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1 January 28th

As review, look at the field theory sections, § 13.1, 13.2, 13.4, 13.5.

1.1 Galois Theory

Let L be a field. Let Aut(L) be the set of field automorphisms, or structure-preserving

bijections σ : L
∼=→ L. Aut(L) is a group under composition.

Let L/K be a field extension, i.e. a field L ⊇ K. (The book will usually use the notation
K/F , but number theorists tend to use L/K.) We can then define a second group Aut(L/K),
the set of automorphisms of L that fix K. Aut(L/K) is a subgroup of Aut(L).

The question that Galois theory addresses is, what information does the group Aut(L/K)
encode about the extension L/K?

Example. 1. Aut(Q) = 1. σ(1) = 1, so all integers are fixed because addition is fixed, and
then all rationals are fixed.

2. Aut(Fp) = 1, for a similar reason.

3. Aut(C/R) = {1, τ}, where τ is complex conjugation.

4. {1, τ} ⊆ Aut(C). Aut(C) has many elements assuming the axiom of choice.
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Lemma 1.1.1. Let L/K be an algebraic extension. Take any α ∈ L and let f(x) ∈ K[x] be
a non-zero polynomial with root α. Then σ(α) ∈ L is a root of f for all σ ∈ Aut(L/K).

Proof. f(x) =
∑

i cix
i, with ci ∈ K. 0 = f(α) =

∑
i cix

i, so 0 = σ(0) =
∑

i σ(ci)σ(α)i =∑
i ciσ(α)i = f(σ(α)).

Example. Look at σ ∈ Aut(Q( 3
√

2/Q), with 3
√

2 ∈ R. Then σ( 3
√

2) has to map to a root of
x3 − 2 in Q( 3

√
2) ⊆ R, i.e. to itself, the only real root of x3 − 2. So Aut(Q( 3

√
2/Q) is trivial,

because that fixation along with Q being fixed determines the trivial automorphism.

4

Example. Let σ ∈ Aut(Fp(t)/Fp(tp). σ(t) must be a root of xp − tp = (x − t)p, so σ(t) = t,
and thus just as above, this automorphism group is trivial.

4

The first example is boring because there aren’t enough roots in our field. The second is
boring because the extension is inseparable; the polynomial doesn’t have distinct roots when
you increase the field. So we avoid both pitfalls by making the following definition.

Definition 1.1.2. An algebraic extension L/K is Galois if it is normal and separable. Recall
that an extension is normal if it is the splitting field of some polynomials in K[x], and an
extension is separable if every element is the root of a separable polynomial in K[x], where,
again, a separable polynomial is one that has distinct roots in the extension.

For a Galois extension L/K, we define Gal(L/K) = Aut(L/K). The benefit of the new
notation is that we call it Gal in the cases where we’re sure that it’ll be interesting.

Now, fix L/K a finite Galois extension.

1. (Getting a group out of a field) Let K ⊆ F ⊆ L be a subfield. Then the extension
L/F is Galois, so there’s the group Gal(L/F ) ≤ Gal(L/K).

2. (Getting a field out of a group) Take a subgroup H ≤ Gal(L/K). Then let LH be the
set of α ∈ L that are fixed by H. Note that this is actually a subfield of L, because
fixation is preserved by the field operations. Also, K ≤ LH , because H ≤ Gal(L/K).

This is in fact a bijection between subgroups and subfields; it is a bijective correspondence,
and the two directions are inverses of each other.

Theorem 1.1.3 (Fundamental Theorem of Galois Theory). Let L/K be a finite Galois
extension. The maps
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{F : K ≤ F ≤ L a field} {H : H ≤ Gal(L/K)}

F 7→ Gal(L/F )

LH ←[ H

are inverses. The maps are inclusion reversing: F1 ⊇ F2⇒Gal(L/F1) ⊆ Gal(L/F2), and
H1 ⊇ H2⇒LH1 ⊆ LH2.

We will see that |Gal(L/F )| = [L : F ], which is the definition of Galois in the book.

Example. We take L/Q, with L = Q(
√

2,
√

3), the Galois splitting field of x2− 2 and x3− 3.
|Gal(L/Q)| should match [L : Q] = 4.

So we know we have Gal(L/Q(
√

3)) ≤ Gal(L/Q) which should have order 2, i.e. it should
be {1, σ}. σ(

√
3) =

√
3, so σ(

√
2) shouldn’t be

√
2; thus it sends

√
2 to −

√
2. Similarly,

Gal(L/Q(
√

2)) ≤ Gal(L/Q) is {1, τ}, where τ(
√

3) = −
√

3 and τ(
√

2) =
√

2. Then the group
Gal(L/Q) is thus {1, σ, τ, στ}. Each of these elements has order 2, so Gal(L/Q) ∼= Z/2×Z/2.

Okay, so we have this group. What are its subgroups? Well, the correspondence is
illustrated by the diagrams below.

Gal(L/Q)

{1, σ} {1, τ} {1, στ}

1 L

Q

Q(
√

3) Q(
√

2) Q(
√

6)

4

Example. Let L/Q be the splitting field of x4 − 2, in C. Let α = 4
√

2 ∈ R and let i =
√
−1.

Then the roots of x4 − 2 are ±α,±iα, so L = Q(α, i). So there’s some lattice of subfields,
which we know contains L.
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L

Q(α) Q(i)

Q

4

24

2

Gal(L/Q) has order 8, so what are we missing? Well, Gal(L/Q(α)) has order 2; it’s
{1, τ}, where τ(α) = α, so τ(i) = −i. Also, Gal(L/Q(i)) ⊆ Gal(L/Q) has order 4, so
σ ∈ Gal(L/Q(i)) is determined by σ(α); there are four options for this. There is a unique
σ ∈ Gal(L/Q) with σ(α) = iα and σ(i) = i. Note that σ(α) = iα, σ2(α) = σ(iα) = −α,
σ3(α) = −iα and σ4(α) = α, so this group is cyclic.

As it turns out, Gal(L/Q) = 〈σ, τ〉. One can check that τστ−1 = σ−1, so Gal(L/Q) ∼= D8,
the dihedral group. So we have

1

{1, τ} {1, σ2τ} {1, σ2} {1, στ} {1, σ3τ}

{1, σ2, τ, σ2τ} {1, σ, σ2, σ4} {1, στ, σ2, σ3τ}

Gal(L/Q)

which leads to the analogous diagram for fields:
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Q(α, 1) = L

Q(α) Q(iα) Q(i, α2) Q(α + iα) Q(α− iα)

Q(α2) Q(i) Q(iα2)

Q

4

2 February 2nd

HW 1: Dummit and Foote 14.1 # 7,8; 14.2 # 1,3,5,12, 17 & 23, 18 & 21; 14.3 # 8. Due
Thursday, February 11th. Recall that there are office hours Wednesday 12:30 - 2:30 in Malott
589.

2.1 Galois Theory, continued

Recall from last time, that we begin with L/K an algebraic field extension. L/K is Galois
if it is separable and normal, where separable means that for every α ∈ L, α is the root of a
separable polynomial f(x) ∈ K[x] (which automatically happens always in characteristic 0),
and normal means that L is obtained from K by adjoining all roots of some polynomials in
K[x]. In this case we have the Galois group Gal(L/K) = Aut(L/K), when L/K is Galois.
Aut(L/K) is the group of field automorphisms of L that fix K. This led us to a Theorem:

Theorem 2.1.1 (Fundamental Theorem of Galois Theory). Let L/K be a finite Galois
extension. The maps

{F : K ≤ F ≤ L a field} {H : H ≤ Gal(L/K)}

F 7→ Gal(L/F )

LH ←[ H
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are inverses. The maps are inclusion reversing: F1 ⊇ F2⇒Gal(L/F1) ⊆ Gal(L/F2), and
H1 ⊇ H2⇒LH1 ⊆ LH2. Also, |Gal(L/F )| = [L : F ]. As a special case, |Gal(L/K)| = [L : K].

Example. L = Q(ζ), K = Q, where ζ = e2πi/7, a 7th root of unity. What are the fields
F ⊆ L? Every one of these is going to contain Q. We’re going to solve this by simply
computing the Galois group; the subgroups of the Galois group will tell us exactly what
these fields are due to the Fundamental Theorem. First, what’s Gal(L/K)?

Note that ζ is a root of x7−1
x−1

= x6 + x5 + x4 + x3 + x2 + x+ 1, which is irreducible over
Q. (To show that, replace x by x+ 1 and use the Eisenstein criterion). What are the roots?
Well, ζ1, ζ2, ζ3, ζ4, ζ5, ζ6. So L/Q is Galois. But what is it? Well, for σ ∈ Gal(L/Q), we
must have σ(ζ) a root of x7−1

x−1
, so σ(ζ) must be one of the six. Also, note that this is the

only choice we have, because the image of ζ determines the image of all powers of ζ and
thus of all elements. So we have a map ϕ : Gal(L/Q)→ (Z/7Z)×, where σ(ζ) = ζϕ(σ). This
is a homomorphism: ζϕ(στ) = στ(ζ) = σ(τ(ζ)) = σ(ζϕ(τ)) = ζϕ(σ)ϕ(τ). But that means it is
in fact an isomorphism, since it’s injective and these are finite and have the same order. So
Gal(L/Q) ∼= (Z/7Z)× ∼= Z/6. So we can find all the subgroups! There are four; one of each
order 1,2,3, and 6.

1

(Z/7Z)×

〈2〉 = {1, 2, 4} 〈−1〉 = {−1, 1}

2

32

3

L

Q

F2= Q(
√
−7) F1= Q(ζ + ζ−1)

2

32

3

And note that L1 = L, LGal(L/Q) = Q. Then F1 = LH1 , where H1 = {1, σ} and σ(ζ) =
ζ−1. Then ζ+ζ−1 ∈ F1 = L〈σ〉. Note ζ+ζ−1 6∈ Q. Otherwise, ζ is a root of x2−(ζ+ζ−1)x+1,
which has coefficients in Q, but ζ is a root of an irreducible degree 6 polynomial, so this is
a problem.

Now let α = ζ + ζ2 + ζ4. F2 = LH2 with H2 = 〈τ〉, and ϕ(τ) = 2, so τ(ζ) = ζ2. So then
τ(α) = τ(ζ) + τ(ζ2) + τ(ζ4) = ζ2 + ζ4 + ζ = α. So then α ∈ F2. It turns out α =

√
−7,

which can be seen by the fact that

α2 = ζ2 + ζ4 + ζ + 2ζ3 + 2ζ5 + 2ζ6

= 2(ζ6 + ζ5 + ζ4 + ζ3 + ζ2 + ζ + 1)− α− 2

⇒0 = α2 + α + 2

⇒α =
−1±

√
−7

2
.

So, F2 = Q(
√
−7).
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Remark. ζ + ζ−1 = 2 cos(2π/7), and [Q(ζ + ζ−1 : Q] = 3 6= 2n, which ends up meaning as
we’ll see later that the regular 7-gon is not constructible with straightedge and compass.

4

We will begin the proof of the Fundamental Theorem now.
We’ll need the primitive element theorem:

Theorem 2.1.2 (Primitive Element Theorem). Let L/K be a finite separable extension.
Then L = K(θ) for a “primitive element” θ ∈ L.

Idea of proof. · If L is finite, then L× = 〈θ〉, so L = K(θ).

· If L is infinite, then the main case is L = K(α, β), so show that θ = α + cβ works for
all but finitely many c ∈ K.

We then start with the following lemma.

Lemma 2.1.3. Let L/K be a finite separable extension. Then |Aut(L/K)| ≤ [L : K].
Moreover, L/K is Galois if and only if equality holds; in fact, this is the book’s definition of
Galois.

Proof. L = K(θ), let f ∈ K[x] be the minimal polynomial of θ (it is separable). Then
deg(f) = [L : K]. Choose a field E ⊇ L for which f splits, so that f = (x− θ1) · · · (x− θn),
with θi ∈ E. Then there are precisely [L : K] embeddings of L ↪→ E that are the identity
on K. Why is this the case? Well, just map θ 7→ θi. This makes sense, because K(θ) =
K[x]/(f(x)).

So now we have the inequality. Each automorphism gives a different embedding, so the
number of automorphisms is strictly less than the number of embeddings, so |Aut(L/K)| ≤
[L : K]. Equality holds if and only if all embeddings L ↪→ E that fix K have image in L,
which will only happen when all θi’s are in L itself. Thus if equality holds, the extension is
certainly Galois, because L = K(θ1, . . . , θn).

Claim. Let L/K be finite and Galois; take α ∈ L and let f ∈ K[x] be its minimal
polynomial. Then f splits in L. We’ll come back to proving this next time.

3 February 4th

3.1 Proof of the fundamental theorem

Recall that we let L/K be a finite separable extension. Choose E ⊇ L such that E/K
is Galois. For today, let EmbK(L,E) be the group of field homomorphisms L → E that
fix K. Then there is a natural map Aut(L/K) ↪→ EmbK(L,E), where σ 7→ (L

σ→ L ⊆
E). We showed last time that EmbK(L,E) had cardinality [L : K]. As a consequence,
#Aut(L/K) ≤ [L : K].

Then we want to determine exactly when we have equality.
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Claim. #Aut(L/K) = [L : K] ⇐⇒ L/K is Galois.
⇒: If L = K(θ), where θ has minimal polynomial f(x) ∈ K[x] of degree n, then n =

[L : K] and f(x) = (x − θ1) · · · (x − θn), for θi ∈ E. There are [L : K] embeddings
L = K(θ) → E that fix K, one for each (θ 7→ θi). But if the size equality holds, then

Aut(L/K)
∼
↪→ EmbK(L,E), so θi ∈ L and thus L = K(θ1, . . . , θn), which is Galois over K.

⇐: If L is Galois, then L = K(θ1, . . . , θn), where θi are the roots of some separable
f(x) ∈ K[x]. So take any embedding σ : L ↪→ E that fixes K. Then σ(θi) is another root of
f in E, so σ(θi) ∈ L already. So σ(L) = σ(K(θ1, . . . , θ)n)) ⊆ L, so σ : L → L, which is an
isomorphism since it is an injective homomorphism of finite dimensional K-vector spaces of
the same dimension.

OK, so that completed the proof of the lemma from last time. We now complete the
proof, using one of Artin’s ridiculously slick proofs.

Theorem 3.1.1 (Artin). Let L be a field. Let G be a finite subgroup of Aut(L). Then L/LG

is a finite Galois extension and Gal(L/LG) = G. Moreover, [L : LG] = |G|.

Before the proof, we give an example.

Example. L = Q(t). Consider the automorphism σ : L → L given by x 7→ x for x ∈ Q and
t 7→ t−1

t
(check that this is an automorphism). Let G = 〈σ〉. Note that σ2(t) = σ(σ(t)) =

σ( t−1
t

) = −1
t−1

; then σ3(t) = σ( −1
t−1

) = t, so G = 〈σ〉 has order 3.

Let α = t + σ(t) + σ2(t) (or the trace of G). σ(α) = α, so α ∈ LG; as it trurns out,
LG = Q(α). In general, traces and norms are the cheapest way to go from a field to a base
field.

4

Proof. Take any α ∈ L. Fix a maximal subset {σ1, . . . , σr} ⊆ G such that σ1(α), . . . , σr(α)
are distinct. Define f(x) =

∏r
i=1(x− σi(α)) ∈ L[x], which is separable. Then we claim that

f ∈ LG[x]. Take any τ ∈ G; then

τ(f) =
r∏
i=1

(x− r(σi(α)).

Note that {σ1(α), . . . , σr(α)} = {τσ1(α), . . . , τσr(α)}; one direction is clear because the
set of σi’s was maximal. Then the sets have the same size, so they must be the same.

In particular, τ(f) = f . But this holds for each τ ∈ G, so f ∈ LG[x]. Also, f ∈ LG[x] is
irreducible. If it factored, the group would permute the roots of that factor, but it actually
acts transitively on all of the roots.

So in particular, L/LG is Galois. G also fixes LG, so G ⊆ Gal(L/LG). We just need the
other inclusion, that Gal(L/LG) ⊆ G. With α such that L = LG(α), we have [L : LG] =
deg f ≤ |G|, using f from above. We know that deg f ≤ |G|, because its roots are indexed
by elements of G. So |G| ≤ #Gal(L/LG) ≤ [L : LG] ≤ |G|, and thus [L : LG] = |G| and
G = Gal(L/LG).
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Corollary 3.1.2. Fix a finite Galois extension L/K and take any subfield K ⊆ F ⊆ L. We
have LGal(L/F ) = F .

Proof.

[L : LGal(L/F )] = |Gal(L/F )|
= [L : F ], since L/F is Galois.

= [L : LGal(L/F )][LGal(L/F ):F ].

So [LGal(L/F ) : F ] = 1, and thus F = LGal(L/F ).

Corollary 3.1.3. Fix a finite Galois extension L/K and let H be a subgroup of Gal(L/K).
We have Gal(L/LH) = H and [L : LH ] = #H.

Proof. Use the theorem with G = H,

So these two corollaries give the fundamental theorem, stated again now that it has been
proved.

Theorem 3.1.4 (Fundamental Theorem of Galois Theory: short statement version.). Let
L/K be a finite Galois extension. The maps {F : K ⊆ F ⊆ L} → {H : H subgroup of Gal(L/K)}
with F 7→ Gal(L/F ) and {H : H subgroup of Gal(L/K)} → {F : K ⊆ F ⊆ L} with
H 7→ LH are inverses.

Proof. Start with F ; then LGal(L/F ) = F . Start with H; then Gal(L/H) = H.

Example. Fix a field K with characteristic not 2 or 3. Fix an irreducible cubic f(x) ∈ K[x];
let L be the splitting field of f over K. L = K(α1, α2, α3), with α1, α2, α3 ∈ L roots
of f . The Galois group Gal(L/K) acts on {α1, α2, α3} via permutations, so there exists
ϕ : Gal(L/K) → S{α1,α2,α3} = S3. But this map is injective, since σ ∈ Gal(L/K) is
determined by σ(α1), σ(α2), σ(α3). But the permutation action is transitive because f is
irreducible, so Gal(L/K) must be a subgroup of S3 that acts transitively on the three letters,
of which there are two: S3 and A3 = C3.

How do we distinguish the two cases? Let δ = (α1 − α2)(α2 − α3)(α3 − α1) ∈ L. Take
σ ∈ Gal(L/K) with ϕ(σ) = (123). Then σ(δ) = (α2 − α3)(α3 − α1)(α1 − α2) = δ, i.e.
δ is fixed by A3. Suppose there exists σ ∈ Gal(L/K) with ϕ(σ) = (12). Then σ(δ) =
(α2 − α1)(α1 − α3)(α3 − α2) = −δ 6= δ since we’re not in characteristic 2. But note that
σ(δ2) = δ2 still. So δ2 ∈ LGal(L/K) = K, and δ ∈ K if and only if ϕ(Gal(L/K)) = A3. So
D = δ2 ∈ K is the discriminant of f ∈ K[x]. Gal(L/K) ∼= A3 if D ∈ K is a square, and
Gal(L/K) ∼= S3 if D ∈ K is not a square.

In the case where the Galois group is A3 the subgroup diagram is as follows.

11



1

A3

L

K

In the case where the Galois group is S3, the subgroup diagram is as follows.

1

〈12〉 〈23〉 〈13〉 〈123〉

S3

L

K(α3) K(α2) K(α1) K(
√
D)

K

4

4 February 9th

4.1 More Thoughts on the fundamental theorem

Recall the fundamental theorem: let L/K be a finite Galois extension. Then the maps

{F : K ⊆ F ⊆ L} ↔ {H ≤ Gal(L/K)}

given by F 7→ Gal(L/F ) and H 7→ LH are inverses.
Here are some extra tidbits:

· The maps are inclusion reversing, and |Gal(L/F )| = [L : F ].

· Take σ ∈ Gal(L/K), with K ⊆ σ(F ) ⊆ L. If F corresponds to H, then σ(F ) cor-
responds to σHσ−1. σ(F ) ∼ the group of g ∈ Gal(L/K) such that g(x) = x for all
x ∈ σ(F ), or Gal(L/σ(F )), which is the same as the group of g ∈ Gal(L/K) such that
gσ(x) = σx for all x ∈ F , so σ−1gσ(x) = x, which happens if and only if σ−1gσ ∈ H.

12



· F/K is Galois if and only if σ(F ) = F for σ ∈ Gal(L/K), which is true if and only if
σHσ−1 = H for all σ ∈ Gal(L/K), i.e. F/K is Galois ⇐⇒ H � Gal(L/K). Suppose
we’re in this situation. Then we have as it turns out a short exact sequence

1→ Gal(L/F ) ↪→ Gal(L/K) � Gal(F/K)→ 1,

where for the third map we have σ 7→ σ|F for σ ∈ Gal(L/K). Exactness can be checked
via finite cardinalities.

· Suppose F1, F2 correspond respectively to groups H1, H2, respectively. Then F1 ∩ F2

corresponds to 〈H1, H2〉, and F1F2 corresponds to H1 ∩H2.

There’s more that you can add, but this is the basic fundamental theorem.
Now for some more comments on the theorem of artin from last time. let L/K be a finite

Galois extension. Fix α ∈ L, and choose {σ1, . . . , σr} to be a maximal subset of Gal(L/K)
such that σ1(α), . . . , σr(α) are distinct. Then f(x) =

∏r
i=1(x − σi(α)) has coefficients in

LGal(L/K) = K. We also saw that f was irreducible in K[x] and separable, so f(x) ∈ K[x] is
the minimal polynomial of α over K. Note further that f splits completely in L.

