Odd Moments in the Distribution of Primes

Vivian Kuperberg

Tel Aviv University

A question

Let $\delta>0$ and let $Q>1 / \delta$. Fix $k \in \mathbb{N} \geqslant 2$. Let $S(k)$ be the number of k-tuples $\left(\frac{a_{1}}{q_{1}}, \ldots, \frac{a_{k}}{q_{k}}\right)$ that satisfy:

- $q_{i} \in[Q, 2 Q]$ for all i
- $\frac{a_{i}}{q_{i}} \in(0,1)$ is a fraction in lowest terms with $\left\|\frac{a_{i}}{q_{i}}\right\| \leqslant \delta$

■ $\sum_{i=1}^{k} \frac{a_{i}}{q_{i}} \in \mathbb{Z}$
How big is this set, in terms of δ and Q ?

A question

Let $\delta>0$ and let $Q>1 / \delta$. Fix $k \in \mathbb{N} \geqslant 2$. Let $S(k)$ be the number of k-tuples $\left(\frac{a_{1}}{q_{1}}, \ldots, \frac{a_{k}}{q_{k}}\right)$ that satisfy:

- $q_{i} \in[Q, 2 Q]$ for all i
$■ \frac{a_{i}}{q_{i}} \in(0,1)$ is a fraction in lowest terms with $\left\|\frac{a_{i}}{q_{i}}\right\| \leqslant \delta$
■ $\sum_{i=1}^{k} \frac{a_{i}}{q_{i}} \in \mathbb{Z}$
How big is this set, in terms of δ and Q ?
When $k=2, \frac{a_{1}}{q_{1}}+\frac{a_{2}}{q_{2}}=1$ implies that $q_{1}=q_{2}$ and $a_{1}=q_{1}-a_{2}$, so there are $Q^{2} \delta$ solutions.
When k is even, the main term comes from pairing fractions, so that $\frac{a_{1}}{q_{1}}=1-\frac{a_{2}}{q_{2}}, \frac{a_{3}}{q_{3}}=1-\frac{a_{4}}{q_{4}}$, and so on, so that $S(k) \sim Q^{k} \delta^{k / 2}$.

A question

Let $\delta>0$ and let $Q>1 / \delta$. Fix $k \in \mathbb{N} \geqslant 2$. Let $S(k)$ be the number of k-tuples $\left(\frac{a_{1}}{q_{1}}, \ldots, \frac{a_{k}}{q_{k}}\right)$ that satisfy:

- $q_{i} \in[Q, 2 Q]$ for all i
$■ \frac{a_{i}}{q_{i}} \in(0,1)$ is a fraction in lowest terms with $\left\|\frac{a_{i}}{q_{i}}\right\| \leqslant \delta$
■ $\sum_{i=1}^{k} \frac{a_{i}}{q_{i}} \in \mathbb{Z}$
How big is this set, in terms of δ and Q ?
When $k=2, \frac{a_{1}}{q_{1}}+\frac{a_{2}}{q_{2}}=1$ implies that $q_{1}=q_{2}$ and $a_{1}=q_{1}-a_{2}$, so there are $Q^{2} \delta$ solutions.
When k is even, the main term comes from pairing fractions, so that $\frac{a_{1}}{q_{1}}=1-\frac{a_{2}}{q_{2}}, \frac{a_{3}}{q_{3}}=1-\frac{a_{4}}{q_{4}}$, and so on, so that $S(k) \sim Q^{k} \delta^{k / 2}$.

What about when k is odd?

The distribution of primes in short intervals

Motivating Question
Consider intervals of size h, with $h=o(N)$ and $h / \log N \rightarrow \infty$ as $N \rightarrow \infty$.
What is the distribution of $\pi(n+h)-\pi(n)$ for $n \leqslant N$? What is the distribution of $\psi(n+h)-\psi(n)$ for $n \leqslant N$?

The distribution of primes in short intervals

Motivating Question

Consider intervals of size h, with $h=o(N)$ and $h / \log N \rightarrow \infty$ as $N \rightarrow \infty$.
What is the distribution of $\pi(n+h)-\pi(n)$ for $n \leqslant N$? What is the distribution of $\psi(n+h)-\psi(n)$ for $n \leqslant N$?

Cramér model answer
If we model the primes by saying each n is independently prime with probability
$\frac{1}{\log n}$, then the distribution of $\psi(n+h)-\psi(n)$ would be Gaussian with mean
$\sim h$ and variance $\sim h \log N$.

