi depends on the whole basis. But, go ahead and use this terribly misleading
and downright devilish notation if you feel so inclined. Heathens.

Proof. Given x ∈ M , write x =
∑r

j=1 ajxj =
∑r

j=1 πj(x)xj. Now, given ϕ ∈ M∗, we have
ϕ(x) =

∑r
j=1 πj(x)ϕ(xj), with ϕ(xj) ∈ R. So ϕ(x) =

∑r
j=1(πj · ϕ(xj))(x), for all x ∈ M .

Thus ϕ =
∑r

j=1 πj · ϕ(xj). So {π1, . . . , πr} generate M∗. But we now must show linear
independence. Suppose

∑r
i=1 πi · ai = 0 for some ai ∈ R. Then we evaluate on xj:

0 =
r∑
i=1

(πi · ai)(xj) =
r∑
i=1

πi(xj)ai = aj.

Thus linear independence holds.

22 November 12th

22.1 Stacks on stacks on stacks

Let M be a free R-module of rank r, with {x1, . . . , xr} a basis for M and {π1, . . . , πr} the
dual basis for M∗. Then for all x ∈ M , x =

∑r
i=1 πi(x) · xi. This is known as the Fourier

expansion, since that’s pretty much what’s happening. Now for, finally, the stacked basis
theorem.

We repeat, for convenience, the statement of the theorem here.

Theorem 22.1.1 (Stacked basis theorem). Let R be a PID, and let M be a free R-module
with rank r <∞, and N ≤M . Then there exist bases {m1, . . . ,mr} of M and {n1, · · · , ns}
of N (for some s with 0 ≤ s ≤ r) and elements a1, . . . , as ∈ R \ {0} such that

(i) ni = ai ·mi for all i = 1, . . . , s.

(ii) a1|a2| · · · |as.

Proof. If N = {0}, any basis of N works. The statement is vacuously true, like most of my
jokes. Now assume that N 6= {0}. Then {ϕ(N) | ϕ ∈ M∗} is a collection of ideals of R; it
is nonempty since M∗ 6= ∅ (at least 0 ∈ M∗). R is a PID, so it is noetherian and there is
an ideal ϕ1(N) that is maximal in this collection (for the motivation behind choosing this
ideal, see the remark following this proof). We claim that ϕ1(N) 6= 0.

Proof of claim that ϕ1(N) 6= 0. N 6= {0}, so there exists y ∈ N , y 6= 0. Write
y =

∑r
i=1 ai · xi. Then there exists i with ai 6= 0, so πi(y) = ai 6= 0, so πi(N) 6= {0}. Thus

ϕ1(N) 6= {0}.
R is a PID, so ϕ1(N) = (a1) for some a1 ∈ R, a1 6= 0. Choose n1 ∈ N such taht

ϕ1(n1) = a1. We now claim that for every ϕ ∈M∗, a1|ϕ(n1).
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Proof of claim that a1|ϕ(n1). Consider ε : M∗ → R, ε(ϕ) = ϕ(n1) for fixed n1. We want
to show that a1 divides every element in im ε, or equivalently that im ε ⊆ (a1). Let im ε = (b);
choose ϕ0 ∈ M∗ such that ε(ϕ0) = b. We then have a1 = ϕ1(n1) = ε(ϕ1), so a1 ∈ im ε,
so (a1) ⊆ im ε. We wanted the opposite inclusion. But b = ε(ϕ0) = ϕ0(n1) ∈ ϕ0(N), so
(b) ⊆ ϕ0(N). Thus (a1) ⊆ im ε = (b) ⊆ ϕ0(N), so by maximality (a1) = im ε = (b) = ϕ0(N).

Now we claim that there exists m1 ∈M with n1 = a1 ·m1.

Proof of claim that such an m1 exists. By the previous claim, a1|πi(n1) for all i, so
πi(n1) = a1bi for some b1 ∈ R, for all i. Then

n1 =
r∑
i=1

πi(n1) · xi =
r∑
i=1

a1bi · xi = a1

(
r∑
i=1

bi · xi

)
.

Define m1 as the last sum, i.e. m1 =
∑r

i=1 bi · xi.
Now a1 = ϕ1(n1) = ϕ1(a1 ·m1) = a1ϕ1(m1). But R is an integral domain, so ϕ1(m1) = 1.

So we have

M R

N (a1)

ϕ1

ϕ1|N

with m1 7→ 1, so M/ker ϕ1
∼= R (free), and n1 7→ a1 ⇒ N/ker ϕ1|N ∼= (a1) (also free).

Since free quotients split (not proven here but it is a fun and true fact) we deduce that
M = ker ϕ1 ⊕ Rm1 and N = ker ϕ1|N ⊕ Rn1. This gives us a new pair of modules, and we
can proceed by induction. In particular, the direct sum decompostions reduce the problem
to finding a basis for ker ϕ1 and ker ϕ1|N , both of which are free and have rank one smaller.
Throwing in m1 and n1 gives us the desired bases.

More precisely, applying the induction hypothesis to the free module ker ϕ1 and the
submodule ker ϕ1|N , we obtain bases {m2, . . . ,mr} of ker ϕ1 and {n2, . . . , ns} of ker ϕ1|N ,
such that ni = ai ·mi for all i = 2, . . . , s. Then {m1, . . . ,mr} and {n1, . . . , ns} of M and N
respectively. (i) is satisfied easily, but for (ii) we still need to show that a1|a2.

Since {m1, . . . ,mr} is a basis of M , there is ϕ ∈ M∗ with ϕ(m1) = ϕ(m2) = 1, and
ϕ(mi) has no restrictions for all i ≥ 3. Then ϕ(n1) = ϕ(a1 · m1) = a1, so a1 ∈ ϕ(N), so
(a1) ⊆ ϕ(N), so (a1) = ϕ(N)¿ But also, ϕ(n2) = ϕ(a2 ·m2) = a2, so a2 ∈ ϕ(N) = (a1), so
a1|a2.

