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1. INTRODUCTION AND PROBLEM STATEMENT

This seminar talk discusses James Maynard’s result [1] (which he then improved to [2])
on counting primes with restricted digits.

Let’s start with the question setup; we will then get into the circle method, how it works
in this case, and why this case is special. We will fix an integer q, our “base”; think of q as
being very large. We will also fix a0 ∈ {0, . . . , q− 1}.

Definition 1.1. Let A :=
{

∑i≥0 niqi : ni ∈ {0, . . . , q− 1} \ {a0}
}

be the set of numbers
with no a0 in their base-q expansion.

Question 1.2. Does A contain infinitely many primes?

Remark 1.3.
|A ∩ [1, X]| ≈ (q− 1)log X/ log q = Xlog(q−1)/ log q

So, this set is very thin! For some more natural thin sets, like those involving short intervals
or arithmetic progressions, information about primes in them would tell us about zero-free
regions of L-functions. In particular, for many thin sets, finding primes is hard.

Theorem 1.4 (Maynard). Let q > 2000000. For any constant R > 0,

∑
n<qk

Λ(n)1A(n) = κq(a0)(q− 1)k + OR

(
(q− 1)k

(log qk)R

)
,

with

κq(a0) =

{ q
q−1 if (a0, q) 6= 1

q
q−1

φ(q)−1
φ(q) if (a0, q) = 1

We’ll prove this using the circle method, since the Fourier transform of the indicator
function 1A has particularly nice properties.

Specifically, let F̂qk be the Fourier transform of 1A∩[1,qk]. Then

1A(n) =
1
qk ∑

0≤a<qk

F̂qk

(
a
qk

)
e
(
−an

qk

)

⇒ ∑
n≤qk

1A(n)Λ(n) =
1
qk ∑

0≤a<qk

F̂qk

(
a
qk

)
Sqk

(
−a
qk

)
,

with
Sqk(θ) = ∑

n≤qk

Λ(n)e(nθ)
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Both F̂qk and Sqk are larger when a
qk are close to some `

d , with d small. So, we can split the

problem into the major arcs, i.e. terms when a
qk ≈ `

d with d small, and the minor arcs, i.e.

terms when a
qk ≈ `

d for d big. We’ll bound the contribution of F̂qk Sqk on minor arcs to get
something smaller than the contribution from the major arcs.

2. INTERLUDE: THE CIRCLE METHOD, AND WHY YOU MIGHT NOT EXPECT IT TO WORK
HERE

Say we have some sequence an whose asymptotic size we would like to know, or bound
below. By Fourier inversion,

an =
∫ 1

0
F(θ)e(−nθ)dθ,

with F(θ) = ∑ ake(kθ). We then divide the circle up into major arcs (θ near `
d for d small)

and minor arcs (everything else).
Let’s consider the example of the ternary Goldbach problem. Here we say an is a

weighted count of the number of ways to write n as a sum of three primes, so an =
∑k1+k2+k3=n Λ(k1)Λ(k2)Λ(k3), and

an =
∫ 1

0

(
∑
k≤n

Λ(k)e(kθ)

)3

e(−nθ)dθ,

where we’ll say here that F(θ) = ∑k≤n Λ(k)e(kθ), which in this case is the cube root of the
Fourier transform.

By the PNT, F(0) = F(1) = n + o(n). At the same time, by Parseval and partial
summation, ∫ 1

0
|F(θ)|2dθ = ∑

k≤n
Λ(k)2 = n log n + o(n log n).

So, the average size of F is about the square root of the sum length, a phenomenon known
as square root cancellation.

The major arcs here are small isolated intervals around points `
d with d small, i.e. points

where F(θ) is big. So, their contribution is something like

∑
d≤log n

d

∑
a=1

(a,d)=1

F
( a

d

)3
e
(
−n

a
d

) 2 log n
n
≈ n2S.

The minor arcs are everything else, where f is small. Vinogradov’s crucial contribution
here was the result that maxθ∈m F(θ)� n

logD n
, getting a log power saving. Then

∫
m
|F(θ)|3dθ � n

logD n

∫ 1

0
|F(θ)|2dθ � n2

logD−1 n
.

The minor arc contribution is small, so it provides an error term. Let’s contrast this
situation with the situation of binary Goldbach, where instead we want to consider
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numbers an that are a sum of two primes. Here we have

an =
∫ 1

0
F(θ)2dθ,

for the same F(θ) as above. In this case by the same argument, the major arc contribution
is of size ≈ nS. But

∫ 1
0 |F|

2dθ ≈ n log n, which is bigger! Square root cancellation is not
enough in this case, so the minor arcs don’t have a smaller contribution.