Testing the Cramér model

Here's the (normalized) distribution of $\psi(n+h)-\psi(n)$ for $1 \leqslant n \leqslant 10^{7}$, with $h=\sqrt{10^{7}}$. The red line is the Gaussian with mean h and variance $h \log 10^{7}$.

Hardy-Littlewood conjecture

Hardy-Littlewood Conjecture
Let $\mathcal{D}=\left\{d_{1}, \ldots, d_{k}\right\}$ be a sequence of distinct integers. As $N \rightarrow \infty$,

$$
\sum_{n \leqslant N} \prod_{i=1}^{k} \wedge\left(n+d_{i}\right)=\mathfrak{S}(\mathcal{D}) N+o(N)
$$

where

$$
\mathfrak{S}(\mathcal{D})=\prod_{p} \frac{1-\nu_{\mathcal{D}}(p) / p}{(1-1 / p)^{k}}
$$

for $\nu_{\mathcal{D}}(p)$ is the number of equivalence classes $\bmod p$ occupied by \mathcal{D}.

Hardy-Littlewood conjecture

Hardy-Littlewood Conjecture
Let $\mathcal{D}=\left\{d_{1}, \ldots, d_{k}\right\}$ be a sequence of distinct integers. As $N \rightarrow \infty$,

$$
\sum_{n \leqslant N} \prod_{i=1}^{k} \wedge\left(n+d_{i}\right)=\mathfrak{S}(\mathcal{D}) N+o(N)
$$

where

$$
\mathfrak{S}(\mathcal{D})=\prod_{p} \frac{1-\nu_{\mathcal{D}}(p) / p}{(1-1 / p)^{k}}
$$

for $\nu_{\mathcal{D}}(p)$ is the number of equivalence classes $\bmod p$ occupied by \mathcal{D}.
When $\mathcal{D}=\{0,2\}$, Hardy-Littlewood predicts the asymptotic number of twin primes, via

$$
\sum_{n \leqslant N} \Lambda(n) \wedge(n+2) \sim 2\left(\prod_{p \geqslant 3} \frac{1-2 / p}{(1-1 / p)^{2}}\right) N
$$

Hardy-Littlewood conjecture

Hardy-Littlewood Conjecture

Let $\mathcal{D}=\left\{d_{1}, \ldots, d_{k}\right\}$ be a sequence of distinct integers. As $N \rightarrow \infty$,

$$
\sum_{n \leqslant N} \prod_{i=1}^{k} \Lambda\left(n+d_{i}\right)=\mathfrak{S}(\mathcal{D}) N+o(N)
$$

where

$$
\mathfrak{S}(\mathcal{D})=\prod_{p} \frac{1-\nu_{\mathcal{D}}(p) / p}{(1-1 / p)^{k}}
$$

for $\nu_{\mathcal{D}}(p)$ is the number of equivalence classes $\bmod p$ occupied by \mathcal{D}.
When $\mathcal{D}=\{0,2\}$, Hardy-Littlewood predicts the asymptotic number of twin primes, via

$$
\sum_{n \leqslant N} \Lambda(n) \wedge(n+2) \sim 2\left(\prod_{p \geqslant 3} \frac{1-2 / p}{(1-1 / p)^{2}}\right) N
$$

When $\mathcal{D}=\{0,1\}, \mathfrak{S}(\mathcal{D})=0$, since the factor at $p=2$ is $\frac{1-2 / 2}{(1-1 / 2)^{2}}=0$. "Either n or $n+1$ is even, so there are very few consecutive primes."

Variance via Hardy-Littlewood

The Hardy-Littlewood conjectures tell us that the variance is smaller.

$$
\frac{1}{N} \sum_{n \leqslant N}\left(\sum_{\ell \leqslant h} \Lambda(n+\ell)-h\right)^{2}
$$

Variance via Hardy-Littlewood

The Hardy-Littlewood conjectures tell us that the variance is smaller.

$$
\begin{aligned}
& \frac{1}{N} \sum_{n \leqslant N}\left(\sum_{\ell \leqslant h} \Lambda(n+\ell)-h\right)^{2} \\
& \quad \sim \frac{1}{N} \sum_{n \leqslant N} \sum_{\ell \leqslant h} \Lambda(n+\ell)^{2}+\frac{2}{N} \sum_{\ell_{1}<\ell_{2} \leqslant h} \sum_{n \leqslant N} \Lambda\left(n+\ell_{1}\right) \Lambda\left(n+\ell_{2}\right)-h^{2}
\end{aligned}
$$