Remark. Suppose there exists a pair of stacked bases for N ≤M . Take ϕ ∈M∗ and n ∈ N ;
write n =

∑s
i=1 bi · ni =

∑s
i=1 biai ·mi. Then ϕ(n) =

∑s
i=1 biai · ϕ(mi) ∈ (ai) ⊆ (a1), so the

whole expression is in (a1). This tells you that ϕ(N) ⊆ (a1).
Also, π1(n1) = π1(a1 ·m1) = a1, so (a1) ⊆ π1(N), and in particular (a1) = π1(N). Thus

(a1) is the largest of all the ideals ϕ(N) as ϕ ranges in M∗.
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Note that the proof is nonconstructive because of that one time we used properties of
noetherian rings. There is a constructive proof of Smith Normal form, which is useful because
computers, but it’s not this proof and it’s more of a pain gruntwork.

Now we move on to field extensions.

22.2 Field characteristic

Let F be a field. Recall that Z is the initial ring, so there is a unique ring homomorphism
ϕ : Z → F . Explicitly, ϕ(n) = 1 + · · · + 1, with n summands, for n ≥ 0, and with −1
summands for negative n. im ϕ is a subring of a field, so im ϕ is an integral domain. Thus
ker ϕ is a prime ideal of Z, so ker ϕ = {0} or (p) for some prime p. Then im ϕ ∼= Z or
Zp = Fp. This leads to the definition of field characteristic.

Definition 22.2.1. Using F and ϕ as defined above, the characteristic of F , denoted charF ,
is 0 if im ϕ ∼= Z, and p if im ϕ ∼= Zp.

· If charF = p, F contains a subfield isomorphic to Fp.

· If charF = 0, ϕ : Z → F is injective. By the universal property of fields of fractions,
ϕ extends to Q, with ϕ : Q→ F . The extension is still injective (any homomorphism
from a field to a nontrivial ring is injective). So F contains a subfield isomorphic to Q.

So every field F contains a copy either of Fp or of Q. This copy is called the prime
subfield of F . This is the smallest subfield of F .

22.3 Extensions and degree

Definition 22.3.1. A field extension is a pair consisting of a field K and a subfield F . We
write F ≤ K or K|F or F—K

In this case, K is a vector space over F and is in fact an F -algebra.

Definition 22.3.2. The degree of the extension is [K : F ] = dimF K (which could be
infinite).

A ring extension and its degree are defined similarly. Yay field extensions! What can we
say about them?

Proposition 22.3.3. Let F ≤ L ≤ K be field extensions. Then

(a) If [L : F ] <∞ and [K : L] <∞, then [K : F ] = [K : L][L : F ] <∞.

(b) [K : F ] =∞ ⇐⇒ [L : F ] =∞ OR [K : L] =∞.

Proof. (a) Let {α1, . . . , αn} be an F basis of L. and {β1, . . . , βm} be an L-basis for K. Then
check that {αiβj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for K over F .
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(b) The (⇒) implication follows from (a); if [K : F ] =∞, it can’t be true that both of the
smaller degrees are finite. Now consider (⇐); this is easy, considering bases of K.

Definition 22.3.4. Given a ring extension R ≤ S and α ∈ S, let R[α] be the smallest
subring of S containing both R and α. Given F ≤ K and α ∈ K, F [α] is then defined
analogously, as a subring. In addition, let F (α) be the smallest subfield of K containing F
and α.

The two definitions for a field may or may not be equal. But we do know that F ≤
F [α] ≤ F (α) ≤ K. F (α) is the field of fractions of F [α]. Explicitly,

F [α] = {f(α) ∈ K | f(x) ∈ F [x]},

and
F (α) = {f(α)/g(α) ∈ K | f(x), g(x) ∈ F [x], g(α) 6= 0}.

23 November 17th

23.1 Field Extensions, extended

We have, from last time, F ≤ F [α] ≤ F (α) ≤ K, with α ∈ K, F [α] the smallest subring of
K containing F and α, and F (α) the smallest subfield.

Definition 23.1.1. We say that K is a simple extension of F if ∃α ∈ K such that K = F (α).
In this case we also say that α is a primitive element for the extension K|F , and that K is
obtained from F by adjoining α.

Given K|F and α ∈ K, the universal property of the polynomial algebra F [x] yields a
homomorphism of F -algebras, ϕ : F [x]→ K such that ϕ(x) = α. We have ϕ(a) = a for all
a ∈ F and ϕ(f(x)) = f(α) for all f(x) ∈ F [x], so im ϕ = F [α]. im ϕ is a subring of K, so
im ϕ is an integral domain, so ker ϕ is a prime ideal in F [x]. But then ker ϕ = {0} or (p(x)),
for some irreducible p(x) ∈ F [x], because F [x] is a PID. Moreover, F [x]/ker ϕ ∼= F [α].

If ker ϕ = {0}, we say α is transcendental over F . Equivalently there exists no g(x) ∈
F [x], g(x) 6= 0, such that g(α) = 0. In this case, F [x] ∼= F [α] and this extends to F (x) ∼=
F (α). In this setting,

F (x) = {f(x)/g(x) | f(x), g(x) ∈ F [x], g(x) 6= 0}

is the field of rational functions.
If ker ϕ 6= {0}, we say that α is algebraic over F . Equivalently, there is a nonzero polyno-

mial g(x) ∈ F [x] with g(α) = 0. In this case, there exists an irreducible p(x) ∈ F [x] unique
up to scalars such that ker ϕ = (p(x)), and we have F [x]/(p(x)) ∼= F [α]. p(x) is irreducible,
so (p(α)) is maximal; so F [α] is a field. Thus F (α) = F [α] = {f(α) | f(x) ∈ F [x]}. The
unique monic irreducible p(x) ∈ F [x] such that p(α) = 0 is the minimum polynomial of α
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over F (or minimal polynomial, but minimum is better, because the polynomial is unique).
We denote the minimum polynomial by mα,F (x) or irr(α, F )(x). The degree of mα,F (x) is
the degree of α over F , degα.

Proposition 23.1.2. Given K|F , let α ∈ K be algebraic over F . Then degα = [F (α) : F ].

Proof. By the preceding discussion, F (α) ∼= F [x]/(p(x)), where p(x) = mα,F (x). This is an
isomorphism of F -algebras.

We claim that if degα = n, then {1, x, x2, . . . , xn−1} is an F -basis for F [x]/(p(x)).

Corollary 23.1.3. Let K|F and α ∈ K. α is algebraic over F ⇔ [F (α) : F ] <∞.

Proof. (⇒) : is shown by the proposition.
(⇐) : If α is transcendental, then F (α) ∼= F (x) ≥ F [x]. Then [F (α) : F ] ≥ dimF F [x] =

∞.