Fix a finite separable extension L/K (note: not necessarily Galois). The question is,
what are the fields F between K and L, i.e. with K ⊆ F ⊆ L? Choose E/K a finite
separable Galois extension with E ⊇ L. In particular, there is a θ with L = K(θ), with θ a
root of a separable f(x) ∈ K[x]. Let E is the splitting field of f over L. Then we have

{F : K ⊆ F ⊆ L} ↔ {subgroups of Gal(E/K) containing Gal(E/L)}

One thing that is appreciable, therefore, is that the set on the left is finite, since the set
on the right is as well.

Example (non-example). Let L = Fp(x, y) and K = Fp(xp, yp), so that L/K is an extension
of degree p2. But L/K is not separable! So what we just did shouldn’t apply. L/K is not
separable because tp − yp ∈ K[t] is irreducible, but in the larger field it is (t − y)p. We
claim that L 6= K(θ) for all θ ∈ L. If θ = f(x, y), then θp = f(x, y)p = f(xp, yp) ∈ K. So
[K(θ) : K] ≤ p (in fact, it’s 1 or p), which then can’t be all of L.

Claim. There are infinitely many fields F such that K ⊆ F ⊆ L. (The part that makes
this a non-example is the infinitely many). This claim, which we prove now, gives some
appreciation of the fact that we shouldn’t have expected the left hand side above to be finite
in the first place.

Consider K(x + cy), with c ∈ K. Suppose F = K(x + cy) = K(x + c′y), with c 6= c′.
Then (x+ cy)− (x+ c′y) = (c− c′)y ∈ F , so y ∈ F , and thus x ∈ F . Thus F = K(x, y) = L,
so L = K(x+ cy), but we already showed that couldn’t happen!

4

We likely will say nothing about inseparable things ever again.
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4.2 Application: Finite fields

Let F be a finite field. Then there is a ring homomorphism Z→ F mapping 1 7→ 1; then for
some prime p, Fp = Z/pZ ↪→ F. Z/pZ is the finite field of order p. With n = [F : Fp], we
then have |F| = pn.

Take any α ∈ F×, a group of order pn − 1. By basic group theory, αp
n−1 = 1, so αp

n
= α

for all α ∈ F. This is Fermat’s Little Theorem. Moreover,

xp
n − x =

∏
α∈F

(x− α).

Then F is a splitting field of xp
n − x over Fp. This has the consequence that, up to

isomorphism, F depends only on its size pn. This also shows that finite fields of order pn

exist; their definition is as this splitting field.
Note that F/Fp is a Galois extension of degree n. We will at this point rename F as

Fpn , for clarity. Then Gal(Fpn/Fp) has order n. There is a distinguished automorphism
σp : Fpn → Fpn with x 7→ xp, known as the Frobenius automorphism. Then the order of σp
in the Galois group is the smallest e ≥ 1 such that σep = 1Fpn

, i.e. αp
e

= α for all α ∈ Fpn .
e = n certainly does the trick, since αp

n
= α for all α ∈ Fpn . But, if αp

e
= α for all α ∈ Fpn ,

then pe ≥ pn, since xp
e − x is separable with at least pn roots.

Therefore Gal(Fpn/Fp) = 〈σp〉 ∼= Z/nZ.
What are the subgroups of the Galois group? Well, 〈σdp〉, where d divides n. This is

a group of order n/d. Each of these d’s corresponds to a field. From a Galois theory
perspective, we have:

Fpn

Fpd

Fp

d

n/d

1

〈σdp〉

〈σp〉

d

n/d

In particular, for each d dividing n, there is a unique subfield Fpd of order pd. You can
actaully start to build this up, depending on the n, doing something like

Fp ⊆ Fp2 ⊆ Fp6 ⊆ Fp30 ⊆ · · · ⊆ Fpn! ⊆ · · ·

Taking their union, you get Fp, an algebraic closure of Fp. This is no longer finite, though.
It actually turns out to be minimal, which will distinguish it up to isomorphism.

Exercise: How would you build this up for Q? For C(x, y)? It’s less nice.
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5 February 11th

5.1 Application: Fundamental Theorem of Algebra

Theorem 5.1.1 (Fundamental Theorem of Algebra). The field C is algebraically closed, i.e.
every polynomial in C[x] splits.

We say formally that C = R[x]/(x2 + 1), and that i is the coset of x. For us, formally
increasing the field is no big deal. We will use two analytic properties of the real numbers:

1) Every polynomial in R[x] of odd degree has a real root (follows from the Intermediate
Value Theorem).

2) Positive x ∈ R have real square roots.

2’) Square roots exist in C. If a+bi ∈ C with a, b ∈ R, take c, d ∈ R such that c2 = a+
√
a2+b2

2
,

d2 = −a+
√
a2+b2

2
, with appropriate signs. Then (c + id)2 = a ± bi, which works for

appropriate choice of signs. Note that c2d2 = b2

4
.

Okay, now for the proof of the fundamental theorem.

Proof. Take any f ∈ C[x]. Let L/C be the splitting field of f · f ∈ R[x]. We want to show
that L = C; we’ll do this by looking at the Galois group. In particular, Gal(L/R).

Let H be a 2-Sylow subgroup of Gal(L/R). This exists, because R ≤ C ≤ L, and
[Gal(L/R) : H] is odd, and |H| = 2e. So we have the follwing picture:

L

LH

R

1

H

Gal(L/R)

[LH : R] = [Gal(L/R) : H], which is odd. LH = R(θ); the degree of the minimal
polynomial of θ over R is [LH : R], which is odd. So that polynomial has a real root. But
the only case in which an irreducible polynomial has a real root is the case in which that
polynomial has degree 1, so [LH : R] = 1, so LH = R. In particular, H = Gal(L/R), so
Gal(L/R) is a 2-group.

We claim that if Gal(L/C) 6= 1, then it has some subgroup of index 2. This follows
from last semester’s material. If G is a finite p-group, then there exists H ≤ G of index
p. In particular, Z(G) 6= 1. So if Z(G) 6= G, replace G by G/Z(G); inductively you can
find a subgroup of index p. We need only address the case where Z(G) = G. Then by the
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structure theorem of finite abelian groups, you can fairly explicitly find the subgroup. Now
we (relabel) let H be the subgroup of index 2, so we have

L

LH

C

2

1

H

Gal(L/C)

2

LH = C(θ); the minimal polynomial of θ over C is of the form x2 + ax + b ∈ C[x]. But
we can solve for x ∈ C, since square roots exist in C; we know that the minimal polynomial
is (x + a/2)2 + (b − a2/4), and we can just solve. But this is a contradiction, because
Gal(L/C) = 1. Thus we’ve arrived at a contradiction no matter what, so [L : C] = 1 and
L = C, and we’re done.

This proof, which is sometimes criticized for being overly slick, is due to Artin. But,
Galois theory is super helpful for looking at groups in general.

5.2 Some General Structure Theorems

Theorem 5.2.1. Let L/K be a finite Galois extension and K ′/K be an extension (where L
and K ′ lie in some common field), so that we have the following arrangement.

LK ′

L K ′

L ∩K ′

K

=

=

The extension LK ′/K ′ is Galois. The homomorphism Gal(LK ′/K ′) → Gal(L/L ∩ K ′)
given by σ 7→ σ|L is an isomorphism. In particular, [LK ′ : K ′] = [L : L∩K ′] divides [L : K].

Before we prove this, allow us to provide an example.
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Example. Let L be the splitting field of x3 − 2 over Q, let K ′/K be R/Q, and let’s assume
that L ⊆ C.

LR = C

L = Q( 3
√

2, ζ3) R

Q( 3
√

2)

Q

=

=

Also, Gal(C/R)
∼
↪→ Gal(L/Q( 3

√
2)) ⊆ Gal(L/Q), and both groups in the isomorphism

have order 2.

4

Now for the proof!

Proof. Define ϕ : Gal(LK ′/K ′)→ Gal(L/L ∩K ′) by ϕ : σ 7→ σ|L.
ϕ is injective, which is easy to see by definition. Let H = im ϕ. The appropriate diagram

is

L

LH

L ∩K ′

1

H

Gal(L/L ∩K ′)

and LHK ′ is fixed by Gal(LK ′/K ′), by definition. LHK ′ is an extension of K ′, so in fact
they have to be equal to each other, because K ′ is exactly the elements fixed by Gal(LK ′/K ′).
So LH ⊆ L ∩ K ′ ⊆ LH , so LH = L ∩ K ′. So then H has index 1 in Gal(L/L ∩ K ′), and
that’s the surjectivity.

Theorem 5.2.2. Let L1/K and L2/K be finite Galois extensions, where L1 and L2 are in
some common field. The extension L1L2/K is Galois, and the map

17



Gal(L1L2/K)→ Gal(L1/K)×Gal(L2/K)

σ 7→ (σ|L1 , σ|L2)

is an injective homomorphism. It is an isomorphism when L1 ∩ L2 = K.

Proof.

L1L2

L1 L2

L1 ∩ L2

K

=

=

That ϕ is injective is clear; knowing how σ acts on L1 and L2 is sufficient to know how
ϕ acts on L1L2. Now, assume L1 ∩ L2 = K; Gal(L1L2/L2) ∼= Gal(L1/L1 ∩ L2), so

[L1L2 : K] = [L1L2 : L2][L2 : K]

= [L1 : L1 ∩ L2][L2 : K]

= [L1 : K][L2 : K].

So ϕ is an injective homomorphism between groups of the same size, since |Gal(L1L2/K)| =
[L1L2 : K] = [L1 : K][L2 : K] = |Gal(L1/K)×Gal(L2/K)|. Since that size is finite, ϕ is an
isomorphism.

Remark. · In the general case, im ϕ = {(σ, τ) ∈ Gal(L1/K)×Gal(L2/K) | σ|L1∩L2 =
τ |L1∩L2}. This is proven in the book, but not here.

· L1 ∩ L2 is Galois.

Example. Let k be a field. Let n ≥ 1 be an integer, and let L = k(x1, . . . , xn). Then
Sn y L (or Sn ↪→ Aut(L)), where σ ∈ Sn fixes k and takes xi to xσ(n). Let K = LSn ; then
Gal(L/K) = Sn.

So what’s K? Well, x1x2 · · ·xn ∈ K, x1 + · · ·+xn ∈ K, and so on. These are elementary
symmetric polynomials :

s1 = x1 + · · ·+ xn

· · ·

si =
∑

J⊆[n],|J |=i

∏
j∈J

xj

sn = x1x2 · · · xn.

18



Theorem 5.2.3. K = k(s1, . . . , sn), and the si are independent variables.

As a proof of independence, consider (t − x1)(t − x2) · · · (t − xn); this is tn − s1t
n−1 +

s2t
n−2 − · · ·+ (−1)nsn ∈ k(s1, . . . , sn)[t] ⊆ K[t].
Now for a proof of the theorem. L/k(s1, . . . , sn) is the splitting field of f ; then n! ≤

|Gal(L/K)| ≤ |Gal(L/k(s1, . . . , sn)) ≤ n!, so we’re done, K = k(s1, . . . , sn).

4

6 February 18th

6.1 Last time

We saw that k(x1, . . . , xn)Sn = k(s1, . . . , sn), where s1 = x1 + · · · + xn, s2 = x1x2 + · · · ,
si =

∑
|J |=i

∏
j∈J xj, and sn = x1 · · ·xn.

This in fact works with polynomials as well, which we didn’t show last time. k[x1, . . . , xn]Sn =
k[s1, . . . , sn].

Example. ∏
1≤i<j≤n

(xi − xj)2 ∈ k[x1, . . . , xn]Sn = k[s1, . . . , sn].

4

Take a polynomial f ∈ K[x] that is monic of degree n ≥ 1. Let α1, . . . , αn be its roots
(in some extension), so that f = (x− α1) · · · (x− αn). Then the discriminant of f is

Df =
∏

1≤i<j≤n

(αi − αj)2 ∈ K[s1(α1, . . . , αn), . . . , sn(α1, . . . , αn)].

But the quantities si(α1, . . . , αn) are the coefficients of the polynomial up to a sign, so
K[s1(α1, . . . , αn), . . . , sn(α1, . . . , αn)] = K.

Example. f(x) = x2 +bx+c ∈ K[x]. This factors into (x−α1)(x−α2), and has discriminant
Df = (α1 − α2)2 = α2

1 − 2α1α2 + α2
2 = (α1 + α2)2 − 4α1α2 = b2 − 4c.

4

Example. f = x3 + ax+ b = (x− α1)(x− α2)(x− α3).
Then f ′(x) = 3x2 + a = (x−α2)(x−α3) + (x−α1)(x−α3) + (x−α1)(x−α2). Plugging

in different values, we get
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3α2
1 + a = (α1 − α2)(α1 − α3)

3α2
2 + a = −(α1 − α2)(α2 − α3)

3α2
3 + a = (α1 − α3)(α2 − α3)

⇒−Df = (3α2
1 + a)(3α2

2 + a)(3α2
3 + a)

= 27(α1α2α3)2 + 9a(α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3) + 3a2(α2

1 + α2
2 + α2

3) + a3

= 27b2 + 9a3 − 6a3 + a3

= 4a3 + 27b2

⇒Df = −4a3 − 27b2.

Note that α1 +α2 +α3 = 0, so α2
1 +α2

2 +α2
3− (α1 +α2 +α3)2 = −2(α1α2 +α1α3 +α2α3) =

−2a, and α2
1α

2
2 + α2

1α
2
3 + α2

2α
2
3 = a2.

The other ones are nastier still, but nevertheless doable and not so so bad. For f =
x3 + ax2 + bx+ c, you can replace evaluation at x by evaluation at x− a

3
, which will give the

same discriminant but turn it into the form seen above.

4

6.2 Solving for roots of polynomials of low degree

For degree 1, this is easy.

6.2.1 Degree 2

f(x) = x2 + bx+ c ∈ K[x]; assume that K does not have characteristic 2. Then 0 = f(x) =
(x+ b/2)2 − b2/4 + c, so

x = − b
2
±
√
b2 − 4c

2
,

which is just the familiar quadratic equation.

6.2.2 Degree 3

f(x) = x3 + ax2 + bx + c ∈ K[x], with K not of characteristic 2 or 3. Replace f(x) by
f(x− a

3
). So, assume f = x3 + ax+ b ∈ K[x].

Vieta’s substitution: x = w − a
3w

. We then solve:
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w3 − aw + a2 1

3w
− a3

27w3
+ a(w − a/3w) + b = 0

⇐⇒ w3 − a3

27w3
+ b = 0

⇐⇒ w6 + bw3 − a3

27
= 0

⇐⇒ w3 = − b
2
±
√
b2 + 4a3/27

2

= − b
2
± 1

18

√
−3(−4a3 − 27b2).

So w is the cube root of that, which gives roots x = w−a/3w of f . There are six possible
choices made here, and any one gives a root of f , with multiplicity.

Example. f(x) = x3 + x− 1. Then a = 1, b = −1, and Df = −4− 27 = −31.

So w3 = 1
2
± 1

18

√
−3(−31), so choosing the positive one w = 3

√
1
2

+ 1
18

√
93; taking

x = w− 1
3w

, You Have Succesfully Found A Root. Turns out choosing the other value of w3

would give a different real value of w, but you’d end up with the same real root. There’s
only one.

4

Example. f = x3 − 4x + 1; a = −4, b = 1. Then Df = 229, so w3 = 1
2
± 1

18

√
−3 · 229. The

polynomial has three real roots that you can solve for, but you hit imaginary numbers along
the way, which sometimes makes people uncomfortable, especially if you live in Italy in the
1500s. They were initially used as like this mysterious middle ground that would lead to
something correct.

4

6.2.3 Degree 4

Let f(x) = x4 +ax3 + · · · ∈ K[x]. We assume that our characteristic isn’t 2 or 3; by plugging
in x−a/4 instead, we can get rid of the cubic term. So take f(x) = x4 +ax2 + bx+c ∈ K[x].

For this one it’s going to be better to rely on some Galois theory. Assume that f is
separable, that it doesn’t have repeated roots. Then f = (x− α1)(x− α2)(x− α3)(x− α4),
with αi distinct. So we have a Galois extension L = K(α1, . . . , α4)/K. Define θ1 = (α1 +
α2)(α3 + α4), θ2 = (α1 + α3)(α2 + α4), and θ3 = (α1 + α4)(α2 + α3), which are permuted by
Gal(L/K). From this we can make the resolvent cubic, h(x) = (x − θ1)(x − θ2)(x − θ3) ∈
LGal(L/K)[x] = K[x].

The thing about cubic polynomials is we know how to find the roots. So we can find the
roots of h like before. Note that α1 +α2 +α3 +α4 = 0, so θ1 = −(α1 +α2)2, θ2 = −(α1 +α3)2,
and θ3 = −(α1 + α4)2.
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We then rearrange these equations to get α1 + α2 = ±
√
−θ1, α1 + α3 = ±

√
−θ2, and

α1 + α4 = ±
√
−θ3. Add and use that all αi’s sum to 0 to get that

α1 = 1
2
(±
√
−θ1 ±

√
−θ2 ±

√
−θ3)

is a root of f . Other roots are acquired by changing signs.
Good news! The resolvent actually has a nice expression. It’s not just defined in terms

of the roots, which would be a problem. There’s some way to write them in terms of a, b, c.
And in fact, the resolvent is:

h(x) = x3 − 2ax+ (a2 − 4c)x+ b2.

The main takeaway is “fields are pretty, polynomials are ugly. As the degree goes up, of
course it gets worse.”

Example. f = x4 + x3 + x2 + x + 1 ∈ C[x]. The roots are the 5th roots of unity. First
you shift to get f(x − 1

4
) = x4 + 5

8
x2 + 5

8
x + 205

256
, which leads to the resolvent cubic h(x) =

(x+ 5/4)(x2 − 5/2x+ 5/16), which happens to factor! The other two roots of h come from

the quadratic equation, so all three roots are: θ1 = −5
4
, θ2 = 5

4
+
√

5
2

, θ3 = 5
4
−
√

5
2

.
Thus a root of f(x− 1

4
) is of the form

1

2

±√5

4
±

√
−5

4
−
√

5

2
±

√
−5

4
+

√
5

2

 ,

which leads to the root of f of the form(√
5

2
− 1

4

)
+

1

2

√5

4
+

√
5

2
+

√
5

4
−
√

5

2

 i,

which is in fact a root of f ! It’s e2πi/5 ∈ C.
A horrible, horrible exercise is to take that expression, forget its gory origin story and its

history of bloodshed, and see what happens if you take it to the fifth power! You’ll get one.

4

6.2.4 Degree ≥ 5

This is a roadblock. It’s not always possible to express the roots in terms of radicals. For
example, with the polynomial x5 − x − 1, the roots don’t have some nice expression (with
e.g. that thing for degree 4 being “nice”). The idea of the proof is going to be to look at
the Galois group.

Let K be a field, with characteristic 0, and let f ∈ K[x]. Let G = Gal(L/K), with L
the splitting field of f over K. It turns out that the roots of f can be “expressed in terms
of radicals” if and only if G is solvable. It also turns out that Sn for n ≥ 5 isn’t solvable,
because for n ≥ 5, An � Sn is simple and nonabelian.
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7 February 23rd

All day today, let K be a field of characteristic 0.

7.1 Quintics

We saw that if f(x) ∈ K[x] with deg f ≤ 4, then its roots can be “expressed by radicals,” a
term to be defined later.

Example. The roots of x3 − 3x− 1 in Q[x] are

3

√
1 +
√
−3

2
+

 3

√
1 +
√
−3

2

−1

.

4

So what does it mean to be “expressed by radicals”?

Definition 7.1.1. Fix α algebraic over K. Then α can be expressed by radicals if α is in a
field L such that

K = L0 ⊆ L1 ⊆ · · · ⊆ Lm = L

where Li+1 = Li( ni
√
ai) for some ai ∈ Li, ni ≥ 1.

We say that f ∈ K[x] can be solved by radicals if all roots of f can be expressed by
radicals.

The Galois group of f(x) ∈ K[x] is the group

Gal(f) = Gal(L/K),

where L is the splitting field of f . This should be thought of as a group of “symmetries.”

Theorem 7.1.2 (due, in spirit at least, to Galois). f ∈ K[x] can be solved by radicals if and
only if Gal(f) is solvable.

Recall from last semester the definition of solvability; G is solvable if and only if there’s
a sequence 1 = Gn ⊆ Gn−1 ⊆ · · · ⊆ G2 ⊆ G1 ⊆ G0 = G such that Gi+1 is normal in Gi and
Gi/Gi+1 is abelian (or cyclic).

Recall that Jordan Hölder tells us that if the quotients are simple, they are unique up to
reordering and isomorphism.

This theorem actually motivated most of the definitions in modern abstract algebra; this
is what led to people talking about groups and fields. Historically, it’s the very beginning.

Example. Let f(x) = x5− x− 1 ∈ Q[x]. Let α1, . . . , α5 ∈ C be roots of f ; these are distinct,
because f ′ = 5x4 − 1, which is relatively prime to f .

Let L = Q(α1, . . . , α5). Then Gal(L/Q) y {α1, . . . , α5}, so Gal(L/Q) ↪→ S5. Here are
some relevant observations from group theory:
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1. f is irreducible. If it factors, it factors in Z[x]. Then use the fact that f (mod 3) ∈ F3[x]
is irreducible. This implies that the Galois action on the roots is transitive. The
converse is true as well. A fact about S5 is that this means that Gal(L/Q) has an
element of order 5.