Variance via Hardy-Littlewood

The Hardy-Littlewood conjectures tell us that the variance is smaller.

$$
\begin{aligned}
& \frac{1}{N} \sum_{n \leqslant N}\left(\sum_{\ell \leqslant h} \Lambda(n+\ell)-h\right)^{2} \\
& \quad \sim \frac{1}{N} \sum_{n \leqslant N} \sum_{\ell \leqslant h} \Lambda(n+\ell)^{2}+\frac{2}{N} \sum_{\ell_{1}<\ell_{2} \leqslant h} \sum_{n \leqslant N} \Lambda\left(n+\ell_{1}\right) \Lambda\left(n+\ell_{2}\right)-h^{2} \\
& \\
& \sim \underbrace{\frac{1}{N} \sum_{n \leqslant N} \sum_{\ell \leqslant h} \Lambda(n+\ell)^{2}}_{\sim h(\log N-1)}+\underbrace{2 \sum_{\ell \leqslant h}(h-\ell) \mathcal{S}(\{0, \ell\})}_{\sim h^{2}-h \log h+B h}-h^{2}
\end{aligned}
$$

Variance via Hardy-Littlewood

The Hardy-Littlewood conjectures tell us that the variance is smaller.

$$
\begin{aligned}
\frac{1}{N} & \sum_{n \leqslant N}\left(\sum_{\ell \leqslant h} \Lambda(n+\ell)-h\right)^{2} \\
& \sim \frac{1}{N} \sum_{n \leqslant N} \sum_{\ell \leqslant h} \Lambda(n+\ell)^{2}+ \\
& \sim \underbrace{\frac{1}{N} \sum_{n \leqslant N} \sum_{\ell \leqslant h} \Lambda(n+\ell)^{2}}_{\sim h(\log N-1)}+\underbrace{}_{\sim h^{2}-h \log h+B h} \sum_{\ell \leqslant h} \Lambda(n-\ell) \mathfrak{S}(\{0, \ell\})-\ell_{1}) \Lambda\left(n+\ell_{2}\right)-h^{2} \\
& \sim h\left(\log \frac{N}{h}+B-1\right)
\end{aligned}
$$

The Cramér guess, $h \log N$, is bigger than this!

Testing revisited

Here's the (normalized) distribution of $\psi(n+h)-\psi(n)$ for $1 \leqslant n \leqslant 10^{7}$, with $h=\sqrt{10^{7}}$. The red line is the Gaussian with mean h and variance $h \log 10^{7}$; the green line has mean h and variance $\frac{1}{2} h \log 10^{7}+h(B-1)$.

Sums of Singular Series

Moral: Sums of \mathfrak{S} give us information about the moments of the distribution.

Sums of Singular Series

Moral: Sums of \mathfrak{S} give us information about the moments of the distribution. In 2004, Montgomery and Soundararajan showed, assuming Hardy-Littlewood, that the moments of the distribution of primes in short intervals converge to the moments of a Gaussian with variance $h(\log (N / h)+B-1)$. Their work depends on the following key result:

Theorem (Montgomery \& Soundararajan, 2004)
For $\mathcal{D} \subseteq \mathbb{N}$, let $\mathfrak{S}_{0}(\mathcal{D})=\sum_{\mathcal{J} \subset \mathcal{D}}(-1)^{|\mathcal{D} \backslash \mathcal{J}|} \mathfrak{S}(\mathcal{J})$, and let

$$
R_{k}(h):=\sum_{\substack{d_{1}, \ldots, d_{k} \\ 1 \leq d_{i}<h \\ \text { distinct }}} \mathfrak{S}_{0}(\mathcal{D})
$$

Then for any $k \in \mathbb{N}$,

$$
R_{k}(h)=\mu_{k}(-h \log h+(B+1) h)^{k / 2}+O_{k, \varepsilon}\left(h^{k / 2-1 /(7 k)+\varepsilon}\right)
$$