23.2 Finite, algebraic, and finitely generated extensions

Definition 23.2.1. We say K|F is finite if [K : F ] < ∞. It is algebraic if every α ∈ K is
algebraic over F . It is transcendental if it is not algebraic, or if there exists some α ∈ K
that is transcendental.

Proposition 23.2.2. K|F is finite ⇒ K|F is algebraic.

Proof. Let α ∈ K, so we have F ≤ F (α) ≤ K. Thus [F (α) : F ] ≤ [K : F ] ≤ ∞. Thus α is
algebraic over F .

Thus, F is algebraic.

Assume we have F ≤ K and α1, . . . , αn ∈ K. We define F [α1, . . . , αn] to be the smallest
subring of K containing F and α1, . . . , αn. Similarly, we have F (α1, . . . , αn), the smallest
subfield of K containing F and α1, . . . , αn.

We have F [α, β] = F [α][β]. Similarly, F [α1, . . . , αn] = F [α1, . . . , αn−1][αn], and so on.

Definition 23.2.3. If there exists α1, . . . , αn ∈ K such that K = F (α1, . . . , αn), we say that
K|F is finitely generated.

Proposition 23.2.4. Let K|F and α1, . . . , αn ∈ K be such that αi is algebraic over F (α1, . . . , αi−1)
for all i ≥ 1. Then F (α1, . . . , αn)|F is finite, and F (α1, . . . , αn) = F [α1, . . . , αn]. In partic-
ular, this holds when each αi is algebraic over F .

Proof. By induction on n ≥ 0. For n = 0, this is trivial.
Assume n ≥ 1. αn is algebraic over L = F (α1, . . . , αn−1), so L(αn) = L[αn] and [L(α) :

L] <∞. By the induction hypothesis, L|F is finite and L = F [α1, . . . , αn−1]. Thus [L(αn) :
F ] = [L(αn) : L][L : F ] <∞ and F (α1, . . . , αn) = L(αn) = L[αn] = F [α1, . . . , αn].

Corollary 23.2.5. K|F is finite if and only if K|F is algebraic and finitely generated.
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Proof. (⇐) : By the proposition.
(⇒) : If K|F is finite, then it is algebraic. Pick α ∈ K \ F ; then [F (α) : F ] > 1. If

K = F (α), we’re done; if not, pick β ∈ K \ F (α). Then [F (α)(β) : F (α)] > 1, so these
dimensions are always increasing. The process must terminate, because K|F is finite.

Definition 23.2.6. Given K|F , the algebraic closure of F in K is the set ΩK(F ) = {α ∈
K | α is algebraic over F}.

Corollary 23.2.7. ΩK(F ) is a subfield of K (containing F ).

Proof. Let α, β ∈ K be algebraic over F . We have to show that α ± β, αβ, and α/β (with
β 6= 0) are algebraic over F . But all these elements lie in F (α, β), which is algebraic over
F by the above proposition and corollary, so all elements it contains are algebraic, so we’re
done.

Remark (Variant of the polynomial UMP). Let ϕ : F → R be a homomorphism of rings
from a field F to some ring R, and α ∈ R. In that case there is a unique homomorphism of
rings F [x]→ R extending ϕ and sending x to α.

F [x] R

F

ϕ

ϕ

In particular, a homomorphism of fields ϕ : F → F̃ extends to a homomorphism of rings
sending x to x.

F [x]

F

F̃ [x]

F̃ϕ

ϕ

23.3 Root extension

Proposition 23.3.1. Let F be a field and p(x) ∈ F [x] irreducible. Let K = F [x]/(p(x))
and α = x ∈ K. Then

(1) K is a field, F ↪→ K and p(α) = 0.

(2) If K ′ is another field with F ↪→ K ′ and α′ ∈ K ′ such that p(α′) = 0, then there exists
a unique homomorphism of fields ϕ : K → K ′ such that ϕ|K is the identity, ϕ(α) = α′

and in general the diagram below commutes.
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α ∈ K K ′ 3 α′

F

ϕ

Proof. (1) The map F ↪→ F [x] � F [x]/(p(x)) = K, with codomain nontrivial because
p(x) is nonconstant, is injective because it is a homomorphism of fields. Moreover
p(α) = p(x) = p(x) = 0.

(2) The UMP of F [x] yields F [x]
ψ→ K ′ such that ψ|F is the identity and ψ(x) = α′.

ψ(p(x)) = p(α′) = 0, so ψ descends to a homomorphism ϕ from the quotient, as in the
following diagram.

F [x] K ′

K

ϕ

ψ

Corollary 23.3.2. Let F be a field and f(x) ∈ F [x] with deg f(x) = n ≥ 1. Then there
exists a field K ≥ F and α ∈ K such that f(α) = 0. Moreover, K can be chosen so that
[K : F ] ≤ n.

Proof. Apply (1) to an irreducible factor p(x) of f(x). Note that [K : F ] = deg p(x) ≤
deg f(x) = n.

24 November 19th

24.1 Splitting fields

Definition 24.1.1. Let F be a field and f(x) ∈ F [x]. A splitting field of f(x) over F is a
field K ≥ F containing elements α1, . . . , αn such that

(i) f(x) ∼ (x− α1) · · · (x− αn) in K[x]

(ii) K = F (α1, . . . , αn)

Remark. (i) says that f(x) = u(x−α1) · · · (x−αn) where u ∈ K×. But then u is the leading
coefficient of f(x), so u ∈ F×.
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Proposition 24.1.2 (Existence of splitting fields). Let f(x) ∈ F [x], n = deg(f(x)). There
exists a splitting field K of f(x) over F with [K : F ] ≤ n!.

Proof. Let L ≥ F be a field and α1 ∈ L be such that f(α1) = 0, and [L : K] ≤ n, possible
by a previous corollary. Let F1 = F (α1) ≤ L. In F1[x], we have f(x) = (x − α1)g(x), with
deg(g(x)) = n− 1.

By induction, there exists a splitting field K of g(x) over F1, with [K : F1] ≤ (n− 1)!, so
there exist α2, . . . , αn ∈ K such that g(x) ∼ (x − α2) · · · (x − αn) and K = F1(α2, . . . , αn).
But then [K : F ] = [K : F1][F1 : F ] ≤ n!, f(x) = (x − α1)g(x) ∼ (x − α1) · · · (x − αn), and
K = F (α1, α2, . . . , αn).