2. f has 1 real root. This can be found using calculus. Then let τ ∈ Gal(L/Q) be complex
conjugation; τ is not trivial, because if it were, all roots would be real. Also, τ 2 = 1,
so our group has an element of order 2.

3. (uncertain) but this probably implies that the subgroup contains A5.

A5 isn’t solvable, so this tells us that the polynomial can’t be solved by radicals.

4

Example (Key). f = xn − a ∈ K[x]. We’ll show that Gal(f) is solvable. Fix a root α of f .
Let µn be the nth roots of unity in some extension of K, which makes it a cyclic group of
order n.

Let L = K(α, µn), which is the splitting field of f =
∏

ζ∈µn(x − ζα). Note that K ≤
K(µn) ≤ L.

Note that K(µn)/K is Galois, so Gal(L/K(µn)) � Gal(L/K) ∼= Gal(K(µ)/K). We then
can simply show that the normal subgroup and the quotient are each solvable, which makes
our job easier.

I) Consider σ ∈ Gal(K(µn)/K), and let µn = 〈ζ〉. σ is then determined by σ(ζ), which
has to be another nth root of unity. So σ(ζ) = ζϕ(σ), which gives us a well-defined
map ϕ : Gal(K(µn)/K)→ (Z/nZ)×. This map is an injection, and a homomorphism,
which means that Gal(K(µn)/K) is abelian! Hence, solvable.

II) Given σ ∈ Gal(L/K(µn)), σ is determined by σ(α). σ(α) = ψ(σ)α for a unique
element ψ(σ) ∈ µn, giving us an injective map ψ : Gal(L/K(µn)) ↪→ µn. ψ is also a
homomorphism: let σ, τ ∈ Gal(L/K(µn)), and then ψ(στ)α = στ(α) = σ(ψ(τ)α) =
ψ(τ)σ(α) = ψ(τ)ψ(σ). Then Gal(L/K(µn)) is abelian and therefore cyclic.

For this example, we broke up the extension into Galois pieces, and showed that each
piece was abelian. This will be important for the proof of the Big Shiny Theorem.

4

Proposition 7.1.3. Fix a Galois extension L/K of degree n with cyclic Galois group. Sup-
pose µn ⊆ K. Then L = K( n

√
a) for some a ∈ K×.

This is a hint that “cyclic Galois group” translates to “the extension coming from one
radical.” This is a good partial glimpse at what’s really going on behind the theorem.
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Proof. Let µn = 〈ζ〉 and let Gal(L/K) = 〈σ〉. Recall from homework 1 the norm map
NL/K : L→ K given by

α 7→
∏

τ∈Gal(L/K)

τ(α).

In this case, this is a product over powers of σn−1. Consider NL/K(ζ−1). ζ−1 is in the
base field, so this is just (ζ−1)n = 1.

From the theorem Hilbert 90 in HW 1, if L/K is a Galois extension with cyclic Galois
group generated by σ and α ∈ L has norm 1, then α = β

σβ
for some β ∈ L×. (As we’ll find

out later in the semester, if L/K is Galois, then H1(Gal(L/K), L×) = 0, where H1 is group
cohomology).

So we have an element β ∈ L× with ζ−1 = β
σ(β)

, so σ(β) = ζβ. Inductively, σi(β) = ζ iβ.

Choose a = βn; then σ(a) = (σβ)n = (ζβ)n = βn = a; since the Galois group is cyclic,
every element fixes a, so a ∈ K. Then β = n

√
a. We have K(β) ⊆ L. β is not fixed by any

τ ∈ Gal(L/K) \ {1}, so Gal(L/K(β)) = 1⇒K(β) = L, and we are done.

8 February 25th

8.1 Solvability and solvability

Again, for all of this section we will say that the characteristic of K is 0.
Recall this theorem, mentioned the past couple times, yet to be proven.

Theorem 8.1.1. f ∈ K[x] can be solved by radicals if and only if Gal(f) is solvable.

Proof. (⇐) : Let L be the splitting field of f over K, and let n = [L : K]. Let µn be the nth
roots of unity in some extension of L. So here’s a diagram with all the important fields:

L(µn)

L K(µn)

L ∩K(µn)

K

=

=

We need to show that L(µn) can be obtained fromK(µn) by adjoining radicals. Gal(L/L∩
K(µn))�Gal(L/K), since L∩K(µn)/K is Galois. Thus Gal(L/L∩K(µn)) is solvable, since
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it is a normal subgroup of a solvable group. Then Gal(L(µn)/K(µn)) ∼= Gal(L/L ∩K(µn))
is solvable as well. Without loss of generality µn ⊆ K (?), so the order divides n.

Since Gal(L/K) is solvable, Gal(L/K) = G0 ⊇ G1 ⊇ · · · ⊇ Gm = 1, such that Gi/Gi+1

is cyclic of order dividing n, and Gi+1 � Gi. Let Li = LGi . Then Gal(Li+1/Li) is cyclic of
order d, with µd ⊆ Li. From our proposition last time, then Li+1 = Li( ni

√
ai, with ai ∈ Li,

so we are done.
(⇒) : Let L be the splitting field obtained by radicals of f . Let E be the Galois closure

of L/K. For all σ ∈ Gal(E/K), σ(L) is the element obtained by radicals over K. So replace
L by the composition of all the σ(L); without loss of generality L is Galois over K.

Then

L = Lm ⊇ Lm−1 ⊇ · · · ⊇ L1 ⊇ L0 = K,

where Li+1 is the splitting field over Li of some xni − ai ∈ Li[x]. Then

1 = Gm ⊆ Gm−1 ⊆ · · · ⊆ G1 ⊆ G0 = Gal(L/K),

where Gi = Gal(L/Li). Since Li+1/Li is Galois, Gi+1 �Gi, and Gal(Li+1/Li) ∼= Gi/Gi+1,
which is solvable as seen last time. Thus Gal(L/K) is solvable, and there is a surjective
homomorphism Gal(L/K) � Gal(f), so Gal(f) is solvable as well.

Remark. The theorem is false when charK = p > 0. Let L be the splitting field of xp−x−a ∈
K[x]. Then Gal(L/K) is cyclic of order p, but L is not K( p

√
a), even though 1 = µp ⊆ K.

8.2 Galois groups of polynomials of small degree

Let f ∈ K[x] be monic, separable, and irreducible, with K not of characteristic 2, and let L
be the splitting field of f over K. Then f =

∏n
i=1(x− αi), with αi ∈ L and n the degree of

f , and L = K(α1, . . . , αn). Gal(f) = Gal(L/K), and Df =
∏

1≤i<j≤n(αi − αj)2 ∈ K.
We can view Gal(f) as a subgroup of Sn based on its action o n the roots of f , where

σ(αi) = ασ(i).

Fact 8.2.1. Gal(f) ⊆ An if and only if Df is a square in K, in which case
√
Df =∏

1≤i<j≤n(αi − αj).

Proof. Sn acts on Z[x1, . . . , xn] by permuting the indices. Then for σ ∈ Sn,

σ

( ∏
1≤i<j≤n

(αi − αj)2

)
= ε(σ)

∏
1≤i<j≤n

(xi − xj),

where ε(σ) = ±1, and ε : Sn → {±1} is a homomorphism. ε((12)) = −1, so ε of any
transposition is −1, so ker ε = An.

Thus σ(
√
Df ) = ε(σ)

√
Df for all σ ∈ Gal(f); if Gal(f) ⊆ An then

√
Df ∈ LGal(L/K) =

K, if not, this is not the case.

Now, we plow.
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1 If n = 1, then Gal(f) = 1.

2 If n = 2, then Gal(f) = S2.

3 If n = 3, then Gal(f) ∼=

{
A3 if Df is a square

S3 else

4 If n = 4, then Gal(f) can be:

· S4

· A4

· C = 〈(1234)〉, and its two conjugates in S4

· D8 = 〈(1234), (13)〉, the dihedral group of order 8, and its conjugates.

· V4 = {1, (12)(34), (13)(24), (14)(23)}� A4 � S4.

Then S4/A4
∼= {±1}, A4/V4

∼= Z/3Z, and V4
∼= Z/2×Z/2, so this is still solvable. If Df is

a square, the Galois group is V4 or A4. If it is not a square, the Galois group is either S4

or a conjugate to C or D8.

We want to finish distinguishing the subcases for polynomials of order 4. For a quartic
with roots α1, α2, α3, α4, we can define

θ1 = (α1 + α2)(α3 + α4)

θ2 = (α1 + α3)(α2 + α4)

θ3 = (α1 + α4)(α2 + α3),

giving us the resolvent cubic h(x) = (x−θ1)(x−θ2)(x−θ3) ∈ K[x]. Let σ ∈ Gal(f) ⊆ S4.
If σ ∈ V , then σ(θ1) = θ1, σ(θ2) = θ2, σ(θ3) = θ3.
If σ = (123), then σ(θ1) = θ2, σ(θ2) = θ3, and σ(θ3) = θ1. In the case where Df is a

square, Gal(f) is V if h has 3 roots in K, and is A4 if h is irreducible.
It’s an important note that h is computable directly from f : if f = x4+ax2+bx+c ∈ K[x],

then h = x3 − 2ax2 + (a2 − 4c)x+ b2.
If D is not a square, then Gal(f) = S3⇒h is irreducible, and if Gal(f) is conjugate to

C or D8, then h has exactly one root in K. So all that’s left is distinguishing C and D8.
C ∩ A4 = {1, (13)(24)}, and D8 ∩ A4 = V . So look over K(

√
Df ); if Gal(f) is conjugate

to C, then f factors into quadratics in the larger field. If Gal(f) is conjugate to D8, f still
doesn’t factor.

Example. f = x4 + 5x + 5 ∈ Q[x], which is irreducible. Df = 5 · 552, which is not a
square! So Gal(f) is S4, C, or D8. Then h = x3 − 20x + 25 = (x + 5)(x2 − 5x + 5), so
Gal(f) = C or D8. How does f factor over the bigger field Q(

√
5)? Turns out it factors as

(x2 +
√

5x+ 5−
√

5
2

)(x2 −
√

5x+ 5+
√

5
2

), so the Galois group is C.

4
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9 March 3rd

9.1 Computing Galois groups over Q
We will first discuss conjugacy classes of Sn, which are given by cycle decompositions or
cycle type. Given σ ∈ Sn, we can assign a tuple σ 7→ (d1, . . . , dr) where 1 ≤ d1 ≤ · · · ≤ dr
are integers and d1 + · · · + dr = n. All that this means is that σ is the product of disjoint
cycles of lengths d1, d2, . . . , dr.

For example, given (123)(45)(78) ∈ Sn, we assign the tuple (1, 2, 2, 3).

Theorem 9.1.1. Fix a separable f(x) ∈ Z[x] of degree n. As usual, we can embed Gal(f) =
Gal(L/Q) ↪→ Sn, where L is the splitting field of f over Q. Take a prime p 6 |Df . We have
f(x) = f1(x) · · · fr(x) (mod p), where each fi(x) is irreducible in Fp[x]. Set di to be the
degree of fi, and we can assume that d1 ≤ · · · ≤ dr.

Then Gal(f) ↪→ Sn contains an element with cycle type (d1, . . . , dr).

Example. Let f = x5 − x+ 1; then Df = 19 · 151.
(mod 3): f is irreducible in F3[x].

So Gal(f) ↪→ S5 has a 5-cycle.
(mod 7): f ≡ (x2 + x+ 3)(x3 + 6x2 + 5x+ 5) (mod 7), where each term is irreducible.

So Gal(f) contains an element of cycle type (2, 3). Specifically, it’s not contained in the
alternating group. Also, this implies that Gal(f) contains a transposition and a 3-cycle, by
taking that element to the second and third powers.

In fact this is enough to show that Gal(f) = S5. The size of the Galois group is certainly
divisible by 2, by 3, and by 5, so it’s divisible by 30. By conjugating the transposition by a
5-cycle, maybe multiple times, Gal(f) contains two disjoint transpositions. These generate
a copy of the Klein four group, so the size of Gal(f) is divisible by 4 and thus by 60. But
it’s not contained in A5, so it must be all of S5 (its intersection with A5 has index one or
two, but A5 is simple so it must be index 1, so A5 ⊂ Gal(f), so Gal(f) = S5).

Note that adding 21 to f does not change the Galois group, because it has the same
reduction mod 3 and mod 7.

4

So now we’re going to try to compute a bunch of Galois groups.

Example.
f (1, 1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 3) (1, 4) (1, 2, 2) (2, 3) (5)

x5 − x+ 1 0.008 0.083 0.166 0.249 0.124 0.166 0.200
x5 + 20x+ 16 0.016 0 0.333 0 0.250 0 0.399

x5 − 2 0.05 0 0 0.5 0.249 0 0.199
x5 + x4 + x3 − x+ 2 0.082 0.333 0.166 0 0.257 0.166 0

The table is the proportion of primes p 6 |Df ith p ≤ 107 for which f (mod p) has a given
cycle type.

For example it looks like Gal(x5 +20x+16) is A5, because we haven’t seen any odd cycle
types, and have seen all the even ones. And, the discriminant is 21656, which is a square, so
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Gal(f) ⊆ A5. But it contains a 5-cycle, a 3-cycle, and a (2, 2)-cycle. So 30 divides the order;
A5 has no subgroup of index 2, so it must be all of A5.

To calculate the others, observe that the transitive subgroups of S5 (up to conjugation)
are S5, A5, C = 〈(12345)〉, D10 = 〈(12345), (25)(34)〉, F20 = 〈(12345), (2354)〉. In this case,
|C| = 5, D10 = 10, and F20 = 20.

Now consider f = x5−2. The Galois group has elements of order 4 and 5, so it’s conjugate
to F20 (although we still haven’t ruled out S5; maybe ten million isn’t enough). One way
of doing this is that it’s solvable, so its Galois group isn’t S5. You could also say that its
splitting field has order 20.

Consider f = x5 +x4 +x3−x+2. Seems pretty reducible based on the number of 5-cycles
we found. It looks like the Galois group doesn’t act transitively on the roots, so it’s probably
reducible. Turns out f = (x2 + x+ 2)(x3 − x+ 1). As it turns out, Gal(f) ∼= S2×S3.

The one thing that we haven’t looked at is what these numbers mean. That concern is
addressed by the following theorem.

4

Theorem 9.1.2 (Chebotarev). Take f as before, with Gal(f) ↪→ Sn. Fix a cycle type c of
Sn. Then the quantity

|{p ≤ x | p 6 |Df , factorization of f (mod p) gives c}|
|{p ≤ x | p 6 |Df}|

,

approaches
|{σ ∈ Gal(f) | σ 7→ c}|

|{Gal(f)}|
.

as x→ +∞.

The proof uses complex analysis and is omitted here, so the theorem is a bit of a huge
black box thing.

But one can check with the table! The numbers were all kinda predictable.

Example. f = x5+x4−4x3−3x2+3x+1. For small p, f (mod p) gives cycle types (1, 1, 1, 1, 1)
and (5). We expect Gal(f) = C. (But it’s not a proof! Based on these calculations, especially
since Prof. Zywina checked the first ten million, we would be very very very surprised if the
group were not C. But how do we show it?!)

To show that Gal(f) is small, we define a new polynomial off of the roots α1, . . . , α5.
Define

g(x) =
∏

1≤i<j≤5

(x− (αi + αj)) ∈ Q[x].

This has degree 10. It’s sort of generally a problem that this degree is bigger than 5, which
happens because the quintic is unsolvable, and we can’t reduce to smaller polynomials.

For this example, if Gal(f) = 〈(12345)〉, then (x− (α1 +α2))(x− (α2 +α3)) · · · (x− (α5 +
α1)) ∈ Q[x], a degree five factor of g(x). But for the other four cases, there is no factor of
g(x) of degree 5. For our f , g(x) = x10 + · · · + 1 = (x5 + 2x4 − 5x3 − 13x2 − 7x − 1)(x5 +
2x4 − 5x3 − 2x2 + 4x− 1), so it does factor, so Gal(f) = C.
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4

Example. f = x7 − 7x + 3. Df = 218, a square, so that’s something. It turns out you’re
missing lots of cycle types. In this case, which is difficult, Gal(f) has order 168. The
proportion of p for which f (mod p) splits completely is ≈ 1/168. THe answer ends up
being that Gal(f) ∼= SL3(F2).

4

10 March 8th

Today’s notes are courtesy of Oliver Wang.

10.1 Last Time

Example. We discussed at the end of last time the example f = x7 − 7x+ 3 ∈ Q[x], known
as “Trinks’ Polynomial.” We claim that Gal(f) ∼= SL3(F2) y F3

2 \ {0}. Note that F3
2 \ {0}

has 7 elements, so SL3(F2) ↪→ S7.
The technique is to let α1, . . . , α7 be roots of f . Then define the resolvent

P (x) =
∏

1≤i<j<k≤7

(x− (αi + αj + αk)) ∈ Q[x].

Then, using a computer, one can compute that P (x) = (x7 + 14x6 − 42x2 − 21x +
9)Q(x), where Q(x) is an irreducible polynomial of degree 28, and the degree 7 polynomial
is irreducible as well.

So, Gal(f) y {α1, . . . , α7} transitively and Gal(f) y {αi +αj +αk | 1 ≤ i < j < k ≤ 7}
has two orbits, one of size 7 and one of size 28. Group theoretically, we can then show that
Gal(f) ≤ S7 must be isomorphic to SL3(F2).

4

Example (Malle and Matzat). Let f(x, t) = x7− 56x6 + 509x5 + 1190x4 + 6356x3 + 4536x2−
6804x − 5832 − tx3(x + 1) ∈ Q(t)[x]. Let L be the splitting field of f over Q(t); then
Gal(L/Q(t)) ∼= SL3(F2). One can plug in values for t ∈ |Q into the polynomial; experimen-
tally, for a ∈ Z, |a| ≤ 1000, a 6= 0, we have Gal(f(x, a)) ∼= SL3(F2).

4

This technique corresponds to the following theorem of Hilbert.

Theorem 10.1.1 (Hilbert’s irreducibility theorem, 1892). Let K = Q(t1, . . . , tn) with n ≥ 1.
Fix a polynomial f(x, t1, . . . , tn) ∈ K[x]. Set G = Gal(f) = Gal(L/K), with L the splitting
field of f over K. Then for infinitely many (in some sense the “most”) (a1, . . . , an) ∈ Qn,
f(x, a1, . . . , an) ∈ Q[x] is well-defined and Gal(f(x, a1, . . . , an)) ∼= G.

30



Example. Let L = Q(α1, . . . , α)n( for n ≥ 2. Then Sn y L, and L is an extension of
K = LSn = Q(s1, . . . , sn), where si is the elementary symmetric polynomial. L is the
splitting field of

f(x) =
n∏
i=1

(x− αi) ∈ K[x],

so by Hilbert’s irreducibility theorem, for “most” a1, . . . , an ∈ Q, Gal(xn − a1x
n−1 + · · · +

(−1)nan) = S)n.
As a corollary, there exists a Galois extension L/Q with Gal(L/Q) ∼= Sn.

4

Example. There exists a Galois extension L/Q(t) with Galois group isomorphic to the mon-
ster group, so there exists L/Q with Gal(L/Q) congruent to the monster group.

This leads to the inverse Galois problem: does every finite group G occur as the Galois
group of some extension of Q? this is unknown for G = SL3(F8), which is simple. However,
Shafarevich proved it for solvable groups, and it is known for SL2(Fp)/{±I}.

4

For G a finite group, there exists an n with G ↪→ Sn. Then G y Q(x1, . . . , xn) with
Q(x1, . . . , xn) an extension of Q(x1, . . . , xn)G. The problem is, that this is not necessarily
the same as Q(t1, . . . , tn) with ti’s independent.

The idea of constructing extensions of Q(t) is to construct extensions of C(t) and then
“descend.” Another technique for a finite group G is to let X be a Riemann suface and let
S be a finite set of points, with a cover π : X → ¶1(C) \ S. This can be constructed so that
G is the group of automorphisms of the cover π, and |G| = deg π, so we get an extension of
the function fields C(x)/C(t) with Galois group G.

10.2 Infinite Galois Theory

Recall that L/K is Galois if it is algebraic, normal, and separable. But if L/K is infinite,
then the set {H | H ≤ Gal(L/K)} may be too big for there to be a bijection

{F | K ≤ F ≤ L} ↔ {H | H ≤ Gal(L/K)},

since the sets may have different cardinality.

Example. Let L = Q(
√

2,
√

3,
√

5,
√

7, . . . ) as an extension over Q. Then Gal(L/Q) ∼=∏
p{±1}, with an isomorphism wherein σ 7→ (εp)p, and σ(

√
p) = εp

√
p.

We don’t get bijections here, but if we give Gal(L/K) a topology and look only at closed
subgroups of Gal(L/K), then we get bijections. So what’s the topology? The idea is that
for σ, τ ∈ Gal(L/K), σ and τ are “close” if σ|F = τ |F for a “large” finite extension F/K,
F ⊆ L.

Let Gal(L/K) be the topological group with the coursest topology such that Gal(L/F )
with F/K finite are open. (so then σGal(L/F ) is also open). Then στ−1 ∈ Gal(L/F ) if and
only if σ|F = τ |F . This leads us the the following general theorem about this construction.
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4

Theorem 10.2.1. The Fundamental Theorem holds with this topology.