Sums of Singular Series

Moral: Sums of \mathfrak{S} give us information about the moments of the distribution. In 2004, Montgomery and Soundararajan showed, assuming Hardy-Littlewood, that the moments of the distribution of primes in short intervals converge to the moments of a Gaussian with variance $h(\log (N / h)+B-1)$. Their work depends on the following key result:

Theorem (Montgomery \& Soundararajan, 2004)
For $\mathcal{D} \subseteq \mathbb{N}$, let $\mathfrak{S}_{0}(\mathcal{D})=\sum_{\mathcal{J} \subset \mathcal{D}}(-1)^{|\mathcal{D} \backslash \mathcal{J}|} \mathfrak{S}(\mathcal{J})$, and let

$$
R_{k}(h):=\sum_{\substack{d_{1}, \ldots, d_{k} \\ 1 \leq d_{i}<h \\ \text { distinct }}} \mathfrak{S}_{0}(\mathcal{D})
$$

Then for any $k \in \mathbb{N}$,

$$
R_{k}(h)=\mu_{k}(-h \log h+(B+1) h)^{k / 2}+O_{k, \varepsilon}\left(h^{k / 2-1 /(7 k)+\varepsilon}\right)
$$

For k odd, we don't know the asymptotic size of $R_{k}(h)$; we just have $R_{k}(h)=O_{k, \varepsilon}\left(h^{k / 2-1 /(7 k)+\varepsilon}\right)$.

Odd moments: beyond square-root cancellation

Conjecture (K., Lemke Oliver and Soundararajan)
For k odd,

$$
R_{k}(h)=h^{(k-1) / 2}(\log h)^{(k+1) / 2}
$$

For $k=3$, here is $R_{3}(h)$ (in black) plotted against $0.373727 h(\log h)^{2}$ (dashed in red).

Odd moments: beyond square-root cancellation

Conjecture (K., Lemke Oliver and Soundararajan)
For k odd,

$$
R_{k}(h)=h^{(k-1) / 2}(\log h)^{(k+1) / 2}
$$

Theorem (K.)

$$
R_{3}(h)=O\left(h(\log h)^{5}\right)
$$

Techniques: Adding Fractions

$$
R_{k}(h) \approx \sum_{\substack{q_{1}, \ldots, q_{k} \\ q_{i}>1}}\left(\prod_{i=1}^{k} \frac{\mu\left(q_{i}\right)}{\phi\left(q_{i}\right)}\right) \sum_{\substack{a_{1}, \ldots, a_{k} \\ 1 \leqslant a_{i} \leqslant q_{i} \\\left(a_{i}, q_{i}\right)=1 \\ \sum_{i} a_{i} / q_{i} \in \mathbb{Z}}} E\left(\frac{a_{1}}{q_{1}}\right) \cdots E\left(\frac{a_{k}}{q_{k}}\right)
$$

where $E(\alpha)=\sum_{m=1}^{h} e(m \alpha)$.
$E(\alpha)$ is about h if $\|\alpha\| \leqslant \frac{1}{h}$ and small otherwise.

Techniques: Adding Fractions

$$
R_{k}(h) \approx \sum_{\substack{q_{1}, \ldots, q_{k} \\ q_{i}>1}}\left(\prod_{i=1}^{k} \frac{\mu\left(q_{i}\right)}{\phi\left(q_{i}\right)}\right) \sum_{\substack{a_{1}, \ldots, a_{k} \\ 1 \leqslant a_{i} \leqslant q_{i} \\\left(a_{i}, q_{i}=1 \\ \sum_{i}=a_{i} / q_{i} \in \mathbb{Z}\right.}} E\left(\frac{a_{1}}{q_{1}}\right) \cdots E\left(\frac{a_{k}}{q_{k}}\right)
$$

where $E(\alpha)=\sum_{m=1}^{h} e(m \alpha)$.
$E(\alpha)$ is about h if $\|\alpha\| \leqslant \frac{1}{h}$ and small otherwise.

$$
R_{k}(h) \approx \sum_{\substack{q_{1}, \ldots, q_{k} \\ q_{i}>1}}\left(\prod_{i=1}^{k} \frac{\mu\left(q_{i}\right)}{\phi\left(q_{i}\right)}\right) h^{k} \#\left\{1 \leqslant a_{i} \leqslant q_{i}:\left\|\frac{a_{i}}{q_{i}}\right\| \leqslant \frac{1}{h},\left(a_{i}, q_{i}\right)=1, \sum_{i} \frac{a_{i}}{q_{i}} \in \mathbb{Z}\right\}
$$