Lemma 24.1.3. Let f(x) ∈ F [x] and K be a splitting field of f(x) over F . Let α ∈ K be
a root of f(x), and write f(x) = (x − α)f1(x) with f1(x) ∈ K[x]. Let F1 = F (α). Then
f1(x) ∈ F1[x] and K is a splitting field of f1(x) over F1.

Proof. We have f(x) ∼ (x−α1) · · · (x−αn) in K[x], and K = F (α1, . . . , αn). We can assume
α = α1.

Then f1(x) ∼ (x − α2) · · · (x − αn), and K = F (α1, . . . , αn) = F (α1)(α2, . . . , αn) =
F1(α2, . . . , αn).

Now we can address uniqueness of splitting fields.

Proposition 24.1.4 (Uniqueness of splitting fields). Let ϕ : F → F̃ be an isomorphism of

fields. Let f(x) ∈ F [x] and f̃(x) = ϕ(f(x)) ∈ F̃ [x]. Let K be a splitting field of f(x) over

F and let K̃ be a splitting field of f̃(x) over F̃ . Then ϕ can be extended to an isomorphism

K → K̃.

K K̃

F F̃ϕ

ϕ

Proof. By induction on n = deg(f(x)). The degree 0 case is clear, because there are no
roots.

Assume n ≥ 1. Let α ∈ K be a root of f(x). Let F1 = F (α) and f1(x) ∈ F1[x] be as in
the lemma. So K is a splitting field of f1(x) over F1 and f(x) = (x− α)f1(x).

Let p(x) = mα,F (x) ∈ F [x], and p̃(x) = ϕ(p(x)) ∈ F̃ [x].

f(α) = 0, so p(x)|f(x) in F [x], and so p̃(x)|f̃(x) in F̃ [x]. But f̃(x) factors completely in

K̃, so there exists α̃ ∈ K̃ such that p̃(α̃) = 0. Then p̃(x) = mα̃,F̃ (x). Let F̃1 = F̃ (α̃). We
then have isomorphisms of F -algebras

F1
∼= F [x]/(p(x))

ϕ→ F̃ [x]/(p̃(x)) ∼= F̃1,
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sending α↔ x↔ x↔ α̃, and extending ϕ : F → F̃ .
Consider f̃1(x) = ϕ(f1(x)) ∈ F̃1[x]. The proof follows by induction if we can show that

K̃ is a splitting field for f̃(x) over F̃1. This follows from the lemma, and we are done.

Corollary 24.1.5. Let F be a field and K and K ′ are two splitting fields for the same
f(x) ∈ F [x]. Then there exists an isomorphism ϕ : K → K ′ such that ϕ|F is the identity.

Proof. Apply the Uniqueness proposition to the identity on F .

K K ′

F

ϕ

24.2 Separability

Definition 24.2.1. A polynomial f(x) ∈ F [x] is separable if all its roots in some splitting
field are distinct. (This is independent of the choice of splitting field, by uniqueness.)

Lemma 24.2.2. Let f(x) ∈ F [x] be separable and K some extension of F . Then all roots
of f(x) that are in K, if any, are distinct.

Proof. Let K̃ be a splitting field of f(x) over K, the extension, so K̃ = K(α1, . . . , αn). Then
F (α1, . . . , αn) is a splitting field of f(x) over F .

So the αi are distinct.

Definition 24.2.3. Given f(x) =
∑
aix

i ∈ F [x], its derivative is f ′(x) =
∑
iaix

i−1 ∈ F [x].

Recall that if a ∈ F and i ∈ N, then ia = a + · · · + a with i terms, or (1 + · · · + 1)a,
where there are i terms in the sum of ones, or (i · 1)a. The element i · 1 is in the prime field
of F , i.e. Q or Fp, so it may be 0 even if i 6= 0.

We have:

· (f + g)′ = f ′ + g′

· (fg)′ = f ′g + fg′

· f(g(x))′ = f ′(g(x))g′(x)

Proposition 24.2.4. Let f(x) ∈ F [x]. Let K be a splitting field. The following are equiva-
lent:

(i) f(x) is separable.
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(ii) f(x) and f ′(x) have no common roots in K.

(iii) 1 ∈ gcd(f(x), f ′(x)), with gcd taken in the PID F [x].

Proof. (i) ⇒ (ii): Suppose ∃α ∈ K such that f(α) = f ′(α) = 0. Then

f(x) = (x− α)g(x) with g(x) ∈ K[x]

⇒ f ′(x) = g(x) + (x− α)g′(x)

⇒ f ′(α) = g(α)⇒ g(α) = 0

⇒ g(x) = (x− α)h(x)

⇒ f(x) = (x− α)2h(x) in K[x].

(ii) ⇒ (i): Suppose f(x) = (x− α)2h(x) with h(x) in k[x]. Then f ′(x) = 2(x− α)h(x) +

(x− α)2h′(x), so f ′(α) = 0. Thus inseparability implies common roots.
(iii) ⇒ (ii): Suppose there is α ∈ K with f(α) = f ′(α) = 0. Then x − α divides

both f(x) and f ′(x) in K[x]. But then their gcd cannot be 1; if it were, we’d have 1 =
r(x)f(x) + s(x)f ′(x).

The rest of the proof, that (i) and (ii) imply (iii), is left as an exercise.

Corollary 24.2.5. Let p(x) ∈ F [x] be irreducible. Then p(x) is separable ⇐⇒ p′(x) 6= 0.

Proof. (⇒): If p′(x) = 0, then p(x) and p′(x) have common roots (all the roots of p(x)).
(⇐): Let d(x) ∈ gcd(p(x), p′(x)). Suppose that p is not separable; then d(x) is not

constant. But d(x)|p(x), so d(x) ∼ p(x). Thus deg(d(x)) = deg(p(x)), but d(x)|p′(x), which
has degree one smaller, so this is a contradiction.

Corollary 24.2.6. Suppose charF = 0. Then any irreducible polynomial is separable.

Remark. The homework will show that the same result holds if F is a finite field.