This problem as well is a binary problem, in the sense that our integral has two terms. If
we only saw square root cancellation in the minor arcs, again that would not be enough to
help us. However, the special structure of our problem allows us to use an L1 bound to get
enough savings.

3. MINOR ARCS

Let’s return to our sum

∑
n≤qk

1A(n)Λ(n) =
1
qk ∑

0≤a<qk

F̂qk

(
a
qk

)
Sqk

(
−a
qk

)
with

Sqk(θ) = ∑
n≤qk

Λ(n)e(nθ)

Let’s get some bounds on F̂qk and Sqk .

Lemma 3.1 (L1 bound). There exists a constant Cq ∈ [1/ log q, 1 + 3/ log q] such that

sup
θ∈R

∑
0≤a<qk

∣∣∣∣F̂qk

(
θ +

a
qk

)∣∣∣∣� (Cqq log q)k.

Proof outline. Let’s expand our definition of F̂qk , with n = ∑k−1
i=0 niqi the base-q expansion

of n. We have

F̂qk(t) = ∑
n<qk

1A(n)e(tn) =
k−1

∏
i=0

(
q−1

∑
ni=0

1A(ni)e(niqit)

)
,

with the inner sum a sum over all values in {0, . . . , q − 1} \ {a0}. The inner sum is a
geometric series, so we can bound it by∣∣∣∣ e(qi+1t)− 1

e(qit)− 1
− e(a0qit)

∣∣∣∣ ≤ min
(

q, 1 +
1

2||qit||

)
.

Let’s expand t ∈ [0, 1) in base q, to get t = ∑k
i=1 tiq−i + ε, with ε ∈ [0, 1/qk). Then

||qit||−1 = ||ti+1/q + εi||−1, with εi ∈ [0, 1/q). Using this, we can bound

sup
θ∈R

∑
0≤a<qk

∣∣∣∣F̂qk

(
θ +

a
qk

)∣∣∣∣� ∑
t1,...,tk<q

k

∏
i=1

min
(

q, 1 + max
(

q
2ti

,
q

2(q− 1− ti)

))
� (3q + q log q)k.

This completes the proof. �
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This is very good! We can also get the following bound using both this and the large
sieve.

Lemma 3.2 (Hybrid estimate). Let B, D � 1. Then

∑
D≤d≤2D

∑
`<d

(`,d)=1

∑
|η|<B

qk`/d+η∈Z

∣∣∣∣F̂qk

(
`

d
+

η

qk

)∣∣∣∣� (q− 1)k(D2B)αq + D2B(Cq log q)k,

where Cq is the same constant from before, and

αq =
log(Cq

q
q−1 log q)

log q
.

Remark 3.3. Note that we had Cq ∈ [1/ log q, 1 + 3/ log q], so that

αq ≤
log
(

q
q−1 log q + 3q

q−1

)
log q

.

As q→ ∞, this approaches 0, so eventually it is as small as we like. In particular, αq < 1/5
when q > 2000000.

If B > qk it follows immediately from the L1 bound. If B < qk, the strategy is to
decompose the k digits as k1 digits with B ≈ qk1 , and then k2 additional digits. The product
decomposition for F̂qk means that we can very nicely separately apply bounds for the first
k1 digits and the last k2 digits; the first of these are addressed again by our L1 bound, and
the remainder using a large sieve bound.

Now let’s consider a bound for the other half of this sum, namely Sqk . For this, we have
a more standard exponential sum bound:

Lemma 3.4. Let α = a
d + β with (a, d) = 1, |β| < 1/d2. Then

Sx(α) = ∑
n<x

Λ(n)e(nα)�
(

x4/5 +
x1/2

|dβ|1/2 + x|dβ|1/2

)
(log x)4.

We can glue these together to show that when α is far away from a rational with small
denominator, F̂qk(α)Sqk(−α) is typically small.

Proposition 3.5. Let 1� B� qk/D0D and 1� D � D0 � qk/2. Then

∑
D≤d≤2D

∑
0<`<d
(`,d)=1

∑
B≤|η|≤2B

qk`/d+η∈Z

∣∣∣∣F̂qk

(
`

d
+

η

qk

)
Sqk

(
− `

d
− η

qk

)∣∣∣∣
� k4(q− 1)kqk

(
1

(DB)1/5−αq
+

qkαq

D1/2
0

)
,
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and

∑
D≤d≤2D

∑
0<`<d
(`,d)=1

∑
|η|�1

qk`/d+η∈Z

∣∣∣∣F̂qk

(
`

d
+

η

qk

)
Sqk

(
− `

d
− η

qk

)∣∣∣∣
� k4(q− 1)kqk

(
1

D1/5−αq
+

D1/2+2αq
0
qk/2

)
.