Techniques: Adding Fractions

$$
R_{k}(h) \approx \sum_{\substack{q_{1}, \ldots, q_{k} \\ q_{i}>1}}\left(\prod_{i=1}^{k} \frac{\mu\left(q_{i}\right)}{\phi\left(q_{i}\right)}\right) \sum_{\substack{a_{1}, \ldots, a_{k} \\ 1 \leqslant a_{i} \leqslant q_{i} \\\left(a_{i}, q_{i}=1 \\ \sum_{i} a_{i} / q_{i} \in \mathbb{Z}\right.}} E\left(\frac{a_{1}}{q_{1}}\right) \cdots E\left(\frac{a_{k}}{q_{k}}\right)
$$

where $E(\alpha)=\sum_{m=1}^{h} e(m \alpha)$.
$E(\alpha)$ is about h if $\|\alpha\| \leqslant \frac{1}{h}$ and small otherwise.

$$
R_{k}(h) \approx \sum_{\substack{q_{1}, \ldots, q_{k} \\ q_{i}>1}}\left(\prod_{i=1}^{k} \frac{\mu\left(q_{i}\right)}{\phi\left(q_{i}\right)}\right) h^{k} \#\left\{1 \leqslant a_{i} \leqslant q_{i}:\left\|\frac{a_{i}}{q_{i}}\right\| \leqslant \frac{1}{h},\left(a_{i}, q_{i}\right)=1, \sum_{i} \frac{a_{i}}{q_{i}} \in \mathbb{Z}\right\}
$$

Intuition for $k=3$: about $\phi\left(q_{1}\right) \frac{1}{h}$ choices for a_{1}, and $\phi\left(q_{2}\right) \frac{1}{h}$ choices for a_{2}.

The problem in $\mathbb{F}_{q}[t]$

primes in \mathbb{Z}	irreducible polynomials in $\mathbb{F}_{q}[t]$
$\|n\|$	$\|F(t)\|:=q^{\operatorname{deg} F}$
interval $(n, n+h)$	$I(F(t), h):=$$\{G(t):\|F-G\|<h\}$ $h=q^{\ell}$
$\mathcal{S}(\mathcal{D})=\prod_{p} \frac{1-\nu_{p}(\mathcal{D}) / p}{(1-1 / p)^{k}}$	$\mathfrak{S}(\mathcal{D})=\prod_{P} \frac{1-\nu_{P}(\mathcal{D}) /\|P\|}{(1-1 /\|P\|)^{k}}$

The problem in $\mathbb{F}_{q}[t]$

$\left.\begin{array}{c|c}\text { primes in } \mathbb{Z} & \text { irreducible polynomials in } \mathbb{F}_{q}[t] \\ \hline|n| & |F(t)|:=q^{\operatorname{deg} F} \\ \hline \text { interval }(n, n+h) & I(F(t), h):=\{G(t):|F-G|<h\} \\ h=q^{\ell}\end{array}\right]$

Function field benefits

$\ln \mathbb{F}_{q}[t]$,

$$
R_{k}(h) \approx \sum_{\substack{Q_{1}, \ldots, Q_{k} \in \mathbb{F}_{q}[t] \\\left|Q_{i}\right|=1 \\ \text { monic }}} \prod_{i=1}^{k} \frac{\mu\left(Q_{i}\right)}{\phi\left(Q_{i}\right)} \sum_{\substack{A_{1}, \ldots, A_{k} \\\left|A_{i} i<Q_{i}\right| \\\left(A_{i}, Q_{i}\right)=1 \\ \sum_{i} A_{i} / Q_{i}=0}} E\left(\frac{A_{1}}{Q_{1}}\right) \cdots E\left(\frac{A_{k}}{Q_{k}}\right)
$$

- For $\alpha(t)=\frac{F(t)}{G(t)} \in \mathbb{F}_{q}(t), E(\alpha)=\sum_{M \in I(0, h)} e(M \alpha)$
- For res (α) the coefficient of $\frac{1}{t}$ in the Laurent series expansion of α, $e(\alpha)=\exp (2 \pi i \cdot \operatorname{tr}(\operatorname{res}(\alpha)))$