Example. F = Fp(y), the field of rational functions in y.
Let f(x) = xp − y ∈ F [x]. We know that f(x) is irreducible in Fp[x, y] = Fp[x][y]. Since

it is primitive, it is irreducible in Fp(y)[x] = F [x], a consequence of Gauss’s Lemma.
But f ′(x) = pxp−1 = 0, because the coefficients are in Fp, so f(x) is not separable.
Let K be a splitting field of f(x) over F . There is α ∈ K such that f(α) = 0, so αp = y.

Then f(x) = xp− y = xp−αp = (x−α)p, because the characteristic of our field is p. So it’s
really not separable.

25 November 24th

25.1 More Separability

Definition 25.1.1. Given K|F , an element α ∈ K is separable over F if it is algebraic over
F and if mα,F (x) ∈ F [x] is separable.
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Theorem 25.1.2 (Primitive Element Theorem). Let K = F (α1, α2, . . . , αn). with all αi
algebraic over F and α2, . . . , αn separable. Then there exists γ ∈ K such that K = F (γ).

Proof. We will separate the proof into two cases: when F is finite, and when F is not finite.
If F is finite, then K is finite as well. Then K× is cyclic. (see HW 4 and HW 12). Let γ

be a generator of K×. Then K = F (γ) so we’re done.
Assume F is infinite. Induction reduces the proof to the case when n = 2. Assume that

K = (α, β), with α, β algebraic and β separable. We will show that γ = α+ λβ is primitive
for a suitable λ ∈ F . Specifically, suppose γ is not primitive; we’ll show then that λ must
belong to a certain finite subet S ⊆ F ; since F is infinite, this will suffice. Let γ be not
primitive.

First note F (α, β) = F (γ, β), because γ ∈ F (α, β) and α ∈ F (γ, β). γ is not primitive,
so F (γ) < F (γ, β). Thus degF (γ) β ≥ 2. Let f(x) = mα,F (x), g(x) = mβ,F (x) and d(x) =
mβ,F (γ)(x).

Then β satisfies g(β) = 0 and f(γ − λβ) = 0, i.e. β is a root of g(x) and of h(x) =

f(γ − λx), both in F (γ)[x]. Thus d(x) divides both g(x) and h(x) in F (γ)[x]. Let K̃ be an
extension of K where g(x) splits completely. Hence, d(x) does as well. deg d(x) ≥ 2, so d
has at least two distinct roots. Thus g(x) and h(x) have at least two distinct common roots.
At least one is different from β; call it β′.

Now h(β′) = 0, so f(γ − λβ′) = 0 ⇒ γ − λβ′ = α′ for some root α′ of f(x), so
γ = α′ + λβ′ ⇒ α + λβ = α′ + λβ′. Thus λ = α−α′

β−β′ .

Thus λ belongs to the set S = {λ ∈ F | λ = α−α′
β−β′ , α

′ is a root of f(x), β′ is a root of g(x), α′, β′ ∈
K̃}, which is finite, so we are done.

25.2 Algebraic independence

Definition 25.2.1. Let K|F be a field extension. Elements α1, . . . , αn ∈ K are alge-
braically independent, or a.i., over F if there exists no nonzero polynomial f(x1, . . . , xn) ∈
F [x1, . . . , xn] \ {0} such that f(α1, . . . , αn) = 0. Equivalently, the unique morphism of F -
algebras ϕ : F [x1, . . . , xn]→ K such that ϕ(xi) = αi is injective.

This is a multivariate version of the definition of transcendental elements. In this case, it
is necessarily true that dimF K =∞, if n ≥ 1, and ϕ extends to an injective homomorphism
F (x1, . . . , xn)→ K such that F (x1, . . . , xn) ∼= F (α1, . . . , αn) ≤ K.

Proposition 25.2.2. Given K|F and α1, . . . , αn ∈ K, the following are equivalent:

(i) α1, . . . , αn are algebraically independent.

(ii) Each αi is transcendental over F (α1, . . . , α̂i, . . . , αn).

(iii) Each αi is transcendental over F (α1, . . . , αi−1).
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Proof. (i) ⇒ (ii): Follows easily from the definition, so we omit.
(ii) ⇒ (iii): Clear since F (α1, . . . , αi−1) ≤ F (α1, . . . , α̂i, . . . , αn).
(iii) ⇒ (i): Do it for n = 2. Given α transcendental over F and β transcendental over

F (α), we want to show that {α, β} is algebraically independent. Choose f(x, y) ∈ F [x, y] \
{0}. Write f(x, y) =

∑
i,j aijx

iyj, with some anm 6= 0.
So we have

f(x, y) =
∑
j

(∑
i

aijx
i

)
yj,

with aj(x) defined to be
∑

i aijx
i. Now am(x) =

∑
i aimx

i ∈ F [x] \ {0}, since anm 6= 0.
Thus am(α) 6= 0, since α is transcendental over F . Thus f(α, y) =

∑
j aj(α)yj ∈ F (α)[y]\{0}

is nonzero because it has at least one nonzero coefficient. Thus f(α, β) 6= 0.

Definition 25.2.3. K|F is purely transcendental if there are α1, . . . , αn algebraically inde-
pendent over F such that K = (α1, . . . , αn). In particular, each αi is transcendental over
F .

Definition 25.2.4. Let K|F be a field extension. A set of elemetns α1, . . . , αd ∈ K form a
(finite) transcendence basis for K|F if

(i) α1, . . . , αd are a.i.

(ii) K|F (α1, . . . , αd) is algebraic.

Proposition 25.2.5. Let K|F be a finitely generated extension: K = F (S) for some finite
S ⊆ K. Then S contains a transcendence basis for K|F .

Proof. Apply the last criterion from Proposition 25.2.2 to elements of S repeatedly.

Now we adopt as our goal to show that any two bases have the same size d, or to show
that the following definition is well-defined.

Definition 25.2.6. Such a size d is called the transcendence degree of K|F . Sometimes
denoted d = tdFK.

Remark. d = 0 is the same thing as saying that the empty set is a transcendence basis, or
that the extension is algebraic.

Example. Let K = F (x, y, z), the field of rational functions in three variables. Clearly x, y, z
are a.i., since evaluation in this case is simply the identity map, which must have trivial
kernel.