Proof. We’ll show just the first statement. We have from our assorted lemmas that if
D2B� qk,

∑
D≤d≤2D

∑
`<d

(`,d)=1

∑
|η|<B

qk`/d+η∈Z

∣∣∣∣F̂qk

(
`

d
+

η

qk

)∣∣∣∣� (q− 1)k(D2B)αq

and

sup
D≤d≤2D
(`,d)=1

B≤|η|≤2B

∣∣∣∣Sqk

(
− `

d
− η

qk

)∣∣∣∣�
(

q4k/5 +
(DB)1/2

qk/2 +
qk

(DB)1/2

)
(k log q)4.

Combining these gives that what we want is

� k4qk(q− 1)k

(
(D2B)αq

qk/5 +
(D2B)αq

(DB)1/2 +
(DB)1/2(D2B)αq

qk/2

)

� k4qk(q− 1)k

(
(D2B)αq−1/5 + (D2B)αq−1/4 +

qkαq

D1/2
0

)
,

using for the second line that D2B < qk and DB < qk/D0. �

Let’s see what bound this gives us. In particular, our Fourier expansion gives us

∑
n<qk

Λ(n)1A(n) =
1
qk ∑

0≤a<qk

F̂qk

(
a
qk

)
Sqk

(
−a
qk

)
.

We fix D0 and D, to be determined later. By Dirichlet’s approximation theorem, there exist
(`, d) = 1 with d < D and |β| < 1/DD0 such that a

qk = `
d + β. We’ll define minor arcs as

the values where max(d, qk|β|) ≥ (log qk)R. These terms are

� Ob

(
1
qk

(
k4qk(q− 1)k

(
1

(log qk)R(1/5−αq)
+

kD1/2+2αq
0
qk/2 +

kqkαq

D1/2
0

)))
.

If we take D0 = qk/2, and q > 2000000 so that αq < 1/5, and choose R such that R >
(R′ + 5)/(1/5− αq), then this is

� OR′((q− 1)k(log qk)−R′),

which is the error term we’re aiming for.
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4. MAJOR ARCS

Lemma 4.1. Let R > 0. For D, B < (log qk)R, we have

1
qk ∑

d<D
p|d⇒p|q

∑
0≤`<d
(`,d)=1

∑
|b|<B

F̂qk

(
`

d
+

b
qk

)
Sqk

(
− `

d
− b

qk

)

= κq(a0)(q− 1)k + OR

(
(q− 1)k

(log qk)R

)
,

with

κq(a0) =

{ q
q−1 if (a0, q) 6= 1

q
q−1

φ(q)−1
φ(q) if (a0, q) = 1.

Proof. First, we can discard all terms with b 6= 0. If b 6= 0, then by the prime number
theorem in arithmetic progressions and partial summation,

Sqk

(
− `

d
− b

qk

)
= ∑

n≤qk

Λ(n)e
(
−n`

d
− nb

qk

)
�R

qk

(log qk)4R ,

so in total these terms contribute
(log qk)3R

qk sup
0<a<qk

∣∣∣∣F̂qk

(
a
qk

)∣∣∣∣ qk

(log qk)4R �
(q− 1)k

(log qk)R .

So let’s look at the terms with b = 0. Again using the prime number theorem in arithmetic
progressions,

Sqk

(
−`
d

)
=

qk

φ(d) ∑
0<c<d
(c,d)=1

e
(
−`c

d

)
+ OR

(
qk

(log qk)4R

)
=

µ(d)qk

φ(d)
+ OR

(
qk

(log qk)4R

)

Since d|qn by our assumption on primes, either d|q or d is not square-free. So we can
restrict to d|q, and take `′ so that `′/q = `/d. These terms then contribute

1
qk ∑

0≤`′<q
F̂qk

(
`′

q

)
Sqk

(
−`′

q

)
=

1
qk−1 ∑

n,m<qk

n≡m (mod q)

Λ(n)1A(m)

=
q

φ(q) ∑
1<a<q
(a,q)=1

∑
m<qk

m≡a (mod q)

1A(m) + OR

(
qk

(log qk)4R

)

If a 6= a0, there are (q− 1) choices for each digit of m apart from the last one, which must
be a. Thus the inner sum is (q− 1)k−1. If a = a0, the sum is empty. Thus

q
φ(q) ∑

1<a<q
(a,q)=1

∑
m<qk

m≡a (mod q)

1A(m) =

{
q(q− 1)k−1 if (a0, q) 6= 1
φ(q)−1

φ(q) q(q− 1)k−1 if (a0, q) = 1

�
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The last step here is to show that the terms with d not dividing any power of q are also
in the error term; this follows from an L∞ bound on these terms of the Fourier transform
F̂qk , which finally yields the theorem.
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