Function field benefits

$\ln \mathbb{F}_{q}[t]$,

$$
R_{k}(h) \approx \sum_{\substack{Q_{1}, \ldots, Q_{k} \in \mathbb{F}_{q}[t] \\\left|Q_{i}\right|=1 \\ \text { monic }}} \prod_{i=1}^{k} \frac{\mu\left(Q_{i}\right)}{\phi\left(Q_{i}\right)} \sum_{\substack{A_{1}, \ldots, A_{k} \\ \mid A_{i},<Q_{i} \\\left\langle A_{i}, Q_{i}\right)=1 \\ \sum_{i} A_{i}, Q_{i}=0}} E\left(\frac{A_{1}}{Q_{1}}\right) \cdots E\left(\frac{A_{k}}{Q_{k}}\right)
$$

■ For $\alpha(t)=\frac{F(t)}{G(t)} \in \mathbb{F}_{q}(t), E(\alpha)=\sum_{M \in I(0, h)} e(M \alpha)$

- For $\operatorname{res}(\alpha)$ the coefficient of $\frac{1}{t}$ in the Laurent series expansion of α, $e(\alpha)=\exp (2 \pi i \cdot \operatorname{tr}(\operatorname{res}(\alpha)))$

Lemma (Hayes, 1966)
Let $\alpha \in \mathbb{F}_{q}(t)$ with $|\alpha| \leqslant \frac{1}{q}$. Then

$$
E(\alpha)= \begin{cases}h & \text { if }|\alpha|<\frac{1}{h} \\ 0 & \text { if }|\alpha| \geqslant \frac{1}{h}\end{cases}
$$

Function field results

Theorem (K.)
Fix q. As $h \rightarrow \infty$,

$$
R_{3}(h)=O\left(h(\log h)^{19 / 2}\right)
$$

and for all $\varepsilon>0$,

$$
R_{5}(h)=O_{\varepsilon}\left(h^{2+\varepsilon}\right) .
$$

Techniques: Fifth moment bound

We want to bound

$$
R_{5}(h) \approx h^{5} \sum_{\substack{Q_{1}, \ldots, Q_{k} \\\left|Q_{k}\right|>1 \\ \text { monic }}} \prod_{i=1}^{k} \frac{\mu\left(Q_{i}\right)}{\phi\left(Q_{i}\right)} \#\left\{A_{i} \bmod Q_{i}:\left|\frac{A_{i}}{Q_{i}}\right|<-h,\left(A_{i}, Q_{i}\right)=1, \sum_{i} \frac{A_{i}}{Q_{i}}=0\right\}
$$

Techniques: Fifth moment bound

We want to bound

$$
R_{5}(h) \approx h^{5} \sum_{\substack{Q_{1}, \ldots, Q_{k} \\ \mid Q_{i}>1 \\ \text { monic }}} \prod_{i=1}^{k} \frac{\mu\left(Q_{i}\right)}{\phi\left(Q_{i}\right)} \#\left\{A_{i} \bmod Q_{i}:\left|\frac{A_{i}}{Q_{i}}\right|<-h,\left(A_{i}, Q_{i}\right)=1, \sum_{i} \frac{A_{i}}{Q_{i}}=0\right\}
$$

The adaptation of the work of Montgomery-Soundararajan and Montgomery-Vaughan gives a sharp enough bound for the sum restricted over all terms Q_{1}, \ldots, Q_{k} except those such that:

- $\left|Q_{i}\right| \geqslant h$ for all i
- no three Q_{i} 's are equal
- for any i, j, either $Q_{i}=Q_{j}$ or $\left|\frac{Q_{i}}{\left(Q_{i}, Q_{j}\right)}\right| \geqslant h$ and $\left|\left(Q_{i}, Q_{j}\right)\right|<h / 2$

Techniques cont'd: Fifth moment bound

For a tuple $Q_{1}, \ldots Q_{5}$,

- $\left|Q_{i}\right| \geqslant h$ for all i
- no three Q_{i} 's are equal

■ for any i, j, either $Q_{i}=Q_{j}$ or $\left|\frac{Q_{i}}{\left(Q_{i}, Q_{j}\right)}\right| \geqslant h$ and $\left|\left(Q_{i}, Q_{j}\right)\right|<h / 2$

Techniques cont'd: Fifth moment bound

For a tuple $Q_{1}, \ldots Q_{5}$,

- $\left|Q_{i}\right| \geqslant h$ for all i
- no three Q_{i} 's are equal

■ for any i, j, either $Q_{i}=Q_{j}$ or $\left|\frac{Q_{i}}{\left(Q_{i}, Q_{j}\right)}\right| \geqslant h$ and $\left|\left(Q_{i}, Q_{j}\right)\right|<h / 2$ implies that, possibly after reordering,

- $\left|\frac{Q_{2}}{\left(Q_{2}, Q_{1}\right)}\right| \geqslant h$ and
- $\left|\frac{Q_{3}}{\left(Q_{3}, Q_{1} Q_{2}\right)}\right| \geqslant h / 2$.