We claim that xy, yz, and zx are a.i., which is not easy (see Homework 12). The algebraic
dependences among x, y, z, xy, yz, xz, xyz are summarized in the diagram below; any two are
a.i., and when three are algebraically dependent they are placed in a line.
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z

x yxy

xz yz

xyz

This is in contrast with linear dependencies among x, y, z, x+y, x+z, y+z, x+y+z. Both
are one line off from the Fano plane, unless the field has characteristic 2. In characteristic 2
this really just is the Fano plane.

z

x yx+ y

x+ z y + z

x+ y + z

This leads, as will come next time, quite naturally to the concept of a matroid.

Example. R[S1] = R[x, y]/(x2 + y2 − 1), the ring of polynomial functions on S1. We claim
first of all that x2 + y2 − 1 ∈ R[x, y] is irreducible. To prove this, view it as x2 + y2 − 1 ∈
R[y][x] ⊆ R(y)[x]. Let F = R(y), and R = R[y]. It is primitive (monic), so it suffices to
check that it is irreducible in F [x]. If not, being of degree 2, it would have a root α in F .
Being monic, α has to be in R (using the rational root theorem, because R is a UFD).

Write α =
∑
aiy

i, so (
∑
aiy

i)
2

+ y2 − 1 = 0 in R[y]. But then a2
0 − 1 = 0, 2a0a1 = 0,

a2
1 + 1 = 0, which is a contradiction because the characteristic of R is not 2. Thus x2 + y2 is

irreducible.
Thus R[S1] is an integral domain. Let R[S1] be its field of fractions; let α = x and

β = y ∈ R[S1] ⊂ R(S1). Then R[S1] = R[α, β] and R(S1) = R(α, β). Thus R(S1)|R(α) is
algebraic, because β satisfies α2 + β2 − 1 = 0. We claim that α is transcendental over R.
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Proof. If not, ∃f(x) ∈ R[x]\{0} such that f(α) = 0. Then f(x) = 0 in R[x, y]/(x2 +y2−1),
so x2 + y2 − 1|f(x) in R[x, y]. For each (x0, y0) ∈ S1, f(x0) = 0, so f(x) has infinitely many
roots and is thus 0, which is a contradiction.

So we have

R(S1)

R(α)

R

alg

p. trans

and in particular, {α} is a transcendence basis for R(S1)|R, and the transcendence degree
of R(S1) over R is 1. This is a special case of Noether’s normalization lemma.

26 December 1st

26.1 Matroids

Definition 26.1.1. Let S be a finite set, let 2S be the set of subsets of S, and let σ : 2S → 2S

be a function. Then σ is a closure operator if for all A,B,∈ 2S, we have

(1) A ⊆ σ(A)

(2) A ⊆ B ⇒ σ(A) ⊆ σ(B)

(3) σσ(A) = σ(A).

σ is a matroid if in addition we have

(4) If b ∈ σ(A∪ {a}), but b 6∈ σ(A), then a ∈ σ(A∪ {b}). This is known as them MacLane-
Steinitz exchange axiom.

The following propositions will give a couple of examples of matroids, some more familiar
than others.

Proposition 26.1.2. Let V be a vector space over a field F and S a finite subset of V .
Given A ∈ 2S, define σ(A) = {b ∈ S | b ∈ SpanF (A)}. Then σ is a matroid.

Proof. (1)-(3) are clear. For (4), if b is spanned by A∪ {a} but not by A, then we can write
b as a linear combination of vectors in A ∪ {a} with nonzero coefficient of a. Thus we can
solve for a and write it in terms of A ∪ {b}, just as the axiom says.
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Proposition 26.1.3. Let K|F be a field extension and S a finite subset of K. Given A ∈ 2S,
define σ(A) = {β ∈ S | β is algebraic over F (A)}. Then σ is a matroid.

Proof. (1)-(2) are clear.
(3) uses transitivity of algebraic extensions, as seen in homework 12.

For (4), let F̃ = F (A). We are given that β is algebraic over F (A∪{α}) = F̃ (α) but not

over F (A) = F̃ . We need that α is algebraic over F (A ∪ {β}) = F̃ (β). Since β is algebraic,

there exists f(x) ∈ F̃ [α][x] \ {0} with f(β) = 0. But f(x) ∈ F̃ [α][x] = F̃ [x][α], so

f(x) =
∑
i

gi(x)αi,

with gi(x) ∈ F̃ [x]. f(x) is nonzero, so at least one of the coefficients gi(x) are nonzero.

Then gi(β) 6= 0, since β is not algebraic over F̃ .

So consider g(x) =
∑

i gi(β)xi ∈ F̃ [β][x]. At least one coefficient is nonzero. Then

g(α) = f(β) = 0, so α is aglebraic over F̃ (β), and we are done.

Definition 26.1.4. Given a matroid σ on a finite set S:

· an element s ∈ S is spanned by A ∈ 2S if s ∈ σ(A);

· a subset A ∈ 2S is spanning if σ(A) = S;

· a subset A ∈ 2S is independent if no a ∈ A is spanned by A \ {a}, i.e. a 6∈ σ(A \ {a});

· a subset A ∈ 2S is a basis if it is independent and spanning.

Proposition 26.1.5. 1. A subset is a basis if and only if it is a maximal independent
subset, which is true if and only if it is a minimal spanning subset. In particular, bases
exist.

2. All bases have the same cardinality.

Proof. Matroid theory. Omitted, but not difficult.

26.2 Back to field extensions

Let K = F (S) be a finitely generated extension of F . Let σS be the matroid in S of
Proposition 26.1.3. Let A = {α1, . . . , αd} ∈ 2S. Then

· A is independent if and only if α1, . . . , αd are algebraically independent.

· A is spanning if and only if K|F (α1, . . . , αd) is algebraic.

· A is a basis if and only if F (A)|F is purely transcendental, and {α1, . . . , αd} is a
transcendence basis.
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In particular, transcendence bases exist because matroid bases exist, so there exist tran-
scendence bases contained in S and all such have the same cardinality.

Fact 26.2.1 (Fun unproven extra exercise). If K = F (T ) for some other T then rank(σS) =
rank(σT ).

26.3 Finitely generated algebras

Let R ⊆ S be commutative rings. Given α1, . . . , αn ∈ S, R[α1, . . . , αn] denotes the smallest
subring of S containing R and α1, . . . , αn. It is the image of the unique homomorphism of
R-algebras ϕ : R[x1, . . . , xn]→ S such that ϕ(xi) = αi.