One issue that arises with this topology is the question of considering a subgroup H as
opposed to its closure H. This closure is also a subgroup; it turns out that LH = LH .

Also, for E/K a finite Galois extension, consider following diagram:

H H

Gal(E/K)
res res

11 March 10th

11.1 A New Topic: Representation Theory of finite groups

Let G be a finite group.
We have been studying the actions of G on fields L, where G→ Aut(L) a homomorphism.

In this case the extension L/LG is Galois with Galois group G.
In this section of the course, instead of studying the actions of G on fields, we study the

actions of G on vector spaces. Let V be a vector space over a field K (often K = C).

Definition 11.1.1. A representation of G on V is a group action that respects the vector
space structure.

Equivalently, it is a homomorphism ρ : G → GL(V ), with GL(V ) the group of K-linear
automorphisms of V .

We will suppress ρ when clear, and simply denote gv = g ·v = ρ(g)v for g ∈ G and v ∈ V .
But, we may have to return to the homomorphism notation for clarity if there are multiple
represetations floating around.

Definition 11.1.2. The degree of a representation is dimKV .

Example. Consider representations of degree 1. In this case, we have G → GL(V ), with V
one-dimensional, so GL(V ) = K×.

If G = Sn, we have the representation ρ1 : Sn → K× with ρ1(σ) = 1, the trivial
representation. There’s also ρ2(σ) = ε(σ), where ε(σ) is multiplication by the sign of σ.

4

Example. If G = D2n = 〈r, s | rn = s2 = 1, srs−1 = r−1〉 and K = R. Let V = R2, and
consider the regular n-gon (below is n = 5) centered at (0, 0). We have ρ : D2n → GL2(R),
where r acts by rotation by 2π

n
, and s flips across the x-axis.
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In terms of explicit linear transformations, this gives

ρ(r) =

(
cos(2π

n
) − sin(2π

n
)

sin(2π
n

) cos(2π
n

)

)
and

ρ(r) =

(
1 0
0 −1

)
.

This is a degree 2 representation, which is “irreducible,” i.e. there are no stable one-
dimensional subspaces. Up to isomorphism, this is the only degree 2 representation of D2n.

4
Wait, but what kind of isomorphism? What do we mean by the same?

Definition 11.1.3. Consider two representations ρ : G → GL(V ) and ρ′ : G → GL(W ),
for V and W vector spaces. Then ρ and ρ′ are isomorphic (or equivalent, or in the world
of Dummit and Foote and possibly them alone, similar) if there exists an isomorphism
f : V

∼→ W such that the following diagram commutes for all g ∈ G.

V W

V W

f∼

f∼

g g

In other words, for all g ∈ G, for all v ∈ V , f(gv) = gf(v), or f ◦ ρ(g) = ρ′(g) ◦ f .

Choose a basis V ∼= Kn. Then ρ : G → GLn(K); any two such representations are
isomorphic if and only if they are conjugate by a matrix A ∈ GLn(K). We can define the
character of ρ, which is the map χ : G→ K given by χ(g) = Tr(ρ(g)). Note that χ depends
only on the isomorphism class of ρ.

Later we will show that for K = C, a representation is determined up to isomorphism
by its character, a very exciting theorem that we will prove next week. This is surprising.
It seems like taking the trace would throw away a lot of information. But characters can
be really important! For the monster group, people wrote down its characters before they
proved it was a group. So it can sometimes be more tractable. (It’s just like a fairy tale.
The monster was tamed by the main characters!)
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Example. We consider permutation representations. For an action G y X, with X a set,
let V = KX, a formal vector space over K with basis X. In other words, the elements of V
are of the form

∑
x∈X ax · x, for ax ∈ K. Then G acts on V via

g

(∑
x∈X

ax · x

)
=
∑
x∈X

ax · gx.

For example, S3 y X = {1, 2, 3} by permuting. In this case V = Ke1⊕Ke2⊕Ke3 = K3,
so we have a representation ρ : S3 → GL3(K) given by permutation matrices, where

ρ((12) =

0 1 0
1 0 0
0 0 1

 , ρ((123)) =

0 0 1
1 0 0
0 1 0

 .

Are there non-trivial subspaces of V that are stable under this action? Yes. Consider
W = K(e1 + e2 + e3). This is a G-invariant subspace. Just as with Galois theory, we denote
this by V G, the subspace of elements of V that are fixed by G.

There is one more fixed subspace, defined by W ′ = {ae1 +be2 +ce3 | a, b, c ∈ K, a+b+c =
0}. This is a degree-2 subspace that is closed under the action. We find that V = W ⊕W ′,
if the characteristic of K is not 3.

4

Definition 11.1.4. We say a subspace W of V is G-invariant (or G-stable) if g(W ) ⊆ W
for all g ∈ G.

The basic starting point in representation theory is then the following theorem.

Theorem 11.1.5 (Maschke). Let G be a finite group and let V be a representation of G.
Assume that charK 6 ||G|. Then for any G-invariant subspace W ⊆ V ¡ there is a G-invariant
subspace W ′ ⊆ V such that

V = W ⊕W ′.

Proof. Fix a projection f : V → V of V onto W , so that f(V ) ⊆ W and f(w) = w for
w ∈ W .

The linear map f need not respect the G-action; we will fix this by “averaging.” Define
F : V → W given by

F (v) =
1

|G|
∑
g∈G

g(f(g−1v)).

Note that this is where we use that the characteristic doesn’t divide |G|. Dividing by zero
is unadvisable.

F is a projection onto W :

· For v ∈ V , f(g−1v) ∈ W for all g ∈ G; then gf(g−1v) ∈ W because W is G-invariant.
Since W is a subspace, then F (v) ∈ W .
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· For w ∈ W , g−1w ∈ W for all g ∈ G, so f(g−1w) = g−1w, so for all g ∈ G, gf(g−1w) =
w. Then F (w) = 1

|G| |G|w = w.

But F has a new property, that F (hv) = hF (v) for all v ∈ V and h ∈ G. In other words,
F plays nice with the group action. How do we show this? Let h ∈ G be arbitrary. Then

F (hv) =
1

|G|
∑
g∈G

hg · f((hg)−1 · hv)

=
1

|G|
∑
g∈G

hg · f(g−1v)

= hF (v).

OK, great. We’re pretty much done. Define W ′ = ker F . Then V = W ⊕W ′ from linear
algebra. All that remains is to show that W ′ is a G-invariant subspace. For w ∈ W ′ and
g ∈ G, F (gw) = gF (w) = g · 0 = 0, so gw ∈ W ′ as well, and we’re done.

Definition 11.1.6. We say that a representation V of G is irreducible (or simple) if V 6= 0
and the only G-invariant subspaces are 0 and V .

Corollary 11.1.7. If V is finite dimensional over K and char K 6 ||G|, then V breaks up
into irreducibles, i.e.

V = V1 ⊕ · · · ⊕ Vr,

where the Vi are irreducible G-invariant subspaces.
Alternatively, V ∼= V a1

1 ⊕ · · · ⊕ V ar
r where Vi are irreducible representations of G and are

pairwise non-isomorphic, with ai ≥ 1 integers.

Later, we will show that this decomposition is unique up to reordering and replacing Vi
by an isomorphic representation.

12 March 15th

12.1 Last Time

Fix a field K. A representation of a finite group G on a vector space V over K is a
group action of G on V that respects the vector space structure. Equivalently, it is just a
homomorphism ρ : G→ GL(V ).

Now we introduce the same topic from another view, looking at group rings.

12.2 Group Rings

Definition 12.2.1. The group ring KG = K[G] of G over K is as an additive group the K
vector space with basis G, so that elements are of the form

∑
g∈G ag · g, with ag ∈ K. We
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define multiplication by saying that(∑
g∈G

ag · g

)
·

(∑
h∈G

bh · h

)
=
∑
g,h∈G

agbh · gh.

KG is a K-algebra, with KG commutative if and only if G is abelian. Also, KG has
zerodivisors if G is finite and G 6= 1. To see this, take h ∈ G− {1}. Then

(h− 1)
∑
g∈G

g =
∑
g∈G

hg −
∑
g∈G

g

=
∑
g∈G

g −
∑
g∈G

g = 0.

There is a correspondence

{ reps of G on V } ←→ {KG-modules } ,

where a representation of G on V corresponds to submodule structure given by(∑
g∈G

agg

)
v =

∑
g∈G

ag · (gv),

and in the other direction, we define the representation where for g ∈ G, g · v = gv, using
the KG-action.

This correspondence goes pretty far. V is finite dimensional over K if and only if the
module is finitely generated. Then we have the following table of correspondences:

Representations Modules
G-invariant subspaces KG-submodules

irreducible simple
isomorphisms isomorphisms

We will later descibe the structure of KG for characteristic of K not dividing |G|.
Example. Let G = D8, and let K = C. We’ll see that CG ∼= C×C×C×C×M2(C), so
D8 has 5 irreducible representations over C of degree 1, 1, 1, 1, 2. Also, |D8| = dimCCG =
12 + 12 + 12 + 12 + 22.

4

Example (Symmetries of a cube). Consider a cube in R3 with vertices (±1,±1,±1). By
symmetries, we mean physical symmetries, i.e. rotations. No reflecting along some line.

The symmetry group has order 24, and is S4, which can be seen by looking at diagonals.
The symmetries permute the four long diagonals, colored red, blue, yellow, and green in the
picture below:
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We then have a representation ρ : S4 ↪→ GL3(R), based on which permutation of the
diagonals sends what basis vectors where, with

ρ((1234)) =

0 −1
1 0

1


ρ((1243)) =

0 −1
1

1 0


ρ((132)) = ρ((1234)(1243)) =

0 −1 0
0 0 −1
1 0 0



The image of ρ is the set of signed permutation matrices in GL3(R), with determinant 1
(because we’re not reflecting). The character is the map χ = tr ◦ ρ : S4 → R, so we can do
the following computations of characters of elements:

Conj. class 1 (12)(34) (12) (1234) (123)
χ 3 -1 -1 1 0

We’ll see later that χ determines ρ up to isomorphism.

4

For now, note that all vector spaces V are finite dimensional, and the characteristic of
K is taken to be not dividing |G|. Last time, recall that we saw the following theorem of
Mashke:

Theorem 12.2.2. If V is a representation of G and W is a G-invariant subspace, then there
is a G-invariant subspace W ′ of V such that V = W ⊕W ′.

From this it follows that V = V1 ⊕ · · · ⊕ Vr, with each Vi irreducible. We claim and
will see shortly that the Vi are unique up to isomorphism and reordering. This uniqueness
ends up being very helpful for using representation theory as a lens to look at modules via
a group, or to look at groups via their representations. For the next little bit, we will sweat
and toil at the noble altar of uniqueness.

For now, let V,W be representations ofG. Then HomG(V,W ) = HomKG(V,W ), where we
define HomG(V,W ) to be K-linear maps V → W that respect the group law, ie. linear maps
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f with f(gv) = gf(v). In the special case when V = W , we have HomG(V, V ) = EndG(V ).
(Note that EndG(V ) is a ring with multiplication being composition.) We begin with Schur’s
Lemma, one of those super-useful results that will always be and has always been a lemma
(see also: Zorn, Jordan).

Lemma 12.2.3 (Schur’s Lemma). Let V and W be irreducible representations of G. Let
f : V → W be a homomorphism of KG-modules. Then

a) either f is an isomorphism or f = 0, and

b) EndG(V ) is a division algebra with K in the center, that is finite dimensional over K,
and

c) if V = W and K is algebraically closed, then f = λI, for λ ∈ K.

Proof. a) ker (f) is a G-invariant subspace of V , and im (f) is a G-invariant subspace of W .
Since V and W are irreducible, either ker (f) = V or im (f) = 0, in which case f = 0, or
ker (f) = 0 and im (f) = W , in which case f is an isomorphism.

b) dimK EndG(V ) ≤ dimK End(V ) = (dimV )2 <∞. This is then a {worthy, straightforward}
exercise.

c) Let D be a division algebra with K in its center and of finite dimension over K. We
claim that D = K. Take any α ∈ D; then K(α) ⊆ D. Moreover, [K(α) : K] is finite,
and α ∈ EndG(V ) ⊆ End(V ) ∼= Mn(K), so we get p(α) = 0 where p is the characteristic
polynomial of α. But K is algebraically closed, and K(α)/K is finite, so K(α) = K, so
α ∈ K. Thus D = K, and this completes the proof.

Example. Let V be irreducible. If K = C, then EndG(V ) = C, and if K = R, then EndG(V )
ends up being R,C, or H.

4

Example. Consider the representation ρ : Z/3Z→ GL2(R) given by rotation by 2π
3

. Explic-
itly,

ρ(1) =

(
−1/2

√
3/2

−
√

3/2 −1/2

)
,

and

ρ(2) = ρ(1)2 =

(
−1/2 −

√
3/2√

3/2 −1/2

)
.

ρ is irreducible. But is it irreducible as a representation over C, with ρ : Z/3Z →
GL2(R) ⊆ GL2(C)? No. It turns out you can diagonalize, to get eigenvalues ζ3 and ζ−1

3 .
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Up to isomorphism, ρ : Z/3Z → GL2(C), with 1 7→
(
ζ3

ζ−1
3

)
, so it breaks up into two

one-dimensional pieces. ρ is the direct sum of two degree 1 representations, given by

ψ : Z/3Z→ C×

k 7→ ζk3

ψ : Z/3Z→ C×

k 7→ ζ−k3 .

Over K = R, the endomorphisms of ρ that respect the Z/3Z-action are R⊕R ·ρ(1) ∼= C.

4

Now let V be a representation of G, so that V = V1⊕· · ·⊕Vr. We show that this decom-
position is unique up to isomorphism and reordering. Let W be an irreducible representation
of G, and consider

HomG(W,V ) =
r⊕
i=1

HomG(W,Vi),

but since W and Vi are irreducible, each term is 0 if W 6∼= Vi. So

HomG(W,V ) =
⊕
Vi∼=W

HomG(W,V ) ∼=
⊕
Vi∼=W

EndG(W ).

Comparing dimensions, we have dimk HomG(W,V ) = |{i : 1 ≤ i ≤ r, Vi ∼= W}| ·
dimK EndG(W ), so the number of Vi’s that are isomorphic to W is

dimk HomG(W,V )

dimk EndG(W )
,

which is independent of how we decomposed V into irreducibles. So that’s our uniqueness
statement.

Characters, seen next time, will be a way of approaching that dimension fraction, of how
many Vi’s are isomorphic to W , in a hands-on way.

13 March 17th

13.1 Representations and their Characters

Our set up was and is that K is a field and G is a finite group (with the assumption that the
characteristic of K doesn’t divide |G|), and V is a representation of G with dimk V finite.
So, there is a homomorphism ρ : G→ GL(V ), the space of K-linear automorphisms of V .

Then the character of ρ is the map χ : G → K, where χ(g) = tr(ρ(g)), which is unique
up to isomorphism class. Also, χ(hgh−1) = χ(g) for all g, h ∈ G, so χ is what is known as a
“class function” of G.
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Fact 13.1.1. χ is also a classy function of G, on account of how shiny, stylish, and socially
adept it is.

Our goal will be to show that if K = C, or has characteristic 0, then χ determines ρ up
to isomorphism. This doesn’t work in characteristic p, because for a field K, consider the
representations of G into K and Kp+1 with trivial action. Then χ(g) = 1 in the first case,
and χ(g) = p+ 1 = 1 in the second case, so already this doesn’t determine ρ.

For the character of Gy V , we’ll use the notation χV , or equivalently χρ.
Let V ∼= V1 ⊕ · · · ⊕ Vr, where each Vi is irreducible; recall that this decomposition is

unique up to isomorphism and reordering, as we discussed last time. For W an irreducible
representation of G, we had the formula

#{i ∈ {1, . . . , r} | Vi ∼= W} =
dimk HomG(W,V )

dimk EndG(W )

The questions we’re answering now are then “How many irreducible representations are
there?,” and “What are they/can you find them?”

13.1.1 Interlude: Constructing New Representations

Let V,W be representations of G, with ρ : G→ GL(V ) and ρ′ : G→ GL(W ).
Direct sum: We have G y V ⊕W , with g(v, w) = (gv, gw). In terms of characters, this

gives
χV⊕W = χV + χW ,

or “direct sums turn into sums” for characters. This can be understood via the matrices;
the image of g in the direct sum is (

ρ(g) 0
0 ρ′(g)

)
,

so the traces add.
Tensor products: V ⊗W = V ⊗KW . If {ei} is a basis of V and {fj} is a basis of W , then

{ei⊗ fj} is a basis of V ⊗W , and dimV ⊗W = dimV ·dimW . There’s a group action of G
on V ⊗W in the natural manner: for a simple tensor v ⊗w, we have g · (v ⊗w) = gv ⊗ gw,
and we extend bilinearly to all of V ⊗W .

In terms of characters, we have

χV⊗W = χV · χW ,

or “tensor products turn into products” for characters. To see the idea of why this is true, let
A ∈ End(V ) and let B ∈ End(W ) be diagonalizable. Then we have v1, . . . , vn eigenvectors
of A, with Avi = λivi, and w1, . . . , wm eigenvectors of B, with Bwj = µjwj. For ei ⊗ fj our
basis of V ⊗W ,

(A⊗B)(ei ⊗ fj) = Aei ⊗Bfj = λimjei ⊗ fj,

so to compute the eigenvalues ofA⊗B we have the sum of all λiµj, which is (
∑

i λi)
(∑

j µj

)
=

trAtrB.
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Remark. This whole exercise is one of the many that can be done to motivate the notation
⊗ for tensor products and ⊕ for direct sums, along with their naming terminology. Whee!

Duals: Let V ∗ = HomK(V,K). For g ∈ G, f ∈ V ∗, and f : V → K, we can define

(gf)(v) = f(g−1v),

which defines a left action G y V ∗. Let A ∈ End(V ); then we have the corresponding
A∗ ∈ End(V ∗), with A∗f = f ◦ A. Fixing a basis e1, . . . , en of V , we get the dual basis
e∗1, . . . , e

∗
n of V ∗, where

e∗i (ej) =

{
1 if i = j

0 else
= δij.

One can check that with respect to these bases, A∗ is the transpose of A. So

χV ∗(g) = χV (g−1).

Let’s look specifically at the case when K = C. In this case, χV (g) = λ1 + · · ·+λ1, where
the λi are eigenvalues of ρ(g), which in fact must be roots of unity because ρ(g) has finite
order. Then

χV (g−1) = λ−1
1 + · · ·+ λ−1

n

= λ1 + · · ·+ λn

= χV (g).

So if K = C, χV ∗ = χV .
Hom: We define the action Gy Hom(V,W ) by saying that for g ∈ G and for f : V → W ,

(g · f)(v) = g · f(g−1v)

=
(
ρ′(g) ◦ f ◦ ρ(g)−1

)
(v).

Observe that there is an isomorphism of K-vectorspaces:

V ∗ ⊗W ∼−→ Hom(V,W )

f ⊗ w 7→ (v 7→ f(v)w).

Exercise: Verify that this is an isomorphism, and that defining G y Hom(V,W ) via
this isomorphism would give the same result as our definition above.

Then in terms of characters,

χHom(V,W )(g) = χV ∗⊗W (g)

= χV ∗(g) · χW (g)

= χV (g−1)χW (g)

= χV (g)χW (g), when K = C.

So, now that we know arguably enough ways to construct representations and what that
does to characters, we have the following theorem.
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Theorem 13.1.2. Let V,W be irreducible representations of G with K = C. Then

1

|G|
∑
g∈G

χV (g)χW (g) =

{
1 if V ∼= W

0 otherwise.

For generic K, replace χW (g) with χW (g−1) and replace 1 for the case when V ∼= W with
dimK EndG(W ).

Before we prove this, we will need the following lemma.

Lemma 13.1.3. Let V be a representation of G. Then

1

|G|
∑
g∈G

χV (g) = dimK V
G,

where V G is the subspace of V fixed by G.

Proof. Define f : V → V by

f(v) =
1

|G|
∑
g∈G

gv,

or f = 1
|G|
∑

g∈G ρ(g). Then

tr(f) =
1

|G|
∑
g∈G

tr(ρ(g)) =
1

|G|
∑
g∈G

χV (g).

We claim that f is a projection of V onto V G; it is a straightforward exercise to show
that for v ∈ V , f(v) ∈ V G, and for v ∈ V G, f(v) = v. So the trace of f is dimK V

G, since

f =

(
IV G 0
0 0

)
,

so we’re done.

OK, now we’re ready for the theorem.

Proof of theorem.

1

|G|
∑
g∈G

χV (g)χW (g) =
1

|G|
∑
g∈G

χHom(W,V )(g)

= dimK Hom(W,V )G, by the lemma.

Our action of G on Hom(W,V ) was (gf)(v) = gf(g−1v). so f(v) = (gf)(v) if and only if
g−1f(v) = f(g−1v). So f ∈ Hom(W,V )G ⇐⇒ f ∈ HomG(W,V ), giving us that

1

|G|
∑
g∈G

χV (g)χW (g) = dimK HomG(W,V ).