Techniques cont'd: Fifth moment bound

For a tuple $Q_{1}, \ldots Q_{5}$,

- $\left|Q_{i}\right| \geqslant h$ for all i
- no three Q_{i} 's are equal

■ for any i, j, either $Q_{i}=Q_{j}$ or $\left|\frac{Q_{i}}{\left(Q_{i}, Q_{j}\right)}\right| \geqslant h$ and $\left|\left(Q_{i}, Q_{j}\right)\right|<h / 2$
implies that, possibly after reordering,

- $\left|\frac{Q_{2}}{\left(Q_{2}, Q_{1}\right)}\right| \geqslant h$ and
- $\left|\frac{Q_{3}}{\left(Q_{3}, Q_{1} Q_{2}\right)}\right| \geqslant h / 2$.

Strategy: Count options for A_{1} / Q_{1}, then remaining options for A_{2} / Q_{2} after accounting for what has already been determined, then remaining options for A_{3} / Q_{3}.

An application

Lemke Oliver and Soundararajan (2016) conjecture that consecutive primes in arithmetic progressions exhibit biases. With $\pi\left(x_{0}\right)=10^{8}$, they have the following data:

a	b	$\pi\left(x_{0} ; 10,(a, b)\right)$	a	b	$\pi\left(x_{0} ; 10,(a, b)\right)$
1	1	4623042	7	1	6373981
	3	7429438		3	6755195
	7	7504612		7	4439355
	9	5442345		9	7431870
3	1	6010982	9	1	7991431
	3	4442562		3	6372941
	7	7043695		7	6012739
	9	7502896		9	4622916

An application

Lemke Oliver and Soundararajan (2016) conjecture that consecutive primes in arithmetic progressions exhibit biases. With $\pi\left(x_{0}\right)=10^{8}$, they have the following data:

a	b	$\pi\left(x_{0} ; 10,(a, b)\right)$		a	b	$\pi\left(x_{0} ; 10,(a, b)\right)$
1	1	4623042				
	3	7429438			1	6373981
	7	7504612		3	6755195	
	9	5442345		7	4439355	
3	1	6010982		9	7431870	
	3	4442562		1	7991431	
	7	7043695		3	6372941	
	9	7502896		7	6012739	
				9	4622916	

Showing that sums of three-term singular series are small improves their heuristic.

Further questions

Question 1.
Let $\delta>0$ and $Q>1 / \delta$. For k odd, what is

$$
\#\left\{q_{1}, \ldots, q_{k} \in[Q, 2 Q], 1 \leqslant a_{i} \leqslant q_{i}:\left\|\frac{a_{i}}{q_{i}}\right\| \leqslant \delta, \sum_{i} \frac{a_{i}}{q_{i}} \in \mathbb{Z}\right\} ?
$$

Further questions

Question 1.

Let $\delta>0$ and $Q>1 / \delta$. For k odd, what is

$$
\#\left\{q_{1}, \ldots, q_{k} \in[Q, 2 Q], 1 \leqslant a_{i} \leqslant q_{i}:\left\|\frac{a_{i}}{q_{i}}\right\| \leqslant \delta, \sum_{i} \frac{a_{i}}{q_{i}} \in \mathbb{Z}\right\} ?
$$

Question 2.

For $\delta>0, Q>1 / \delta$, let $J_{1}, \ldots, J_{k} \subseteq[0,1]$ be intervals with $\left|J_{i}\right| \geqslant \delta$. What is

$$
\#\left\{q_{1}, \ldots, q_{k} \in[Q, 2 Q], 1 \leqslant a_{i} \leqslant q_{i}: \frac{a_{i}}{q_{i}} \in J_{i}, \sum_{i} \frac{a_{i}}{q_{i}} \in \mathbb{Z}\right\} ?
$$

Thank you!