If there are elements α1, . . . , αn ∈ S such that S = R[α1, . . . , αn], we say that S is finitely
generated as an R-algebra.

In this case, ϕ is onto, so S ∼= R[x1, . . . , xn]/I for some ideal I. This allows us to prove
the following proposition.

Proposition 26.3.1. Suppose that R is noetherian and S is a finitely generated R-algebra.
Then S is noetherian too.

Proof. Hilbert’s Basis Theorem tells us that polynomial rings over noetherian rings are
noetherian; then quotients of that polynomial ring are still noetherian.

Remark. We may also view S as an R-module. We already knew that S was noetherian as
a module; this says that S is noetherian as a ring. It is parallel to the familiar result about
finitely generated noetherian modules.

So if S is finitely generated as an R-module, then S is certainly finitely generated as an
R-algebra; we’re allowed all polynomials to generate, instead of just linear ones. But the
converse does not hold. R[x] is finitely generated as an R-algebra, but not as an R-module.

Now let R ≤ S ≤ T be commutative rings. Here are some more fun results:

· Suppose S is f.g. as an R-algebra and T is f.g. as an S-algebra. Then T is f.g. as an R-
algebra. (If S = R[α1, . . . , αm], and T = S[β1, . . . , βn], then T = R[α1, . . . , αm, β1, . . . , βn].

· Suppose that T is f.g. as an R-algebra. Is T f.g. as an S-algebra? Yes. The same
generators will do. Is S finitely generated as an R-algebra? Not necessarily. This is
harder to see. As one counterexample, let R = F , a field. Let T = F [x, y], which
is finitely generated over R. Let S = F [y, xy, x2y, x3y, . . . ] = {f(x, y) ∈ F [x, y] |
f(x, 0) = f(0, 0)}. It is an exercise to see that S is not f.g. as an F -algebra.

However, we have the following proposition.

Proposition 26.3.2 (Artin-Tate). Assume we have a chain of commutative rings R ≤ S ≤
T . Suppose R is noetherian, T is f.g. as an R-algebra, and T is f.g. as an S-module. Then
S is f.g. as an R-algebra.
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A way to make the statement more intuitive is to think that “if S is pretty similar to T ,
then S is finitely generated as well.”

Proof. Write T = R[α1, . . . , αm]. Moreover, T = Sβ1 + · · · + Sβn. Then αi =
∑

j sijβj, for
some sij ∈ S, and βiβj =

∑
k sijkβk, for some sijk ∈ S.

Let A = {sij | 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {sijk | 1 ≤ i, j, k ≤ n}, a finite set, and let
S0 = R[A], a finitely generated R-subalgebra of S.

R is noetherian, so S0 is noetherian as well. Note that our expressions with sijk’s allow
us to turn polynomial expressions into linear expressions in the βk’s with only elements of
S0 as coefficients. Thus T is f.g. as a S0 module, since T = S0β1 + · · · + S0βn. So T is
noetherian as an S0-module.

Now S0 ≤ S ≤ T , so S is an S0-submodule of T , so S is finitely generated as an S0-
module and thus as an S0-algebra. But S0 was also finitely generated as an R-algebra, so
we are done, and S is f.g. as an R-algebra.

Consider now a field extension F ≤ K. There are in fact three types of finite generation.

(1) K is f.g. as an F -module, which holds if and only if K is finite dimensional as a vector
space over F , or K|F is finite.

(2) K is f.g. as an F -algebra, true ⇐⇒ K = F [α1, . . . , αn], using brackets because the
RHS in principal is only a ring.

(3) K is f.g. as as a field extension of F , which holds ⇐⇒ K = F (α1, . . . , αn).

Clearly (1) ⇒ (2) ⇒ (3). Do the converses hold?
Does (3) ⇒ (2)? No. F (x) is a f.g. field extension of F , but it is not f.g. as an algebra.

There is no α1, . . . , αn ∈ F (x) such that F (x) = F [α1, . . . , αn]. We will see the proof of this
next time, in the context of a more general theorem.

Does (2) ⇒ (1)? Yes, as it turns out! This is Zariski’s Theorem.

Theorem 26.3.3 (Zariski). If K is f.g. as an F -algebra, then dimFK <∞.

Proof next time.

27 December 3rd

27.1 Zariski’s Theorem and Nullstellensätze

Theorem 27.1.1 (Zariski). If K is f.g. as an F -algebra, then dimFK <∞.

Proof. K is f.g. as an F -algebra, so K is f.g. as a field extension of F . So it suffices to show
that K|F is algebraic, in which case it will be finite, so we are done. We know that there
exist α1, . . . , αd ∈ K such that
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K

F (α1, . . . , αd)

F

with K|F algebraic and F (α1, . . . , αd)|F purely transcendental. We want d = 0. We will
use Artin-Tate.

SinceK is f.g. as an F -algebra, K is f.g. as an F (α1, . . . , αd)-module becauseK|F (α1, . . . , αd)
is algebraic and f.g. as a field extension. By Artin-Tate, F (α1, . . . , αd) is f.g. as an F -algebra.
But we use the lemma below:

Lemma 27.1.2. If d ≥ 1, F (x1, . . . , xd) is not f.g. as an F -algebra.

to get that d = 0. We therefore need only prove the lemma.

Proof. Suppose F (x1, . . . , xd) is f.g. as an F -algebra. Then F (x1, . . . , xd) = F [α1, . . . , αn]
for some rational functions α1, . . . , αn (note that these are different α’s from those used
above). Write αi = fi/gi with fi, gi ∈ F [x1, . . . , xd]. If all gi are units in F [x1, . . . , xd], then
αi ∈ F [x1, . . . , xd] ⇒ F (x1, . . . , xd) = F [x1, . . . , xd], which is clearly impossible if d ≥ 1,
because in that case F [x1, . . . , xd] is not a field. So not all gi’s can be units. It follows that
1 + g1 · · · gn has positive degree. Hence it has an irreducible factor p ∈ F [x1, . . . , xd].

Now 1
p
∈ F (x1, . . . , xd) = F [α1, . . . , αn], so there exists N ≥ 0 such that

(g1···gN)
p

∈
F [x1, . . . , xd]. Thus p|(g1 · · · gn)N in F [x1, . . . , xd], so p|gi for some i. But p|(1 + g1 · · · gn), so
p|1, a contradiction.