By Schur’s Lemma, for the complex numbers, the RHS is 1 if V ∼= W and 0 otherwise, just
as desired.
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Let C be the set of class functions of G over C, or the set {f : G → C | f(hgh−1) =
f(g) ∀g, h ∈ G}. For example, χV ∈ C . Then C is a complex vector space. We can assign
it with a Hermition form 〈, 〉 : C×C → C, where

〈f, f ′〉 =
1

|G|
∑
g∈G

f(g)f ′(g).

For V1, . . . , Vm irreducible representations of G over C up to isomorphism, our theorem tells
us that χV1 , . . . , χVm are orthonormal in C , i.e. 〈χVi , χVj〉 = δij.

Remark. dimC C is the number of conjugacy classes of G; call it r. In particular, this means
that m, the number of irreducible representations of G over C, is at most r. We implicitly
assumed there were finitely many; it turns out there are only finitely many, and we have an
upper bound! Next week, we’ll show that the upper bound is exact.

Let V be a (not necessarily irreducible) representation of G (over C); we now look at
χV : G→ C. V ∼= V a1

1 ⊕ · · · ⊕ V am
m , where Vi and Vj are distinct, and the integers ai ≥ 0 are

unique. Then

χV =
n∑
i=1

aiχVi ,

and for 1 ≤ j ≤ m,

〈χV , χVj〉 =
m∑
i=1

ai〈χVi , χVj〉 = aj.

This is really useful! An easy way to compute the ai’s. This also gives us a notion of size:

〈χV , χV 〉 =
m∑
i=1

m∑
j=1

aiaj〈χVi , χVj〉 =
m∑
i=1

a2
i .

Another consequence is that this is a nice way to check irreducibility.

Corollary 13.1.4. χV is irreducible (equivalently, V is irreducible) if and only if 〈χV , χV 〉 =
1.

The main use is that this is an easily checkable criterion, which we’ll verify next time by
checking the criterion for a lot of examples!

14 March 22nd

14.1 Complex Character Theory, continued

Today, all representations of G are finite dimensional vector spaces over K = C, and just
like last time G is finite. Given a representation V of G with ρ : G→ GL(V ), its character
is the map χ = χV = χρ : G→ C with g 7→ tr(ρ(g)). These characters are examples of class
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functions, or maps G→ C that only care about conjugacy class. On C , we have a Hermitian
form given by

〈f, f ′〉 =
1

|G|
∑
g∈G

f(g)f ′(g).

Let V1, . . . , Vm be the irreducible representations of G, up to isomorphism, and define χi =
χVi ; then we saw that 〈χi, χj〉 = δij. So if V ∼= V a1

1 ⊕ · · · ⊕ V am
m , with ai ≥ 0 integers, then

χV =
∑m

i=1 aiχi. Furthermore,

〈χV , χj〉 =
m∑
i=1

ai〈χi, χj〉 = aj,

and 〈χ, χ〉 =
∑m

i=1 a
2
i , so in particular χ is irreducible if and only if 〈χ, χ〉 = 1.

If m is the number of irreducible representations of G up to isomorphism, then m ≤
dimC CG = r, the number of conjugacy classes of G. We claim that m = r, in fact.

Example (Key example: Regular representations.). Let R = CG, the group ring, which
acts on itself by left multiplication. Then we have ρ : G → GL(CG), and we can look at
χreg : G→ C. In this case

χreg(g) = tr(ρ(g)) =

{
|G| if g = 1

0 else
,

where we know that χreg(g) = 0 if g 6= 1 because g acts on G by left multiplication and fixes
no elements; with respect to the basis G, ρ(g) is a permutation matrix with 0’s all down the
diagonal.

Now let χi be an irreducible character. Then

〈χreg, χi〉 =
1

|G|

(
χreg(1)χ1(1) +

∑
g 6=1

χreg(g)χi(g)

)
= χi(1),

which is the degree of the irreducible representation Vi. In particular, χreg =
∑m

i=1 χi(1)χi,
so

CG ∼= V
χ1(1)

1 ⊕ · · · ⊕ V χm(1)
m .

In particular, all irreducible representations show up! And each one shows up with the
multiplicity equal to the dimension of Vi over C.

4

Example. Let G = S3; find the irreducible characters. To do this, we draw a character table:

Conj. classes 1 (12) (123)
sizes 1 3 2

χ1 (“trivial”) 1 1 1
χ2 = ε (“sign”) 1 -1 1

χ3 2 0 -1
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We can figure out the elusive χ3, becuase χreg = χ1 + χ2 + 2 · χ3, so we can solve for it
in terms of the regular representation and the other characters. We also saw χ3 before: it
appears because S3

∼= D6 y C2.

4

We now proceed to look at the structure of the ring CG. Let CGy V1 ⊕ · · ·Vm. This is
a faithful action, i.e. α, β ∈ CG act the same if and only if α = β, because CG acts faithfully
on itself. This gives us a map

CG ↪→
m∏
i=1

EndC(Vi),

an injective C-algebra homomorphism, which is injective because the action is faithful. The
dimension of the LHS is dimC = |G|, and the dimension of the product on the right is∑m

i=1 dimC EndC(Vi) =
∑m

i=1(dimVi)
2 = |G|. But since we have an injective map between

spaces of the same dimension, it must be an isomorphism, i.e. CG ∼=
∏m

i=1 EndC(Vi) =∏m
i=1Mni

(Ci), where ni = dimC Vi.
Then CGy Vi is equivalent to a projection

∏m
i=1Mni

(C) �Mni
(C) y Cni . For example,

CS3
∼= C×C×M2(C).

Now let’s prove the claim that m = r. We look at the center of CG, the maximal
commmutative subring of CG, denoted Z(CG). Then

Z(CG) ∼= Z

(
m∏
i=1

Mni
(C)

)

=
m∏
i=1

Z(Mni
(C)) =

m∏
i=1

CIni
.

In particular, dimC Z(CG) = m, the number of irreducible representations of G. Let α ∈ CG.
Then α =

∑
g∈G f(g)g for a unique f : G→ C. So

α ∈ Z(CG) ⇐⇒ hα = αh for all h ∈ G

⇐⇒
∑
g∈G

f(g) · hgh−1 =
∑
g∈G

f(g)g

⇐⇒
∑
g∈G

f(h−1gh) · g =
∑
g∈G

f(g)g

⇐⇒ f ∈ CG,

the set of class functions. So CG
∼→ Z(CG) is an isomorphism of C vector spaces, with

f 7→
∑

g∈G f(g)g.
Thus dimC Z(CG) = dimC CG = r, the number of conjugacy classes of G, so m = r just

as desired. CG is a bit of an unusual vector space at this point, because it has two natural
bases. They are:
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· χ1, . . . , χr

· fC , C ⊆ G conjugacy classes of G, with fC(G) being 1 or 0 depending on whether or
not g ∈ C.

How are these bases related? One connection is the following, without very much theoretical
significance:

χi =
∑
C

χi(C) · fC ,

where C ranges over all conjugacy classes of G and χi(C) = χi(g) for any g ∈ C. A slightly
more interesting connection is that

fC =
r∑
i=1

〈fC , χi〉χi.

=
r∑
i=1

(
1

|G|
∑
g∈G

fC(g)χi(g)

)
χi

=
r∑
i=1

1

|G|
∑
g∈C

χi(g)χi

=
r∑
i=1

1

|G|
|C|χi(C)χi.

Taking h ∈ G, we get that

r∑
i=1

χi(h)χi(g) =

{
|G|/|C| if h ∈ C
0 if h 6∈ C

,

and in the general case with g, h ∈ G,

r∑
i=1

χi(h)χi(g) =

{
|G|/|C| if g and h are conjugate in G

0 otherwise.

In other words, the columns of a characteristic table are orthogonal! This can be checked
on the table above. The rows also have orthogonality, with

〈χi, χj〉 =
1

|G|
∑
C⊆G

|C|χi(C)χj(C) = 1.

15 March 24th

15.1 Character Tables

Today, we recall the set-up from last time, and then we’re going to do a bunch of examples.
Let G be a finite group with a representation over C. Let r be the number of conjugacy
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classes of G; let V1, . . . , Vr be the irreducible representations of G over C up to isomorphism.
Let χi = χVi be the character of the representation Vi, and let ni = dimC Vi = χi(1). Last
time we saw that

∑r
i=1 n

2
i = |G|.

Example. Let G be abelian. Then r = |G|, so
∑|G|

i=1 n
2
i = |G|, which can only work if each

ni = 1. Thus all irreducible representations have degree 1.

4

Today we’re gonna compute some character tables, of the form:

C1 . . . Cj . . . Cr

χ1
...

...
...

χi · · · · · · χi(Cj)
...

χr

This table describes all the representations of G. The conditions on the table are:

·
∑r

i=1 χi(C)χi(C ′) =

{
|G|
|C| , C = C ′

0 otherwise

· 1
|G|
∑

C⊆G |C|χi(C)χj(C) = 1
|G|
∑

g∈G χi(g)χj(g) =

{
1 i = j

0 otherwise

Example. G = S4. First let χ1 be the trivial character and let χ2 be the sign function. S4

acting on C4 by permuting basis elements has a character χ : S4 → C with χ(g) being the
number of i ∈ [4] that are fixed by g. This has values across the table of 4,3,1,0,0; then
considering what χ′ = χ− χ1 is, we actually get

〈χ′, χ′〉 =
1

24
(1 · 32 + 6 · 12 + 0 + 6 · (−1)2 + 3 · (−1)2 = 1,

so χ′ is irreducible. Thus χ′ is our χ3.
We then produce χ4 = χ3χ2, a new character which ends up being symmetries of the

cube.
So we have one left. Note that it ought to be 0 on the conjugacy class of (12) and that

of (1234), because otherwise multiplication with χ2 would give yet another one, which is no
good. We know that 12 + 12 + 32 + 32 + n2

5 = |S4| = 24, so n2
5 = 4 and n5 = 2. But using

our first bullet point,
∑5

i=1 χi(C)χi(1) = 0 if C 6= {1}, so we can use column orthogonality
to fill out the rest of the row.
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sizes 1 6 8 6 3
1 (12) (123) (1234) (12)(34)

(trivial) χ1 1 1 1 1 1
(sign) χ2 1 -1 1 -1 1

χ3 3 1 0 -1 -1
χ4 3 -1 0 1 -1
χ5 2 0 -1 0 2

So, what’s the representation for χ5? We found the character through witchcraft, so we
have to think for a bit longer. It’s a map ρ5 : S4 → GL2(C). What’s its kernel? If ρ5(g) = I,
then χ5(g) = tr(I) = 2. So products of disjoint transpositions might be in the kernel. In fact,
χ5(g) = ζ1 + ζ2, with ζi a root of unity, the eigenvalues of ρ5(g). So in fact if χ5(g) = 2, then
χ1 = χ2 = 1, so ρ5(g) = I. Thus the kernel is ker (ρ5) = {1, (12)(34), (14)(23), (13)(24)} =
V , the Klein four group. So

ρ5 : S4 � S4/V ↪→ GL2(C),

where as described last time, S4/V ∼= S3, where elements permute the nontrivial elements
of V by conjugation.

4
Example. G = A4. Note that here A4/V ∼= Z/3Z. So there are representations achieved for
free by looking at homomorphisms A4/V → C∗. Taking a generator a, it maps to a cube
root of unity ζ3 = e2πi/3, with i = 0, 1, 2. You get two characters this way. Then fill in the
last line by sum of the image of 1, and orthogonality of the columns.

sizes 1 4 4 3
1 (123) (132) (12)(34)

(trivial) χ1 1 1 1 1
χ2 1 ζ3 ζ2

3 1
χ3 1 ζ2

3 ζ3 1
χ4 3 0 0 -1

Alternatively, the last one comes from restricting either of the three-dimensional represen-
tation of S4 to A4 (they restrict to the same thing).

4
With G y V , and thus V ⊗ V a representation of G, there is a unique isomorphism

Θ : V ⊗ V ∼→ V ⊗ V , with v ⊗ w 7→ w ⊗ v. One can then define Sym2(V ) = {v ∈ V ⊗ V |
Θ(v) = v}, and very similarly Λ2V = Alt2(V ) = {v ∈ V ⊗ V | Θ(v) = −v}. One can check
that V ⊗ V = Sym2V ⊕ Alt2V , each of which is a representation of G. Then if χ is the
character of V , we get that χ(g)2 = χV⊗V (g), so you can derive that

χSym2V (g) =
1

2

(
χ(g)2 + χ(g2)

)
,

χAlt2V (g) =
1

2

(
χ(g)2 − χ(g2)

)
.
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The idea is to fix A ∈ GLn(C) diagonalizable and e1, . . . , en eigenvectors of A with
Aei = λiei. Λ2V has a basis ei ⊗ ej − ej ⊗ ei, for 1 ≤ i < j ≤ n, and A(ei ⊗ ej − ej ⊗ ei) =
λiλj(ei ⊗ ej − ej ⊗ ei). So

tr(A|Λ2V ) =
∑

1≤i<j≤n

λiλj

=
1

2

∑
1≤i,j≤n

λiλj −
1

2

∑
i

λ2
i

=
1

2

(
(tr(A))2 − tr(A2)

)
.

So taking tensor products is a good way to see new irreducible characters.

Example. G = S5.
S5 acts on C5 by permuting the indices; then C5 = C(e1 + · · ·+ e5)⊕{a ∈ C5 |

∑5
i=1 ai =

0}, the latter of which is Vst, the so-called standard representation, which becomes χ3, so we
can compute that row as well.

Then χ4 is obtained via multiplying χ3 by χ2. We have three left! Then χ5 = χΛ2Vst ,
which we can compute based on our previous formula.

So for χ6, χ7, we know that n2
6 + n2

7 = 50, because the sum of the squares of the entries
in the first column is 120. So we’re missing two, and they’re 5-dimensional. Hopefully,
χ2χ6 = χ7; but we have to check that we don’t have χ2χ6 = χ6. We claim that this works!
That χ2χ6 6= χ6. If not, then χ6((12)) = 0 and also χ7((12)) = 0, so that we can’t generate an
eighth one, and so we should have

∑7
i=1 χi((12))χi((12)) = |S5|/10 = 12, but we actually have

12 + (−1)2 + 22 + (−2)2 + 0 = 10, which is bad! So this actually also shows that χ6((12)) = 1
and χ6((12)) = −1, without loss of generality, because 10 + (χ6((12)))2 + (−χ6((12)))2 = 12.

Also, 〈χ6, χi〉 = 0 for 1 ≤ i ≤ 5. Writing this out, we get linear equations in the missing
values χ6((123)), χ6((1234)), χ6((12345)), χ6((12)(34)), χ6((12)(345)). This is 5 equations in
5 unknowns, which we can actually solve, which is how we fill in the last two rows of the
table.

sizes 1 10 20 30 24 15 20
1 (12) (123) (1234) (12345) (12)(34) (12)(345)

(trivial) χ1 1 1 1 1 1 1 1
(sign) χ2 1 -1 1 -1 1 1 -1

(standard) χ3 4 2 1 0 -1 0 -1
χ3χ2 = χ4 4 -2 1 0 -1 0 1
χΛ2Vst = χ5 6 0 0 0 1 -2 0

χ6 5 1 -1 -1 0 1 1
χ7 5 -1 -1 1 0 1 -1

4
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16 April 5th

16.1 The last of the examples

Example. Let G = A5, the smallest nonabelian simple group. Recall the character table of
S5:

sizes 1 10 20 30 24 15 20
1 (12) (123) (1234) (12345) (12)(34) (12)(345)

(trivial) χ1 1 1 1 1 1 1 1
(sign) χ2 1 -1 1 -1 1 1 -1

(standard) χ3 4 2 1 0 -1 0 -1
χ3χ2 = χ4 4 -2 1 0 -1 0 1
χΛ2Vst = χ5 6 0 0 0 1 -2 0

χ6 5 1 -1 -1 0 1 1
χ7 5 -1 -1 1 0 1 -1

We now turn to A5, to fill in its character table. For every irreducible character of S5,
χi|A5 is a character of A5, but it need not be irreducible. So doing that for each of the others,
we get that

〈χi|A5 , χi|A5〉 =
1

|A5|
∑
g∈A5

χi(g)χi(g) =

{
1 if i 6= 5

2 if i = 5
,

so let χ′1 = χ1|A5 , let χ′2 = χ3|A5 , and let χ′3 = χ6|A5 . This gives us much but not all of our
table!

But then also,
∑5

i=1 χ
′
i(1)2 = |A5| = 60, so 12 +42 +52 +n2

4 +n2
5 = 60, so n2

4 +n2
5 = 18 and

n4 = n5 = 3. Now look at χ5; if χ5|A5 =
∑5

i=1 aix
′
i, then 2 = 〈χ5|A5 , χ5|A5〉 =

∑5
i=1 a

2
i , so

two of the ai’s are 1 and the rest 0. χ5(1) = 6, so either χ5|A5 = χ′1 + χ′3 or χ5|A5 = χ′4 + χ′5.
But χ5|A5 can’t be χ′1 + χ′3, because χ5((12)(34)) = −2 6= 2 = χ′1((12)(34)) + χ′3((12)(34)).
So χ5|A5 = χ′4 + χ′5. Great! Let’s find those characters and fill in our table.

Let a = χ′4((123)) and let b = χ′4((12)(34)). Then

0 = 〈χ′4, χ′1 + χ′2〉

=
1

60

∑
C⊆A5

|C|χ′4(C)(χ′1(C) + χ′2(C))

=
1

60
(1 · 3 · 5 + 20 · a · 2 + 15 · b · 1 + 0 + 0)

⇒0 = 15 + 40a+ 15b, and0 = 〈χ′4, χ′3〉

=
1

60
(1 · 3 · 5 + 20 · a · (−1) + 15 · b · 1 + 0 + 0)

⇒0 = 15− 20a+ 15b,

which we can solve to find that a = 0 and b = −1. The same argument gives you the
same values of χ′5.
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We then define a new pair of unknowns x = χ′4((12345)) and y = χ′4((12354)). Then

1 = 〈χ′4, χ′4〉 =
1

60
(32 + 02 + (−1)2 + |x|2 + |y|2)

0 = 〈χ′4, χ′1〉 =
1

60
(3− 15 + 12x+ 12y),

so (assuming the secret assumption that x and y are real), x2 + y2 = 3 and x + y = 1,
which can be solved. We know that it’s real because they are the rotational symmetries of
the dodecahedron and the icosahedron, but that is sort of a deus ex machina in this case
(cheating!). Maybe next time we will go over how to see it.

sizes 1 20 15 12 12
1 (123) (12)(34) (12345) (12354)

χ′1 1 1 1 1 1
χ′2 4 1 0 -1 -1
χ′3 5 -1 1 0 0

χ′4 3 0 -1 1+
√

5
2

1−
√

5
2

χ′5 3 0 -1 1−
√

5
2

1+
√

5
2

4

16.2 Frobenius Divisibility feat. maybe some Burnside

The goal of this section, which will be continued in the next lecture, is to prove the following
two theorems.

Theorem 16.2.1 (Frobenius Divisibility). Let G be finite and let χ be an irreducible char-
acter over C. Then χ(1) divides |G|.

Theorem 16.2.2 (Burnside 1904). A group G of order paqb, with p and q primes, is solvable.

It’ll also be the last section before we start homological algebra, and there might be some
blending. We proceed to the proof of Frobenius! And all the definitions that it entails.

Definition 16.2.3. We say that α ∈ C is an algebraic integer if it is the root of a monic
f(x) ∈ Z[x].

Example. α = 1+
√

5
2

, which is the root of (x− 1+
√

5
2

)(x− 1−
√

5
2

) = x2 − x− 1.

4

Let A be the set of algebraic integers of C.

Lemma 16.2.4 (Key Fact). A is a subring of C.
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Proof. First, note that 0, 1 ∈ A. Take any α, β ∈ A and consider the ring Z[α, β]. Note
Z[α, β] is a finitely generated Z module; if

αn + an−1α
n−1 + · · ·+ a0 = 0

for ai ∈ Z and
βm + bm−1β

m−1 + · · ·+ b0 = 0

with bi ∈ Z¡ then for an element f ∈ Z[α, β], if you see αn or βm, you can replace with smaller
exponents. so Z[α, β] is generated as a Z-module by αiβj, for 0 ≤ i ≤ n and 0 ≤ j ≤ m.
Then let γ ∈ {α + β, α − β, αβ} act on Z[α, β] by multiplication. γ acts on Z[α, β] ∼= Zr.
With respect to a basis, γ acts as a matrix A ∈ Mr(Z); let f(x) = det(xI − A) ∈ Z[x]. By
Cayley-Hamilton, f(A) = 0, so f(γ) acts on Z[α, β] by multiplication as 0. So f(γ) = 0, and
thus γ ∈ A.

Another key fact is that A∩Q = Z. THere are similar cases, like A∩Q(
√

5) = Z[1+
√

5
2

],
which gives nice alternative notions of integers.

The idea behind the proof of Frobenius divisibility is to show that |G|/χ(1) ∈ A, which
because we know that |G|/χ(1) ∈ Q shows that |G|/χ(1) ∈ Q ∩ A = Z, which suffices. For
G a finite group with C1, . . . , Cr conjugacy classes and χ1, . . . , χr irreducible characters, for
all i, j, χi(Cj) is an algebraic integer. This is because it is a sum of eigenvalues of ρi(g), all
of which are roots of unity, and roots of unity are algebraic integers.

Lemma 16.2.5.
|Cj|χi(Cj)
χ1(1)

∈ A.