Corollary 27.1.3 (Weak Nullstellensatz). Note that the name literally means “zero locus
theorem.”

Let F be a field and R a f.g. F -algebra (everything is commutative), and let M be a
maximal ideal of R with K = R/M . Then K is a finite field extension of F .

Proof. The homomorphism F ↪→ R � R/M = K is injective, because F is a field. R is
f.g. as an F -algebra, so R = F [α1, . . . , αn], and K = F [α1, . . . , αn]. Thus K is f.g. as an
F -algebra, so Zariski tells us that dimFK <∞, and we are done.

Given a commutative ring R, its maximal spectrum is the set Specm(R) = {M ⊆ R |
M maximal ideal of R}. If R and S are F -algebras, with F a field, let AlgF (R, S) denote the
set of F -algebra homomorphisms ϕ : R→ S. Then we have a couple of helpful corollaries.
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Corollary 27.1.4. Suppose F is algebraically closed and R is a f.g. F -algebra. Then
AlgF (R, S)→ Specm(R) given by ϕ 7→ ker ϕ is a bijection.

Proof. We first need show that it is well-defined. Take ϕ ∈ AlgF (R,F ). Then ϕ|F = idF , so
ϕ : R→ F is onto and ker ϕ is maximal, and thus an element of Specm(R).

Now we check injectivity. Taking ϕ, ψ ∈ AlgF (R,F ), suppose that ker ϕ = ker ψ. Let
a ∈ R; then a− ϕ(a) · 1 ∈ ker ϕ, since ϕ(1) = 1. Thus a− ϕ(a) · 1 ∈ ker ψ, so ψ(a) = ϕ(a),
since ψ(1) = 1. Thus ϕ = ψ.

Lastly, surjectivity. Take M ∈ Specm(R). Let K = R/M . Then K is a field and K|F
is a finite extension. K|F is algebraic, and F is algebraically closed, so K = F . Hence we
have a homomorphism of F -algebras ϕ : R→ R/M = K = F , and ker ϕ = M .

Definition 27.1.5. Given S ⊆ F [x1, . . . , xn], let Z(S) = {a ∈ F n | f(a) = 0 ∀ f ∈ S} be
the zero set or zero locus of S.

Now let I be an ideal of F [x1, . . . , xn] and R = F [x1, . . . , xn]/I. Given a = (a1, . . . , an) ∈
F n, consider the homomorphism of F -algebras

ϕa : F [x1, . . . , xn]→ F ;ϕa(xi) = ai ⇒ ϕa(f) = f(a).

So when does ϕa factor through R?

F [x1, . . . , xn] F

R

ϕ̂a

Why, precisely when ϕa(f) = 0 for every f ∈ I, of course!
Thus f(a) = 0 for all f ∈ I, which is true if and only if a ∈ Z(I). In this situation, there

is a bijection Z(I)→ AlgF (R,F ) with a 7→ ϕ̂a,

Corollary 27.1.6. F algebraically closed, I an ideal of F [x1, . . . , xn], R = F [x1, . . . , xn]/I.
There is a bijection Z(I)→ Specm(R), with a 7→ ker ϕ̂a.

Proof. Combine the previous bijections.

Corollary 27.1.7 (unproven but not forgotten). Suppose that F is algebraically closed and
R is a f.g. F -algebra. Let f ∈ R. If f is not nilpotent, there exists a maximal ideal M of R
that does not contain f .

Proof. See Exercises 3 & 4 in the final. The main tool is that of localizations, who knows
what those are.
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Let F be a field. Define

{subsets of F n}
 {subsets of F [x1, . . . , xn]} ,

with rightward map I and leftward map Z. In particular, for S ⊆ F [x1, . . . , xn], Z(S) =
{a ∈ F n | f(a) = 0∀f ∈ S}, and for A ⊆ F n, I(A) = {f ∈ F [x1, . . . , xn] | f(a) = 0∀a ∈ S}.

Both domains are ordered by inclusion.

Proposition 27.1.8. (1) I and Z are order-reversing.

(2) For any A ⊆ F n, A ⊆ ZI(A). For any S ⊆ F [x1, . . . , xn], S ⊆ IZ(S).

(3) IZI = I and ZIZ = Z.

(4) Z and I induce inverse bijections

im Z 
 im I.

Remark. We say I and Z form a Galois connection, because (1) and (2) hold. ((3) and (4)
follow.)

Definition 27.1.9. A subset A ⊆ F n is algebraic if it is in the image of Z, or if it is the set
of solutions of a system of polynomial equations, which may be infinite.

Such sets are in bijection with the subsets of F [x1, . . . , xn] in the image of I. What are
those subsets?

The answer is provided by the Strong Nullstellensatz. But first! A final definition.

Definition 27.1.10. Let R be a commutative ring and I an ideal of R. The radical of I is

√
I = {a ∈ R | ∃n ∈ N, an ∈ I} .

Theorem 27.1.11 (Strong Nullstellensatz). Let F be algebraically closed. Let I be an ideal
of F [x1, . . . , xn]. Then IZ(I) =

√
I.

Proof. LetR = F [x1, . . . , xn]/I. It is a f.g. F -algebra. Consider the projection F [x1, . . . , xn] �
R with f 7→ f . Recall that for a ∈ F n, we have

F [x1, . . . , xn]

R

F
ϕa

ϕ̂a
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with ϕa(f) = f(a).
Now:

f ∈ IZ(I) ⇐⇒ f(a) = 0∀a ∈ Z(I)

⇐⇒ ϕa(f) = 0∀a ∈ Z(I)

⇐⇒ ϕ̂a(f) = 0∀a ∈ Z(I)

Cor27.1.6⇐⇒ f ∈ every max. ideal of R

Cor27.1.7⇐⇒ f nilpotent

which holds if and only if there exists n ∈ N with fn ∈ I ⇐⇒ f ∈
√
I.

Definition 27.1.12. An ideal I is radical if I =
√
I.

Corollary 27.1.13. If F is alg. closed, the image of I consists precisely of the radical ideals
of F [x1, . . . , xn].

Proof. If I is radical, then I =
√
I = IZ(I) ∈ im I. For any A ⊆ F n, I(A) is an ideal of

F [x1, . . . , xn]. In addition, I(A) = IZI(A) =
√
I(A).
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