In the interest of time, this lemma will be proved next time. Assumign that lemma, here
is the proof of Frobenius divisibility:

Proof.

|G| = |G|〈χi, χi〉

=
∑
g∈G

χi(g)χi(g)

=
r∑
j=1

|Cj|χi(Cj)χi(Cj)

⇒ |G|
χi(1)

=
r∑
j=1

|Cj|χi(Cj)
χi(1)︸ ︷︷ ︸
∈A

χi(Cj)︸ ︷︷ ︸
∈A

∈ A.

But then |G|
χi(1)
∈ A ∩Q = Z.

Example. If |G| = p2, then p2 = |G| =
∑r

i=1 χi(1)2, so each χi(1) cannot be p or p2, despite
dividing p, so χi(1) = 1 for all i, and thus G is abelian.

4
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17 April 7th

17.1 Loose end

Let g ∈ A5 be a 5-cycle. Then g and g−1 are conjugate in A5! So for all characters χ of A5,
χ(g) = χ(g−1) = χ(g), so χ(g) ∈ R.

17.2 Frobenius and Burnside, cont’d

Recall that A is the set of algebraic integers in C, i.e. α ∈ C that are roots of monic
f(x) ∈ Z[x]. Also A is a subring of C, and A ∩Q = Z.

Example. Let f(x) ∈ Z[x] be monic of degree 4, and let θ1, θ2, θ3, θ4 ∈ C be roots of f . Then
there’s a resolvent cubic

g(x) = (x− (θ1 + θ2)(θ3 + θ4))(x− (θ1 + θ3)(θ2 + θ4))(x− (θ1 + θ4)(θ2 + θ3)).

Note g(x) has coefficients in A and has coefficients in Q via Galois theory, so g(x) ∈ Z[x].

4

ForG a finite group with conjugacy classes C1, . . . , Cr and irreducible characters χ1, . . . , χr,
we have χi(Cj) ∈ A.

From last time, we had as a step in the proof that |G|
χi(1)

=
∑r

j=1

(
|Cj |χi(Cj)

χi(1)

)
χi(Cj), and

we needed one last lemma to use this to complete the proof of Frobenius divisibility.

Lemma 17.2.1.
|Cj|χi(Cj)
χi(1)

∈ A.

Proof. Set χ = χi and C = Cj. Define α =
∑

g∈C g ∈ CG; then for all h ∈ G, hαh−1 = α, so
hα = αh. Let V be an irreducible representation corresponding to χ; Consider T : V → V
given by v 7→ αv =

∑
g∈G gv. Then for h ∈ G and v ∈ V , T (hv) =

∑
g∈G g(hv) = αhv =

hαv = hT (v), so T is a homomorphism of CG-modules.
Then by Schur’s Lemma, since V is irreducible and T is a linear map that respects

the group actions, T acts on V as multiplication by a scalar λ ∈ C. The trace tr(T ) =

λ · dimV = λχ(1) =
∑

g∈C tr(g|V ) =
∑

g∈C χ(g) = |C|χ(C). Thus λ = |C|χ(C)
χ(1)

, so our
question boils down to whether or not λ is in A.

Let α act on ZG ⊆ CG by multiplication. ZG is a free Z-module with respect to some
basis. α acts as a matrix A ∈M|G|(Z). Let f(x) = det(xI−A) ∈ Z[x]; by Cayley-Hamilton,
f(A) = 0. So f(α) acting on ZG by multiplication acts as 0. Then f(α) must be 0, so
f(T ) = 0, so since λ is an eigenvalue of T , f(λ) = 0. Then λ ∈ A, since it’s the root of a
monic polynomial, so we’re done.

So Frobenius divisibility holds! Yay.
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Theorem 17.2.2 (Burnside). A group G of order paqb, with p, q primes, is solvable.

To prove it, we’ll use a quick lemma:

Lemma 17.2.3. Let V be an irreducible representation of G with character χ, and let C be
a conjugacy class of G. Suppose |C| and χ(1) are relatively prime. Then for any g ∈ C,
either χ(g) = 0 or g acts on V by a scalar.

Proof. Fix g ∈ C. Let ζ1, . . . , ζn be the eigenvalues of g on V , and let n = χ(1). Then

χ(g) = ζ1 + · · · + ζn ∈ A. By the previous lemma, |C|χ(C)
χ(1)

∈ A. χ(1) and |C| are relatively

prime, so there exists a, b ∈ Z with a|C| + bχ(1) = 1. Then a |C|χ(C)
χ(1)

∈ A, and this is equal

to (1 − bχ(1))χ(C)
χ(1)

= χ(C)
χ(1)
− bχ(C), with bχ(C) ∈ A. Thus χ(C)

χ(1)
∈ A, so α = ζ1+···+ζn

n
∈ A.

Suppose α 6= 0, or equivalently that χ(C) = χ(g) 6= 0. Take a finite Galois extension L/Q
containing ζ1 + · · ·+ ζn; then α ∈ L. Then

NL/Q(α) =
∏

σ∈Gal(L/Q)

σ(α) ∈ Q ∩ A.

σ(α) lies in A, because f(α) = 0 implies that f(σ(α)) = 0. So NL/Q(α) ∈ Z and isn’t
zero, because α 6= 0. Thus

1 ≤ |NL/Q(α)| =
∏
σ

|σ(α)|, where

|σ(α)| =
∣∣∣∣σ(ζ1) + · · ·+ σ(ζn)

n

∣∣∣∣
≤ 1

n

n∑
i=1

|σ(ζi)| =
n · 1
n

= 1.

So |σ(α)| = 1 for all σ, so
∣∣ ζ1+···+ζn

n

∣∣ = 1, so ζ1 = · · · = ζn, so g acts by multiplication by
ζ1 on V .

This leads us to the following zany theorem!

Theorem 17.2.4. Let G be a finite group and suppose C is a conjugacy class of G of
cardinality pe, with p a prime and e ≥ 1. Then G is not simple.

Proof. Let C 6= {1}. Then ∑
χ irred.

χ(C)χ(1) = 0

⇒1 +
∑

χ 6=1,p|χ(1)

χ(1)χ(C) +
∑

χ 6=1,p-χ(1)

χ(1)χ(C) = 0.
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We claim that there exists an irreducible χ 6= 1 with p - χ(1) and χ(C) 6= 0. If not, then

0 = 1 + p ·
∑

χ 6=1,p|χ(1)

χ(1)

p
χ(C)

⇒− 1

p
∈ A, which is a contradiction.

So take g ∈ C. We have χ(g) = χ(C) 6= 0 and p - χ(1) and |C| = pe. By the previous
lemma, g acts on V by a scalar λ. Taking g′ ∈ C with g 6= g′, g′ also acts on V via
multiplication by λ. So g(g′)−1 6= 1 but acts on V as the identity. so ρ : G → GL(V ) has
nontrivial kernel, and ker ρ 6= G, since χ 6= 1, so we’ve found a normal subgroup ker ρ�G.

Now we’re ready for the proof of Burnside’s Theorem.

Proof. Recall that |G| = pa ·qb. Suppose the theorem fails. Then there is a simple nonabelian
group with cardinality pa

′
qb
′
; without loss of generality G is simple and nonabelian, and we

will prove a contradiction. Let C 6= {1} be a conjugacy class. Then |C| = |G|/|CentG(g)|
for a fixed g ∈ C, due to the bijection G/CentG(g)

∼→ C given by h 7→ hgh−1. So |C| divides
|G|; by the previous theorem, |C| 6= pe or qe. So |C| ≡ 0 (mod pq), and in particular |C| ≡ 0
(mod q), unless C = {1}. Thus

0 ≡ paqb ≡ |G| =
∑
C⊆G

|C| ≡ 1 (mod q),

so 0 ≡ 1 (mod q), a contradiction.

18 April 12th: Transition to Homological Algebra

18.1 Hom

Fix a ring R with identity (but not necessarily commutative). We will work with the category
of (left) R-modules, R-Mod. Its objects are R-modules M , and its morphisms are R-
module homomorphisms f : M → N . Then HomR(M,N) is the set of such f . We can
give HomR(M,N) an additive group structure via (f + f ′)(m) = f(m) + f ′(m). If R is
commutative, then we can also make HomR(M,N) an R-module, via (rf)(m) = r · f(m).
But this might not work for the noncommutative case.

Now for functors! Let F : R-Mod→ Ab (the category of abelian groups) be a functor.

On objects, a module M is mapped to F (M) an abelian group, and on morphisms M
f→ N

gives a morphism F (M)
F (f)=f∗−→ F (N). For morphisms f, g, we have F (gf) = F (g) ·F (f), and

we have that F (idM) = idF (M).

Examples. 0. F : R-Mod→ Ab a forgetful functor, with M 7→M , forgetting the R-action.
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1. Fix an R-module M , and consider the function HomR(M,−) : R-Mod → Ab. For

objects, we have N 7→ HomR(M,N), and for morphisms A
f→ B an R-module homomor-

phism, we have HomR(M,A)
f∗→ HomR(N,A), where ϕ 7→ f ◦ ϕ. It can be checked that

composition of maps can be done before or after applying the functor.

Remark. The functor HomR(M,−) up to equivalence determines M up to isomorphism.
This is known as Yoneda’s Lemma, and can be looked up.

But our examples above, and our definition, were actually covariant functors. With

arrow reversed, i.e. M
f→ N corresponding to F (N)

f∗→ F (M), we have what’s known as
a contravariant functor.s

2. Fix an R-module N . Consider the functor HomR(−, N) : R-Mod → Ab, with M 7→
HomR(M,N). Given A

f→ B, we then have HomR(B,N) :
f∗→ HomR(A,N), with ϕ 7→

ϕ ◦ f , composing on the other side.

3. Fix a right R-module M . Given a left R-module N , we can define M ⊗R N an abelian
group. We’ll discuss this next time; it is the familiar definition of tensor products for the
case of abelian groups.

4. Let R = ZG for G a finite group. There is then a covariant functor R-Mod → Ab,
with M 7→ MG = {m ∈ M | gm = m∀g ∈ G}. Then given f : M → N , we have
f∗ : MG → NG with m 7→ f(m).

Looking at the group ring, we actually have a special case of example 1, given by
HomZG(Z,M)

∼→MG, with ϕ 7→ ϕ(1).

Later we’ll associate “derived functors.” Examples 1 and 2 will lead to ExtnR(M,N),
example 3 to TorRn (M,N), and 4 to Hn(G,M), the group cohomology.

Definition 18.1.1. A pair A
f→ B

g→ C of R-modules is exact at B if im f = ker g.
A sequence of homomorphisms

· · · → An+1 → An → An−1 → · · ·

is exact if it is exact at every An.

Example. 0 → A
f→ B is exact if and only if 0 = ker f , or if and only if f is injective.

Similarly, B
g→ C → 0 is exact if and only if im g = C, i.e. g is surjective.

Combining them, 0 → A
f→ B

g→ C → 0 is exact if and only if f is injective, g is
surjective, and im f = ker g. In this case, it is called a short exact sequence or SES.

4

Take a covariant functor F : R-Mod → Ab and a SES 0 → A → B → C → 0, and
apply F to get 0→ F (A)→ F (B)→ F (C)→ 0. There is an interesting and useful question
of whether or not exactness is preserved.
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Example. Let R = Z, and consider the SES 0 → Z → Q → Q/Z → 0. Let M = Z/2Z and
consider the HomZ(M,−) functor. We then get

0→ HomZ(M,Z)→ HomZ(M,Q)→ HomZ(M,Q/Z)→ 0,

where Q and Z have no torsion elements, so the first two terms are 0, but the third term is
the group of order 2. However, we can salvage exactness by erasing the last 0.

Now let N = Z and consider the functor HomZ(−, N), getting the sequence

0→ HomZ(Q/Z, N)→ HomZ(Q, N)→ HomZ(Z, N)→ 0.

In this case the last term is Z, the middle term is 0, and the first term is 0. But we can
again cheat by erasing the final 0, and we still have exactness for the first part.

4

Example. Let G = Gal(C/R), and consider the sequence

1→ {±1} → C× → C× → 1.

Letting R = ZG and taking the fourth functor above, this gives the sequence

1→ {±1} → R× → R× → 1.

Again, this isn’t exact, but it becomes exact if we erase the last term. So this begins to beg
the question, if it’s not zero at the end, what comes next? What can we naturally add on
to the sequence?

4

Proposition 18.1.2. Take a SES 0→ A
ψ→ B

ϕ→ C → 0.

a) Then

0→ HomR(M,A)
ψ∗−→HomR(M,B)

ϕ∗−→HomR(M,C)

is exact for all R-modules M , and

b)
0→ HomR(C,N)→ HomR(B,N)→ HomR(A,N)

is exact for all R-modules N .

HomR(M,−) and HomR(−, N) are called left exact because of this property.

Proof. We’ll just prove a, and b will be very similar. Take any f : M → A such that ψ∗f = 0,
Then ψ ◦ f = 0, so f = 0, because ψ is injective, and we’re done.

Now for exactness at HomR(M,B). Since ϕ ◦ψ = 0, ϕ∗ ◦ψ∗ = 0, so im ψ∗ ⊆ ker ϕ∗. But
are they equal? Let f ∈ ker ϕ∗, i.e. any f : M → B with ϕ ◦ f = 0. im f ⊆ ker ϕ = im ψ

by exactness of the sequence, so M
f→ im (f) ⊆ im ψ. But since ψ is injective, im ψ ∼= A,

so we have the composition g mapping M → A. And ψ∗(g) = ψ ◦ g = f , so f ∈ im ψ∗, so
exactness holds.
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There is also a notion of right exact, which loses exactness on the left but keeps it on the
right, and of a functor being exact, where exactness is preserved on both sides, i.e. short
exact sequences are taken to short exact sequences.

Definition 18.1.3. An R-module M is projective if HomR(M,−) is exact.
An R-module N is injective if HomR(−, N) is exact.

Example. Free R-modules are projective.
If R is a PID, then M is injective if and only if rM = M for all nonzero r ∈ R. For

example, if R = Z, then M = Q is an injective module.

4

For M an R-module, we’ll see that we can construct F0 � M , a surjective homomor-
phism, where F0 is a free R-module. In fact, one can continue, making an exact sequence

· · · → F2 → F1 → F0 →M → 0,

with Fi a free (or projective) R-module. This is the idea of a free resolution, as we’ll see
later.

19 April 14th

19.1 Last time

Let R be a ring. Then:

· For M an R-module, HomR(M,−) : R-Mod → Ab with N 7→ HomR(M,N) and for
f : A → B, f∗ : HomR(M,A) → HomR(M,B) given by ϕ 7→ f ◦ ϕ, is a covariant left
exact functor.

· For N an R-module, HomR(−, N) : R-Mod → Ab with M 7→ HomR(M,N) is a
contravariant left exact functor.

19.2 Projective modules

Recall that an R-module P is projective if HomR(P,−) is exact.
Recall an R-module M is free if there is a subset A ⊆ M such that every m ∈ M has a

unique expression m =
∑

a∈A ra · a for ra ∈ R and ra = 0 for all but finitely many a ∈ A.
Given a set A, we define F (A) =

⊕
a∈AR, the free module with basis A, where a ∈ A embeds

by mapping a to δa, which is 1 at a and 0 elsewhere.

Proposition 19.2.1. Let P be an R-module. TFAE:

a) P is projective, i.e. HomR(P,−) is exact.
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b) For a surjective homomorphism ϕ : M → N of R-modules and any f : P → N , there
exists a hoomorphism g : P →M such that ϕ ◦ g = f , i.e.

M N 0

P

ϕ

f
∃g

c) Every SES

0 A B P 0
ψ ϕ

splits, i.e. there is a homomorphism g : P → B with ϕ ◦ g = idP .

d) There is an R-module P ′ with P ⊕ P ′ free.

Example. Free R-modules are projective by (d).

4

Example. Z/nZ is not a projective Z-module, since

0 Z Z Z/nZ 0
×n

doesn’t split.

4

Example. Let R = CG with G a finite group. Consider a short exact sequence

0 A B C 0
ϕ

with A,B,C CG-modules. By Maschke’s Theorem, B = A ⊕ A′, and we have an inverse
isomorphism back from C to A′, that shows the sequence splits. So all CG modules are
projective.

But if G 6= 1, then CG =
⊕

i V
dimVi
i , with Vi irreducible representations of G. But

Vi ( CG; Vi is a projective CG module, but is not free.

4

Example. Let R be a PID and M finitely generated; then M is projective if and only if M is
free.
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4

Example. Due to Quillen-Suslin. If R = K[x1, . . . , xn], then a module is projective if and
only if it is free.

4

Okay, so let’s prove the proposition.

Proof. a) ⇒ b): For the short exact sequence

0 A M N 0
ϕ

,

apply HomR(P,−) to get

0 HomR(P,A) HomR(P,M) HomR(P,N) 0
ϕ∗

Then there is some g ∈ HomR(P,M) that maps to f ; then f = ϕ∗g = ϕ ◦ g, as desired.
b) ⇒ c): In this case the map from P to P is given by the identity, and the function that

shows that it splits is the map g given by condition b.
c) ⇒ d): There is a surjective homomorphism F � P , with F free, giving

0 P ′ F P 0 .

But this SES splits, via g : P → F , giving F = P ′ ⊕ g(P ) ∼= P ′ ⊕ P .
d) ⇒ a): Let F = P ⊕ P ′, with F free, and take any short exact sequence

0 A B C 0
ϕ

.

We need HomR(P,B) → HomR(P,C) to be surjective; take any f : P → C. Then in the
following diagram, there is an (orange) map G making everything commute.

B C 0

P

F = P ⊕ P ′

ϕ

∃G

Using the inclusion of P into F , one can get a mapping g : F → C which agrees with f . Then
we construct the map G by noting that F = P ⊕ P ′ = F (A); then for a ∈ A, select ba ∈ B
with ϕ(ba) = g(a), and extend to a morphism; there is a unique R-module homomorphism
G : F → B with a 7→ ba. Then g = ϕ ◦G, so we’re done.
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Example. Let X be a compact and smooth manifold, and let R = C∞(X) be the set of

smooth functions on X. Let

V
↓
X be a smooth vector bundle, and let M be the set of smooth

sections of V . Then M is an R-module. Swan proved that M is a finitely generated projective
C∞(X)-module. Also, all finitely generated projective C∞(X)-modules arise in this way.

4

Now let’s define Ext! In particular, we’ll define ExtnR(M,N), the nth cohomology group
derived from HomR(−, N).

Fix an R-module M , and choose a projective resolution of M , i.e. an exact sequence of
projective modules

· · · → Pn → Pn−1 → · · · → P1 → P0 →M → 0.

One must exist, as one can see by using free modules. We then forget M to get the sequence
(no longer exact at P0)

· · · → Pn → Pn−1 → · · · → P1 → P0 → 0,

and apply HomR(−, N) to get

0→ HomR(P0, N)
d1→ HomR(P1, N)

d2→ HomR(P2, N)→ · · · .

Then we define ExtnR(M,N) to be ker dn+1/im dn, which is a group. There are some issues
with this definition. We have to show it doesn’t depend on choice of projective resolution,
which is a pretty big choice. But we’ll see later that this doesn’t matter. The other issue is,
why is this useful?

19.3 Injective Modules

This is sort of the same thing, but backwards. There’s an analogue of that big proposition
we proved.

Proposition 19.3.1. Let Q be an R-module. TFAE:

a) Q is injective, i.e. HomR(−, Q) is exact.

b) If ψ : A → B is an injective homomorphism of R-modules, then every homomorphism
from A→ Q lifts to a homomorphism from B → Q, i.e.

BA0

Q

ψ

f
∃g
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c) If Q is an R-submodule of M , then M = Q⊕Q′ for some R-submodule Q′. Equivalently,
every SES

0 Q M Q′ 0

splits.

The proof is also the same as before, but in reverse, so we leave it out here.

Example. R = CG, for G a finite group. All CG-modules are injective!

4

Unlike in the projective case, there’s not a friendly set of examples like free modules. But
there is some setup.

Proposition 19.3.2 (Baer’s criterion). Let Q be an R-module. Then Q is injective if and
only if for every left ideal I of R, any R-module homomorphism g : I → Q extends to a
homomorphism G : R→ Q.

In the interest of time we won’t prove it here, but we might next time.

Example. Let R be a PID, and let I = Rr with r 6= 0. Then given a map f : I → Q, f is
determined by f(r) = q. For F : R→ Q to exist, we need F (r) = f(r) = q, and we need to
be able to “divide” by r to get F (r) = rF (1). The punch line is that Q is injective if and
only if rQ = Q for all r ∈ R, r 6= 0.

4

Example. We can apply the above example to Z-modules. For Z-modules, injective examples
are Q, Q/Z, C×. Not-injective examples are things like Z/5Z and R×.

4

20 April 19th

20.1 Some more injective modules

Let R be a ring. Fix an R-module N . As we discussed before, HomR(−, N) : R-Mod →
Ab with M 7→ HomR(M,N) is a contravariant functor, where f : A → B maps to f ∗ :
HomR(B,N) → HomR(A,N) with f ∗ϕ = ϕf . This functor is left exact, i.e. if 0 → A →
B → C → 0 is exact, then so is 0 → HomR(C,N) → HomR(B,N) → HomR(A,N). N
is injective if HomR(−, N) is exact. But as seen last time, we had a zillion equivalent
definitions for a module being injective, e.g. that Q is injective if homomorphisms A → Q
lift to a homomorphism B → Q given an injective map A→ B.
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Theorem 20.1.1. Every R-module M is contained in an injective R-module. (The category
R-Mod “has enough injectives.”)

Proof. We’ll prove this when R = Z; the general case will follow from this and is a problem
on the next HW.

Let A be a set of generators of M as a Z-module. Let F = F (A) be the free Z-module
of the set A. Then there exists a surjective homomorphism ϕ : F �M of Z-modules, where
for a ∈ A, a 7→ a.

Let Q be the vector space over Q with basis A. Then Q is an injective Z-module; for
n ∈ Q×, nQ = Q. Note that Q/ker ϕ = Q′ is also an injective Z-module, because nQ′ = Q′

for all n ∈ Q×. Since F ⊆ Q = F ⊗Z Q, and M = F/ker ϕ, M ⊆ Q/ker ϕ = Q′, just as
desired.

For an R-module M and an injective module Q0 with M ⊆ Q0, we get an exact sequence

0→M ↪→ Q0→ Q0/M.

But Q0/M ⊆ Q1 with Q1 exact, so continuing the pattern we get an injective resolution

0→M → Q0 → Q1 → Q2 → · · · ,

which is exact and has Qi injective.
For an injective resolution

0→ N → Q0 → Q1 → · · · ,

throw away N (it’s still useful) and apply HomR(M,−) to get

0
d0→ HomR(M,Q0)

d1→ HomR(M,Q1)
d2→ HomR(M,Q2)→ · · · .

Then we can define ExtnR(M,N) = ker (dn+1)/im (dn). Note that we already defined Ext
last time! We claim that this matches the other description of ExtnR(M,N).

20.2 Tensor Products Revisited! D&F§10.4

Let R be a ring that need not be commutative. Let M be a right R-module and let N be a
left R-module. (Note that if R is commutative and if M is a left R-module, one can make
it into a right R-module by defining m ∗ r = rm.)

Definition 20.2.1. A map ϕ : M×N → L to a Z-module L is R-balanced if

· it is biadditive, i.e. ϕ(m1+m2, n) = ϕ(m1, n)+ϕ(m2, n) and ϕ(m,n1+n2) = ϕ(m,n1)+
ϕ(m,n2) and

· ϕ(m, rn) = ϕ(mr, n) for all m ∈M , n ∈ N , r ∈ R.

Define h : M×N →M ⊗R N to be the universal R-balanced map of M×N .
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This means that for h and the map M×N → L being R-balanced, there is a unique
group homomorphism M ⊗R N → L so that the following diagram commutes:

M×N

L

M ⊗R N
h

If the tensor product exists, it’s unique up to isomorphism. A sketch of the proof of existence
is that you can take F the free Z-module on M×N , and then you mod out by all the relations
you need.

So there is a bijection

{R− balanced M×N → L} ↔ {Z−mod. hom. M ⊗R N → L} .
If R is commutative, M and N are (left/right) R-modules. You can make M ⊗R N an

R-module via

r

(∑
i

aimi ⊗ ni

)
=
∑
i

ai(rmi)⊗ ni =
∑
i

ai(mir)⊗ ni.

Alternatively! We can look at bimodules.

Definition 20.2.2. For R and S rings, a (S,R)-bimodule is an abelian group M with a
left S-module and right R-module structure such that (rm)s = r(ms) for all r ∈ R, s ∈ S,
m ∈M .

In this setting we can give the tensor more structure! For M an (S,R)-bimodule and N
a left R-module, M ⊗R N has a left S-module structure given by s(m⊗ n) = (sm)⊗ n.
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A right module tensored with a bimodule is a right module!

As an example, let G be a finite group with H ≤ G a subgroup. Let V be a (complex)
representation of H, i.e. a CH-module. We can construct a representation of G; namely,
IndGH(V ) = CG ⊗CH V , where CG is a (CG,CH)-bimodule and V is a CH-module. This
is called the induced representation of V , and it is a CG-module, with dim IndGH(V ) = [G :
H] dimV .

Example. Let G = S3 and let H = A3 = 〈(123)〉. Then H acts on V = C via an action ψ,
where ψ((123)) is multiplication by e2πi/3. Note that V cannot be an S3 representaton that
extends this H = A3 representation.

Then IndGH(V ) is the (unique) two dimensional irreducible representation of S3.

4

LetR be a set of representatives in G of the cosets of H. Then |R| = [G : H], and CG can
be viewed as CG =

⊕
r∈R rCH, so CG⊗CH V =

⊕
r∈R(rCH)⊗CH V =

⊕
r∈R r(CH⊗CH V ).

The dimension of each summand over C is the same as dimC V . Take g ∈ G; then for r ∈ R,
there is a unique rg ∈ R and h ∈ H with gr = rg · h.

Let χ be the character of H acting on V ; then the character of IndGH(V ) is

IndGH(χ)(g) =
∑

r∈R,r−1gr∈H

χ(r−1gr).

So this is a new way of constructing characters.

21 April 21st

21.1 I’m Getting Tensor Every Day

https://www.youtube.com/watch?v=BipvGD-LCjU

Let R be a ring, let M be a right R-module and let N be a left R-module. Last time,
we defined M ⊗R N a Z-module with a specific universal mapping property. Also, for M
an (S,R)-bimodule, we can give M ⊗R N a left S-module structure, where for s ∈ S,
s(m⊗ n) = (sm)⊗ n. For each s, we have the following commuting diagram:

M×N M ⊗R N

M×N M ⊗R N

h

h

ϕ
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where ϕ is R-balanced, with ϕ(m,n) = h(sm, n), and the map M×N → M×N is given by
(m,n) 7→ (sm, n), so that the action by s is the uniquely defined map on the right.

Tensoring is a functor; given f : M → M ′ a morphism of right R-modules and g :
N → N ′ a morphism of left R-modules, we have f ⊗ g : M ⊗ N → M ′ ⊗ N ′ generated by
m⊗ n 7→ f(m)⊗ g(n). For a fixed M , M ⊗R − : R-Mod→ Ab is a covariant functor.

Theorem 21.1.1. M ⊗R − : R-Mod→ Ab is right exact; for any SES

0 A B C 0
ψ ϕ

,

we know that
M ⊗R A

1⊗ψ→ M ⊗R B
1⊗ϕ→ M ⊗R C → 0

is exact.

Proof. · 1⊗ ϕ is surjective: For m ∈ M and c ∈ C, we want to verify that m ⊗ c
is in the image. There exists b ∈ B with ϕ(b) = c, since |ph is surjective; then
(1⊗ ϕ)(m⊗ b) = m⊗ ϕ(b) = m⊗ c, so we’re done.

· Exactness at M ⊗R B: (1⊗ ϕ) ◦ (1⊗ ψ) = 1⊗ (ϕ ◦ ψ) = 0, so the image is contained
in the kernel. Now we have

M ⊗R B/im (1⊗ ψ) M ⊗R B/ker (1⊗ ϕ) M ⊗R C
?

π

1⊗ ϕ

It suffices to find a homomorphism π̃ : M ⊗R C → M ⊗R B/im (1 ⊗ ψ) such that
π̃ ◦ π = id. We have M×C →M ⊗R B/im (1⊗ψ), with (m, c) 7→ m⊗ bc + im (1⊗ψ),
where we choose bc ∈ B with ϕ(bc) = c.

Then π̃ ◦ π(m⊗ b) = π̃(m⊗ϕ(b)) = m⊗ b+ im (1⊗ψ), as desired. So then the kernel
is contained in the image, as desired.

Definition 21.1.2. M is flat if M ⊗R − is exact. Similarly, − ⊗R N : Mod-R → Ab is
right-exact, and N is flat if it is exact.

Theorem 21.1.3. Projective (and free) modules are flat.

Idea of proof. Reduce to the free case, by taking for P projective the free module F = P⊕P ′
that is proven to exist. Then reduce to the finitely generated case, with F = Rn, and
take Rn ⊗R N = (R ⊗R N)n = Nn. Then Rn ⊗R − applied to a short exact sequence

0→ A
ψ→ B

ϕ→ C → 0 becomes 0→ An → Bn → Cn → 0, with maps performed pointwise,
which is still exact.
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Example. For R ⊆ S commutative rings, fix an ideal I ⊆ R, with 0 → I
ψ→ R → R/I → 0.

Apply S ⊗R − to this sequence to get

S ⊗R I
1⊗ψ−→S ⊗R R→ S ⊗R (R/I)→ 0.

Then im (1⊗ ψ) = SI = IS, the ideal of S generated by I. So S ⊗R (R/I) ∼= S/IS. If S is
a flat R-module, then S ⊗R I ∼= SI = IS.

4

In fact, Hom and ⊗ are related! Let S and R be rings, and let M be an (S,R)-bimodule.
Then we claim the functors

· M ⊗R − : R-Mod→ S-Mod

· HomS(M,−) : S-Mod → R-Mod, where for f ∈ HomS(M,N) and for r ∈ R, define
rf ∈ HomS(M,N) by rf(m) = f(mr). Then (rf)(sm) = f((sm)r) = f(s(mr)) =
sf(mr) = s(rf)(m), so this is natural and works ’n’ stuff.

are related. These two functors are adjoints of each other. In particular, if A is an R-module
and B is an S-module, then

HomS(M ⊗R A,B) ∼= HomR(A,HomS(M,B)),

and this isomorphism is a functorial/natural isomorphism, where we have

(f : M ⊗R A→ B) 7→ (a 7→ (m 7→ f(m⊗ a))) ,

and in the other direction we have the map

(map induced by (m, a) 7→ (g(a))(m))←[ (g : A→ HomS(M,B))

Example. For H ⊆ G finite groups, and V a representation over C of H, IndGH(V ) = CG⊗CH
V is a representation of G. Let M = CG, let A = V , let R = CH, and let S = CG. Then
we can talk about

HomCG(IndGH(V ),W ) = HomCG(CG⊗CH V,W )

= HomCH(V,HomCG(CG,W ))

= HomCH(V,W ),

because HomCG(CG,W ) ∼= W via ϕ 7→ ϕ(1). So we can take the dimension of this over C,
which was 〈IndGH(χV ), χW 〉 = 〈χV , χW |H〉 = 〈χV ,ResGH(χW )〉, where the first inner product
is a sum over G and the second is a sum over H.

4

Armed with this, we will wade merrily into examples of induced representations!
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22 April 26th

22.1 Homology/Cohomology

Definition 22.1.1. A chain complex is a sequence {Cn}n∈Z of abelian groups with homo-
morphisms

C : · · · → Cn+1
dn+1→ Cn

dn→ Cn−1 → · · ·

such that dn ◦ dn+1 = 0 for all n, i.e. “d2 = 0.”
The book will tell you that Cn = 0 for n < 0.

We then define Zn(C) = ker (dn) ⊆ Cn, the group of cycles, and Bn(C) = im (dn+1) ⊆ Cn
the group of boundaries. Note that Bn(C) ⊆ Zn(C), so we define the n-th homology group
ofa chain complex C is

Hn(C) = Zn(C)/Bn(C).

Note that the sequence is exact at Cn if and only if Hn(C) = 0, and the sequence is exact
everywhere if and only if Hn(C) = 0 for all n.

Let C and D be chain complexes. A homomorphism f : C → D, also called a chain map,
is a collection of homomorphisms fn : Cn → Dn such that the following commutes:

· · ·

· · ·

· · ·

· · ·

Cn+1

Dn+1

Cn

Dn

Cn−1

Dn−1

dn+1 dn

dn+1 dn

fn+1 fn fn−1

Observe that f : C → D induces a group homomorphism Hn(C) → Hn(D), with
c + Bn(C) 7→ fn(c) + Bn(D). To check that this is well-defined, it suffices to check that
fn(Zn(C)) ⊆ Zn(D) and fn(Bn(C)) ⊆ Bn(D), which is a homework problem.

So we have a functor Hn : Ch → Ab, where the first category is the category of chain
complexes.

Let 0→ A
f→ B

g→ C → 0 be an exact sequence of chain complexes, i.e.
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0

0

0

0

An

An−1

Bn

Bn−1

Cn

Cn−1

...
...

...

...
...

...

d d d

d d d

d d d

fn gn

fn−1 gn−1

Then we claim that the sequence Hn(A)
f∗→ Hn(B)

g∗→ Hn(C) of abelian groups is exact (but
f∗ need not be injective and g∗ need not be surjective).

As a proof, g ◦ f = 0 so g∗ ◦ f∗ = 0, so im (f∗) ⊆ ker (g∗). Take any [b] ∈ ker (g∗). Then
gn(b) ∈ Bn(C); so let c ∈ Cn+1 be such that gn(b) = d(c). Then there’s a b′ ∈ Bn+1 with
gn+1(b′) = c. Consider b−d(b′) ∈ Bn. Applying gn, we get gn(b−d(b′)) = gn(b)−gn(d(b′)) =
d(c) − d(gn+1(b′)) = d(c) − d(c) = 0. So b − d(b′) ∈ ker gn = im fn, so let b − d(b′) = fn(a′)
with a′ ∈ An. Then b− fn(a′) ∈ Bn(B), so [b] = [fn(a′)], so ker (g∗) = im (f∗) as desired.

What a chase!
So the functor Hn : Ch → Ab is a covariant functor, but it’s not left exact or right

exact. But the failure of the exactness is actually measured by the other homology groups!

Theorem 22.1.2. We have a (long) exact sequence of abelian groups

· · · δn+1−→Hn(A)→ Hn(B)→ Hn(C)
δn→ Hn−1(A)→ Hn−1(B)→ · · · ,

where the δn : Hn(C)→ Hn−1(A) are the connecting homomorphisms.

A special case is if we have a short exact sequence of chain maps 0→ A→ B → C → 0
with An = Bn = Cn = 0 for n < 0. Then the sequence stops at the end, i.e. we get

· · · → H1(B)→ H1(C)
δ1→ H0(A)→ H0(B)→ H0(C)→ 0,

which is exact. This says that H0 : Ch≥0 → Ab is a covariant right-exact functor.
Recall that M ⊗R − : R-Mod → Ab is also a covariant right-exact functor. So if we

want this to be somehow analogous to H0, what are the analogues of Hi for i > 0? Well,
this ends up being TorRn (M,−), where TorR0 (M,−) = M ⊗R−. The construction is going to
be through the category of chain maps.

Lemma 22.1.3 (Snake Lemma). Consider the following commutative diagram of abelian
groups, with exact rows.

69



A B C

A′ B′ C ′0

0
f

f ′

g

g′

α β γ

Then we have an exact sequence of groups

ker (α)
f→ ker (β)

g→ ker (γ)
δ→ coker(α)

f
′

→ coker(β)
g′→ coker(γ),

where for α : A→ A′, coker(α) = A′/im (α).

Proof. The meat of it is defining δ. For c ∈ ker (γ) ⊆ C, we want an element of A′. g is
surjective, so there is a b ∈ B with g(b) = c. Then β(b) ∈ B′, and g′(β(b)) = γ(g(b)) =
γ(c) = 0, so β(b) ∈ ker (g′) = im (f ′), so there’s a unique a ∈ A′ such that f ′(a) = β(b).
Then δ(c) = a+ im (α).

We need to check that this is well-defined; the problem is we made a choice of b, which
in principle could matter (“W-wait a minute, that’s not unique! It’s not well-defined!”). So,

assume we choose any other b̃ ∈ B such that c = g(̃b). As before, there’s a unique ã ∈ A′
with f ′(ã) = β(̃b). But g(b − b̃) = g(b) − g(̃b) = 0, so b − b̃ ∈ ker g = im f , i.e. b − b̃ = x

for x ∈ A. But then f ′(a − ã) = β(b − b̃) = β(f(x)) = f ′(α(x)). By injectivity of f ′, this
means that a− ã = α(x), so a+ im α = ã+ im α. (“Yes, it is defined - up to an element in
the kernel of alpha. Okay?”)

It’s then a good homework exercise to check that the sequence is exact. See also:

As a supplement: if f is injective, then f is injective; if g′ is surjective, then g′ is surjective.

23 April 28th

23.1 Snake Lemma Continued, and More Homological Algebra

https://www.youtube.com/watch?v=etbcKWEKnvg

Diagramatically, we can draw out the snake lemma, which says that the orange and yellow
sequence is exact:
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ker α ker β ker γ

cokerα cokerβ cokerγ

A B C

A′ B′ C ′0

0

f f

f f

f

f ′

g

g′

α β γ

Recall that a chain complex C is a sequence

C : · · · dn+1−→Cn
dn→ Cn−1 → · · ·

with dn+1 ◦ dn = 0 for all n, and that Hn(C) = Zn(C)/Bn(C) = ker (dn)/im (dn+1). We also
defined chain maps, and stated the theorem that a short exact sequence of chain complexes
0→ C → D → E → 0 gives a long exact sequence of homology groups. In other words, we
have the following commuting diagram with exact rows:

0

0

0

0

0

0

0

0

Cn

Cn−1

Dn

Dn−1

En

En−1

Cn−2 Dn−2 En−2

Cn+1 Dn+1 En+1

...
...

...

...
...

...

d d d

d d d

d d d

d d d

d d d

fn gn

fn−1 gn−1

fn+1 gn+1

fn−2 gn−2
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Theorem 23.1.1. There is a long exact sequence

· · · → Hn(C)
f∗→ Hn(D)

g∗→ Hn(E)
δn→ Hn−1(C)→ · · ·

Proof. We have a snake-like commutative diagram of groups:

Cn/Bn(C) Dn/Bn(D) En/Bn(E)

Zn−1(C) Zn−1(D) Zn−1(E)0

0
fn

fn−1

gn

gn−1

d d d

We claim that the rows are exact. Using the snake lemma with cokernels from the n + 1st
and nth rows of our mongo diagram above gives exactness of the top row; using the snake
lemma with kernels for the n− 1st and n− 2nd rows gives exactness for the bottom rows.

Now we want to apply the snake lemma here! Cn/Bn(C)→ Zn−1(C) has kernel Zn(C)/Bn(C) =
Hn(C) and cokernel Zn−1(C)/Bn−1(C) = Hn−1(C), and similarly for the other two vertical
maps. So this gives the Hn(C)-through-Hn−1(D) portion of the sequence, and we can keep
going by shifting n.

There is also a world of cohomology; it is really the same world. A cochain complex C is
a sequence of maps

· · · → Cn−1 dn→ Cn dn+1

→ Cn+1 → · · · ,

where dn ◦ dn−1 = 0 for all n. The nth co-homology group is Hn(C) = Zn(C)/Bn(C);

there’s nothing mysterious here. Defining C̃n to be C−n, this would just turn everything into
homology. Just as before, a short exact sequence of cochain complexes gives a long exact
sequence of cohomology groups.

Example (Singular homology). Fix X a topological space. A standard n-simplex is defined
as

∆n =

{
(t0, . . . , tn) ∈ Rn+1 | ti ≥ 0,

∑
i

ti = 1

}
.

So for n = 0, this is a dot; for n = 1, this is a line; for n = 2, this is a triangle,; for n = 3,
this is a tetrahedron, and so on, and so forth. A singular n-simplex in X is a continuous
map σ : ∆n → X. THen let Cn(X) be the free abelian group on the singular n-simplexes,
or the group of n-chains. For n < 0, Cn(X) = 0.

We then want to define boundary maps dn : Cn(X)→ Cn−1(X). We write the boundary
maps as a signed sum of lower dimensional faces, i.e. for 0 ≤ i ≤ n, we have ei : ∆n−1 → ∆n

where we just embed into the subset with ith coordinate 0. Then the boundary of ∆n is just⋃
i ei(∆

n−1), so that

dn(σ) =
n∑
i=0

(−1)iσ ◦ ei ∈ Cn−1(X),

72



because σ ◦ ei is a continuous map ∆n−1 → ∆n → X. It’s an exercise that dn−1(dn(σ)) = 0,
so we get a chain complex

C(X) : · · · → Cn(X)
dn−→Cn−1(X)

dn−1−→Cn−2(X)→ · · · → C0(X)→ 0.

As before, we define Zn(C(X)) = ker dn and Bn(C(X)) = im dn+1. An element of C1(X) is
an abstract sum of paths; for an element of Z1(C1(X)), every endpoint of a path has to be
a startpoint as well. Singular homology is merely homology of this chain complex.

In this case, Hn is a functor Hn : Top → Ch≥0 → Ab, where for f : X → Y we have
Cn(X) → Cn(Y ) given by σ 7→ f ◦ σ, which gives an induced map f∗ : C(X) → C(Y ).
Everything is functorial. And, it’s not obvious from this construction, but the homology
groups tend to be nice friendly objects. For example, for the smooth compact surface of
genus g, H1(X) ∼= Z2g.

4

These examples are a fun and enticing intro to algebraic topology: “If you haven’t seen
this stuff before, this is sort of too much, and if you have, it’s boring.”

Example (Singular cohomology). Given a topological space X with its singular chain complex
and an abelian group G, we can apply HomZ(−, G) to define Cn(X,G) = HomZ(Cn(X), G).
This gives the cochain complex

0→ C0(X,G)→ · · · → Cn(X,G)→ Cn+1(X,G)→ · · · ,

and Hn(X,G), the n-th cohomology group of X with coefficients in G.

4

Part of why singular homology tends to be super nice for nice spaces is that we can define
simplicial homology, where we look at finitely generated groups Dn(X) ⊆ Cn(X) originat-
ing from simplicial complex structures on a space. But, it turns out simplicial homology
and singular homology agree where simplicial homology can be computed, so this massive
simplification yields the same result.

Next time, we’ll talk about derived functors.

24 May 3rd

24.1 Cohomology Cont: Next Ext and More Tor

Recall that in cohomology we have a cochain complex

C : 0→ C0 d1→ C1 d2→ C2 → · · · ,
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where dn ◦ dn−1 = 0, and Hn(C) = ker (dn+1)/im (dn). For 0 → A
f→ B

g→ C → 0 a short
exact sequence of cochain complexes, we get a long exact sequence of cohomology groups

0→ H0(A)
f∗→ H0(B)

g∗→ H0(C)

δ→ H1(A)→ H1(B)→ H1(C)
δ→ H2(A)→ · · · ,

where δ is the connecting homomorphism that we discussed last time.
Now fix a ringR and a leftR-moduleN . We have a functor HomR(−, N) : R-Mod→ Ab

which is contravariant and left exact, so for a SES of R-modules 0→ A→ B → C, we have
0 → HomR(C,N) → HomR(B,N) → HomR(A,N). Then Ext will be about extending

this to an exact sequence that continues HomR(A,N)
δ→ Ext1

R(C,N) → Ext1
R(B,N) →

Ext1
R(A,N)

δ→ Ext2
R(C,N) → · · · , just like exists for cohomology. We want functors

ExtnR(−, N) : R-Mod→ Ab, each of which measures the failure of exactness of the last.
So we begin our construction. Let A be an R-module and choose a projective resolution

of A given by
· · · → P3 → P2 → P1 → P0 → A→ 0,

where each Pn is a projective R-module and the sequence is exact. We have proven before
that this exists. Apply HomR(−, N) and remove the first term to get

0→ HomR(P0, N)→ HomR(P1, N)→ · · · ,

a cochain complex. Taking the n-th cohomology group gives us

ExtnR(A,N) := Hn(HomR(P,N)).

We have to prove that this is well-defined. As an aside, if A is projective, note that using
the resolution 0 → A → A → 0 gives that ExtnR(A,N) = 0 for all n ≥ 1; it turns out
this is is an if and only if. Also, a special case is that Ext0

R(A,N) = ker (HomR(P0, N) →
HomR(P1, N)) = HomR(A,N). In particular, Ext0

R(−, N) is just the functor we started with,
HomR(−, N), so our analogy with cohomology is going well!

Example. Fix R-modules A and B. Then an extension is a short exact sequence of R-modules

0 A E B 0 .

We always have 0 → A → A ⊕ B → B → 0. Extensions E and E ′ are equivalent if there
exists a commutative diagram

0 0

0 0

A

A

B

B

E

E ′
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where the maps A→ A and B → B are the identity and the map E → E ′ is an isomorphism.
There’s a bijection

{extensions of B by A up to equivalence} ↔ Ext1
R(B,A).

The bijection is obtained by applying HomR(−, A) to the extension to get

· · · → HomR(E,A)→ HomR(A,A)
δ→ Ext1

R(B,A).

We then map E to the image of the identity map under δ.

4

There’s still this pesky issue of whether or not Ext depends on the projective resolution;
we’ll get to this eventually (spoiler: it doesn’t), but for now, we will continue to ignore it
until it resolves (ha, ha) itself on its own.

Let B be an R-module with projective resolution

· · · → P ′2 → P ′1 → P ′0 → B → 0,

which we use to define ExtnR(B,N). Let f : A→ B be a homomorphism of R-modules; the
ultimate goal is a homomorphism f ∗ : ExtnR(B,N)→ ExtnR(A,N).

0

0

A

B

P0

P ′0

P1

P ′1

P2

P ′2

· · ·

· · ·

f2 f1 f0 f

We claim that all the red maps fn : Pn → P ′n exist, and they make the diagram commute.
In other words, we have a chain map. We’ll start with the P0 map; we have

B

A

0

P0

P ′0

∃

By projectivity, there’s a map P0 → P ′0; define this to be f0. We then proceed by induction;
if we’ve defined maps up through fn, does fn+1 exist?
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Pn−1

P ′n−1

Pn

P ′n

Pn+1

P ′n+1

dn+1 dn

d′n+1 d′n

? fn fn−1

By commutativity, d′n(fn(dn+1(Pn+1))) = fn−1(dn(dn+1(Pn+1))) = 0, so fn(dn+1(Pn+1)) ⊆
ker (d′n) = im (d′n+1), so then we can construct the following diagram and get the edge
Pn+1 → P ′n+1, which exists because Pn+1 is projective; we define this map to be fn+1.

im (d′n+1)

Pn

0

Pn+1

P ′n+1

d′n+1

fn

dn+1

∃

So applying Hom to our projective resolutions gives the following:

0

0

HomR(P0, N)

HomR(P ′0, N)

HomR(P1, N)

HomR(P ′1, N)

· · ·

· · ·

The cochain maps induces a group homomorphism between cohomology groups ExtnR(B,N)→
ExtnR(A,N). But this is making it worse, because we chose our fn’s. However, fret not; the
end is near.

Proposition 24.1.1. The homomorphism ExtnR(B,N) → ExtnR(A,N) does not depend on
the choices of fn.

Before we prove this, here’s a nice corollary and its proof:

Corollary 24.1.2. ExtnR(A,N) is independent of choice as well; more precisely, a different
projective resolution of A will produce a canonically isomorphic group.

Proof. This is exactly the setting where we consider A = B. So we have the diagram
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0

0

0

A

A

A

P0

P ′0

P0

P1

P ′1

P1

P2

P ′2

P2

· · ·

· · ·

· · ·

=

=

The top two rows induce a map ExtnR(A,N)′ → ExtnR(A,N) which is well-defined by
the proposition. The bottom two rows induce a map ExtnR(A,N) → ExtnR(A,N)′, and
the composition ExtnR(A,N) → ExtnR(A,N)′ → ExtnR(A,N) is the identity, because that
could arise from ignoring the middle row and extending the identity map to a chain map
on the same projective resolution! By the proposition, this gives the same map. Similarly,
composing the other way gives the identity, so we have two natural maps that are inverses,
and thus a natural isomorphism.

Now for a sketch of the proof of the proposition.

Sketch of proof. Make different choices f̃n : Pn → P ′n. This gives the following diagram:

0

0

A

B

P0

P ′0

P1

P ′1

P2

P ′2

· · ·

· · ·

f2 − f̃2 f1 − f̃1 f0 − f̃0 0

We want to show that the induced homomorphism ExtnR(B,N)→ ExtnR(A,N) is 0.
We’re just concerned with the difference, so without loss of generality let’s redefine f = 0

and f̃n = 0. So we have

0

0

A

B

P0

P ′0

P1

P ′1

P2

P ′2

· · ·

· · ·

f2 f1 f0 0
s0s1s2

and we claim that there exist R-module homomorphisms sn : Pn → P ′n+1 such that
fn = d′n+1sn + sn−1dn. We construct them inductively; if dn+1sn = fn − sn−1Dn, then we
have
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Pn

d′(P ′n+1 0P ′n+1
d′

fn

and at that point we use the definition of projectivity.
Then finally we take [ϕ] ∈ ExtnR(B,N) and we want to show it is sent to 0. Well, ϕ is a

homomorphsim ϕ : P ′n → N such that ϕ◦d′n+1 = 0. This is mapped to [ϕ◦fn] ∈ ExtnR(A,N)
and we need that ϕ ◦ fn = ψ ◦ dn for some ψ : Pn−1 → N . But, well,

ϕ ◦ fn = ϕ ◦ (d′n+1sn + sn−1dn)

= ϕ ◦ d′n+1 ◦ sn + (ϕ ◦ sn−1) ◦ dn,

so we let ψ = ϕ ◦ sn−1, and we are done.

25 May 5th

25.1 Last time

We fixed an R-module N and were looking at the functor HomR(−, N) : R-Mod → Ab,
which is contravariant and left exact. For an R-module A, we choose a projective resolution:

· · · → P2
d2→ P1

d1→ P0 → A→ 0.

Apply HomR(−, N) and remove the A term to get

0→ HomR(P0, N)→ HomR(P1, N)→ · · · ,

which is a cochain complex. So taking the n-th cohomology group for n ≥ 0, we can
define ExtnR(A,N) = ker (dn+1)/im (dn), a set of derived functors. Note that Ext0

R(A,N) =
HomR(A,N), the functor we started with, and that the choice of resolution doesn’t matter.
Also, a map f : A → B induces a map f∗ : ExtnR(B,N) → ExtnR(A,N), so we really have a
contravariant functor ExtnR : R-Mod→ Ab.

Example. Let R = Z and let A = Z/mZ. So we have a projective resolution

· · · → 0→ 0→ Z ×m−→Z→ A→ 0.

So when we apply HomZ(−, N) and remove the A term, we get

0→ HomZ(Z, N) = N → HomZ(Z, N) = N → 0→ · · · ,

where HomZ(Z, N) ∼= N via evaluation at 1, and the induced map N → N is just multipli-
cation by m.

Then
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ExtnZ(Z/mZ, N) ∼=


mN = {x ∈ N | mx = 0} if n = 0

N/mN if n = 1

0 if n ≥ 2.

4

Example. Let R = Z/m2Z and let A = Z/mZ; so our projective resolution is

· · · ×m−→R ×m−→R ×m−→R→ A→ 0,

and applying HomR and omitting A gives us

0→ N
×m−→N ×m−→· · · ,

so

ExtnR(Z/mZ, N) =

{
mN if n = 0

mN/mN if n ≥ 1.

4

So all that remains is an analogue of that long exact sequence of homology.

Theorem 25.1.1. Let 0→ A→ B → C → 0 be a short exact sequence of R-modules. Then
there is a long exact sequence

0→ HomR(C,N)→ HomR(B,N)→ HomR(A,N)

δ−→Ext1
R(C,N)→ Ext1

R(B,N)→ Ext1
R(C,N)

δ−→Ext2
R(C,N)→ · · · .

Sketch of proof. We examine the following diagram.
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A B C

0 0 0

0 0

0 P0 P0 ⊕ P ′0 P ′0 0

0 P1 P1 ⊕ P ′1 P ′1 0

...
...

...

If the left and right columns are projective resolutions, we claim we can fill in the middle
arrows (in red), so that the middle column is exact and the diagram commutes.

The inductive step of this proof is that in the following step, we choose λ and µ so that
the diagram commutes.

0

0

Pn

Pn−1

Pn ⊕ P ′n

Pn−1 ⊕ P ′n−1

P ′n

P ′n−1

0

0

λ µ
π

For λ this is easy. For µ, we use the fact that P ′n is projective, or use the fact that the short
exact sequences are split (but for the base case, we must use the projectivity of P ′0, since the
bottom exact sequence may not be split).

So then we apply the functor to the entire diagram.
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0 0 0

0 HomR(P0, N) HomR(P0 ⊕ P ′0, N) HomR(P ′0, N) 0

0 HomR(P1, N) HomR(P1 ⊕ P ′1, N) HomR(P ′1, N) 0

...
...

...

This is a short exact sequence of cochain complexes. But a short exact sequence of cochain
complexes gives a long exact sequence in cohomology, which is exactly the sequence we
want.

The same argument works for any contravariant left exact functor F : R-Mod → Ab;
that’s all we used in any of these proofs. So given a contravariant left exact functor F ,
we define RnF : R-Mod → Ab, the n-th right derived functor of F . And a short exact
sequence 0 → A → B → C → 0 leads to a long exact sequence 0 → F (C) → F (B) →
F (A)

δ→ (R1F )(C) → · · · . The construct is the “exact” same as what we’ve already done
for HomR(−, N), with projective resolutions, applying the functor, and taking the n-th
cohomology.

We can extend the idea even further by replacing R-Mod with any so-called abelian
category (with enough projectives), and an example of that will be given...soon.

But for now, let’s consider a covariant left exact functor F : R-Mod → Ab instead
(no more switching arrows!). For example, HomR(M,−). For an R-module A, choose an
injective resolution

0→ A→ Q0 → Q1 → · · · ,

an exact sequence of injective modules. Then take the co-chain complex

0→ F (Q0)→ F (Q1)→ · · · ,

and define (RnF )(A) the n-th cohomology group. We won’t do it here, because it’s the
same argument as the contravariant case, but one has to check that RnF : R-Mod → Ab
are well-defined covariant functors and that if you start with a short exact sequence you
get the long exact sequence of derived functors that you want. In the special case when
F = HomR(M,−), the functors you get are called ExtnR(M,−).

A big claim that we and the book both don’t address is that the two definitions of
ExtnR(M,N) line up, i.e. that ExtnR(−, N)(M) = ExtnR(M,−)(N).
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Example. Let R = Z. Let’s try to understand ExtnZ(A,Z). We have an injective resolution

0→ Z→ Q ϕ−→Q/Z→ 0,

where ϕ is the quotient map. Applying HomZ(A,−) and removing Z gives us

0→ HomZ(A,Q)→ HomZ(A,Q/Z)→ 0.

So then Ext0
Z(A,Z) = HomZ(A,Z), since that’s exactly what will be quotiented to 0. Also,

Ext1
Z(A,Z) = HomZ(A,Q/Z)/{ϕ ◦ f | f ∈ HomZ(A,Q)}. Beyond that, they are all zero.

4

Example (Group cohomology.). Let G be a finite group, and consider the functor F : ZG-
Mod → Ab given by A 7→ AG = {a ∈ A | ga = a∀g ∈ G}.

Given a short exact sequence 0→ A→ B → C → 0, we define group cohomology to be
the derive dfunctors, so that we have a long exact sequence

0→ AG → BG → CG δ→ H1(G,A)→ H1(G,B)→ · · · .

In other words, Hn(G,A) = (RnF )(A). Note that AG = HomZG(Z, A), so these are also
ExtnZG(Z, A).

4

Example (Tor.). Consider a covariant right exact functor F : R-Mod → Ab, for example
M ⊗R −. For an R-module A, choose a projective resolution

· · · → P1 → P0 → A→ 0.

Then apply F and remove A, to get

· · · → F (P2)→ F (P1)→ F (P0)→ 0.

This is a chain complex instead of a cochian complex, so we can define (LnF )(A) to be the
n-th homology group of this complex. If one feels like going through the machinery again,
one can show that LnF : R-Mod → Ab is well-defined and covariant, and given a short
exact sequence 0→ A→ B → C → 0,

· · · (L1F )(A)→ (L1F )(B)→ (L1F )(C)
δ→ F (A)→ F (B)→ F (C)→ 0.

If F = M ⊗R −, we define LnF = TorRn (M,−).

4
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26 May 10th

26.1 The Cohomology of Groups

Let G be a finite group, let A be a ZG-module (or a G-module), i.e. an abelian group A
with a G-action that respects the group law.

Consider the fixed point functor ZG-Mod → Ab given by A 7→ AG = {a ∈ A | ga =
g∀g ∈ G}, which is covariant and left exact.

Example. G = Gal(C/R); then 1 → {±1} → C× → C× → 1, where the C× → C× map is
given by x 7→ x2, is a SES of G-modules. Applying the fixed point functor gives the SES
1 → {±1} → R× → R× → 1. Observe that AG = HomZG(Z, A), where f in HomZG(Z, A)
corresponds to f(1).

4

So we can look now at our derived functors.

Definition 26.1.1. The n-th cohomology group of G is given by

Hn(G,A) = ExtnZG(Z, A).

So the sequence keeps going, giving us

0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ · · · ,

the long exact sequence.
Choose a projective resolution of Z as a ZG-module. Define Fn to be ZGn+1, a free

|ZG-module with basis (1, g1, . . . , gn), for gi ∈ G. Then we have a free resolution

· · · → F2
d2→ F1

d1→ F0
ε→ Z→ 0,

where dn : Fn → Fn−1 is given by (g0, . . . , gn) 7→
∑n

i=0(−1)i(g0, . . . , ĝi, . . . , gn).
Applying HomZG(−, A) and removing the Z term gives

0→ HomZG(F0, A)→ HomZG(F1, A)→ · · · ,

and then the n-th cohomology group Hn(G,A). To get a better handle on this, we have

HomZG(Fn, A) = {φ : Gn+1 → A | gφ(g1, . . . , gn+1) = φ(gg1, . . . , ggn+1)∀g, gi ∈ G}
= {ϕ : Gn → A},

by saying that ϕ(g1, . . . , gn) = φ(1, g1, . . . , gn). We then have a chain complex

0→ C0(G,A)
d→ C1(G,A)

d→ · · · ,
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where

(dϕ)(g1, . . . , gn+1) = g1ϕ(g2, . . . , gn+1)+
n∑
i=0

(−1)iϕ(g1, . . . , gi−1, gi·gi+1, . . . , gn+1)+(−1)n+1ϕ(g1, . . . , gn).

So Zn(G,A), the group of cocycles, is {ϕ ∈ Cn(G,A) | dϕ = 0}, and Bn(G,A), the group of
coboundaries, is d(Cn−1(G,A)).

Let’s work out a special case.

H1(G,A) =
{ϕ : G→ A | ϕ(στ) = σϕ(τ) + ϕ(σ)∀σ, τ ∈ G}
{ϕ : G→ A | ∃a ∈ A,ϕ(g) = ga− a∀g}

,

so when G acts trivially on A, this is just Hom(G,A).
Assume that G is cyclic of order m, with G = 〈σ〉. Consider the “norm,” N = 1 + σ +

· · ·+ σm−1 ∈ ZG. Then N(δ − 1) = (δ − 1)N = δm − 1 = 0. We have a free resolution

· · · σ−1−→ZG N→ ZG σ−1−→ZG ε→ Z→ 0,

where ε : ZG→ Z is just the sum of the coefficients. So we then have the cochain complex

0→ HomZG(ZG,A)→ HomZG(ZG,A)→ · · · ,

and each of these Hom groups is isomorphic to A. Then H0(G,A) = AG and

Hn(G,A) =

{
NA/(σ − 1)A if n ≥ 1 odd

AG/NA if n ≥ 2 even.

In this case NA = {a ∈ A | Na = 0}.
Recall from a long long time ago, Hilbert 90.

Theorem 26.1.2 (Hilbert 90.). Let L/K be a finite Galois extension with G = Gal(L/K)
cyclic. If a ∈ L× with NL/K(a) = 1, then a = σ(b)b−1 for some b ∈ L×.

Hilbert 90 is the same result as saying that the group H1(G,L×) = 0; for the latter
statement, we don’t need the cyclic assumption.

Using the short exact sequence 1→ {±1} → C× → C× → 1 from earlier as an example,
the machinery we’ve developed gives the long exact sequence

1→ {±1} → R× → R× → H1(Gal(C/R), {±1}) = Hom(Gal(C/R), {±1}) = Z/2
→ H1(Gal(C/R),C×) = 0→ · · ·

Sometimes, when the example is gnarlier, the machinery can tell you helpful things about
these groups. We’ll spend the rest of today talking about the groups H2(G,A) and seeing
how they show up.
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Definition 26.1.3. Fix a finite group G and an abelian group A. An extension of G by A
is a short exact sequence of groups:

0 A E G 0
i π

.

For an extension E of G by A, let s : G→ E be a function (not necessarily a homomor-
phism) such that π ◦ s = id and such that s(1) = 1. Then G acts on A via the action that
for g ∈ G and a ∈ A,

g · a = i−1
(
s(g) · i(a) · s(g)−1

)
∈ A.

This is a well-defined group action that at some point uses the fact that A is abelian. For
g, h ∈ G, s(gh) and s(g)s(h) are both sent to gh by π, so s(g)s(h)s(gh)−1 ∈ ker π = im i, so
i−1(s(g)s(h)s(gh)−1) ∈ A. This gives a function [, ] : G2 → A depending on s, known as a
“factor set.” This factor set is in Z2(G,A), and is an example of a cocycle showing up.

But since it’s in Z2(G,A), it gives an element of H2(G,A); while the cocycle may depend
on your choice of s, the element of H2(G,A) will be independent of choice of s.

Theorem 26.1.4. Fix an action of G on A. Then for ∼ the discussed equivalence of exten-
sions, there is a bijective correspondence

{ext’ns of G by A inducing the given action}/∼ ←→ H2(G,A).

26.2 Central simple algebras

Let L/K be a finite Galois extension with G = Gal(L/K). Take ϕ ∈ Z2(G,L×), and define
Bϕ to be the L-vector space of formal sums

∑
σ∈G aσ · uσ, for uσ a basis and aσ ∈ L.

Give Bϕ a multiplication, via uσ · α = σ(α)uσ for σ ∈ G and α ∈ L, and satisfying the
relation uσuτ = ϕ(σ, τ) · uστ . Under this somewhat gnarly multiplication, Bϕ is a ring, with
K in the center of Bϕ. It is a fact that Bϕ is a central simple K-algebra, which says that:

· Bϕ is a K-algebra;

· Bϕ has no nontrivial left or right ideals; and

· The center of Bϕ is K.

Similarly here, there’s a one-to-one correspondence

{fin. dim’l central simple K-alg B | B ⊗K L ∼= Mn(L)}/∼ ←→ H2(G,L×),

where we’re quotienting out by ∼, or “similarity,” where B1 and B2 are similar if Mm(B1) ∼=
Mn(B2) for some m,n. H2(G,L×) is also called Br(L/K), the relative Brauer group, with
group law [B1] · [B2] = [B1 ⊗B2].

Example. H2(Gal(C/R),C×) ∼= Z/2, and is in bijection with finite dimensional central simple

R-algebras. This set consists of R and H. One can do the same thing withH2(Gal(Q/Q),Q×),
which is some gigantic fun thing.

4
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