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1. INTRODUCTION

How many primes are there in an interval in the integers? If the interval is long (say,
[0,X]), this question is answered by the prime number theorem. For shorter intervals, the
prime number theorem can give us an expectation, but not an asymptotic. The question
we want to be asking is: what is the distribution of primes in short intervals?

To be precise, let’s consider the following setup. Let H = H(N) be a function of N
with H = o(N) and H/logN → ∞ as N → ∞. We’ll then study the distribution of
ψ(n + H)− ψ(n) for n ≤ N.

The Cramér model predicts that as N gets large, this distribution becomes approxi-
mately normal with mean ∼ H and variance ∼ H log N. Since the normal distribution is
determined by its moments, our goal will be to understand the moments of the number of
primes in an interval of size H. Assuming that H/ log N → ∞ but H ≤ N1−δ, and relying
on an effective form of the Hardy-Littlewood conjecture, we’ll see that the distribution
approaches normal and get a formula for the variance. In the end, the Cramér prediction
for the variance is about correct when log H/ log N → 0, but there is evidence that it is
smaller when Nδ ≤ H ≤ N1−δ.

Nevertheless, our main task of the moment is just that: computing the moments. We’ll
spend the majority of time computing moments for a related question, namely for the
distribution of reduced residues modulo q in a short interval.

2. THE DISTRIBUTION OF REDUCED RESIDUES MODULO q

Rather than consider the number of primes in an interval, let’s fix an integer q and
consider the number of reduced residues modulo q in an interval. In particular, we
consider

mk(q; h) =
q

∑
n=1

 h

∑
m=1

(m+n,q)=1

1− hφ(q)/q


k

,

the kth centered moment of the number of reduced residues (mod q) in an interval.
Montgomery and Vaughan use the following expression for mk(q; h):

Lemma 2.1.

mk(q; h) = q
(

φ(q)
q

)k

Vk(q; h),
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with

Vk(q; h) = ∑
d1,...,dk
1≤di≤h

∑
r1,...,rk
1<ri|q

(
k

∏
i=1

µ(ri)

φ(ri)

)
∑

a1,...,ak
1≤ai<ri
(ai,ri)=1

∑ ai/ri∈Z

e

(
k

∑
i=1

aidi

ri

)
.

For the moment, let’s consider small values of k. When k = 1, we can’t have any terms
with 1 ≤ a1 < r1 and a1/r1 ∈ Z, so the sum is empty. Thus V1(q; h) = 0. In turn we get
that m1(q; h) = 0; we knew this already, because we were taking the centered moment!

To understand k = 2, we will define E(α) = ∑h
m=1 e(mα), for any real number α. The

conditions on a1 and a2 imply that q1 = q2 = a1 + a2, so we get

V2(q; h) = ∑
d|q

d>1

µ(d)2

φ(d)2

d

∑
a=1

(a,d)=1

|E(a/d)|2

The sums E(α) are generally useful to simplify the expression, where we have

Vk(q; h) = ∑
r1,...,rk
1<ri|q

k

∏
i=1

µ(ri)

φ(ri)
∑

a1,...,ak
1≤ai≤ri
(ai,ri)=1

∑ ai/ri∈Z

k

∏
i=1

E(ai/ri).

Our first goal will be the following theorem, a refinement of Montgomery and Vaughan’s
results.

Theorem 2.2. Let µk = 1 · 3 · · · (k− 1) if k is even and 0 if k is odd. Then

Vk(q; h) = µkV2(q; h)k/2 + Ok

(
hk/2−1/(7k)

(
q

φ(q)

)2k+k/2
)

.

2.1. The case when k is odd.

Proposition 2.3. Let k ≥ 1 be fixed and odd. Then

Vk(q; h)� hk/2−1/(7k)
(

φ(q)
q

)−2k−k/2

.

We’ve already addressed the case when k = 1, so assume k ≥ 3. Note that if F(x) =
min(h, 1/||x||), then |E(x)| ≤ F(x) for all x.

Since

Vk(q; h) = ∑
r1,...,rk
1<ri|q

k

∏
i=1

µ(ri)

φ(ri)
∑

a1,...,ak
1≤ai≤ri
(ai,ri)=1

∑ ai/ri∈Z

k

∏
i=1

E(ai/ri),

we can bound it without taking notice of the possible cancellation due to µ(ri) or oscilla-
tions in the E(ai/ri), via

Vk(q; h)�∑
r|q

∑
ri>1

[r1,...,rk]=r

S(~r)
φ(r1) · · · φ(rk)

,
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with

S(~r) = ∑
1≤ai≤ri
(ai,ri)=1

∑ ai/ri∈Z

F(a1/r1) · · · F(ak/rk).

To estimate this, we rely on the following Fundamental Lemma of Montgomery and
Vaughan, as well as some more specific bounds on F(x).

Lemma 2.4 (Fundamental Lemma). Let r1, . . . , rk be squarefree integers with r = [r1, . . . , rk],
and say that if a prime p divides r, then p divides at least two of the ris. Then for any complex-valued
functions G1, . . . , Gk on (0, 1], we have∣∣∣∣∣∣∣∣∣∣∣

∑
b1,...,bk

1≤bi≤ri
∑ bi/ri∈Z

k

∏
i=1

Gi(bi/ri)

∣∣∣∣∣∣∣∣∣∣∣
≤ 1

r

k

∏
i=1

(
ri

ri

∑
bi=1
|Gi(bi/ri)|2

)1/2

.

I won’t get into all of the details of the proof here, but it is in broad strokes a proof by
induction on k relying on Cauchy-Schwartz.

Using this fundamental lemma, we can get a bound on S(~r) that is almost-but-not-quite
good enough without much effort. Specifically, with [r1, . . . , rk] = r,

S(~q) = ∑
1≤ai≤ri
(ai,ri)=1

∑ ai/ri∈Z

F(a1/r1) · · · F(ak/rk)

≤ 1
r

k

∏
i=1

ri ∑
1≤ai≤ri
(ai,ri)=1

F(ai/ri)
2


1/2

� 1
r

k

∏
i=1

(r2
i min(ri, h))1/2

� r1 · · · rkr−1hk/2.

In particular, the power of hk/2 here is k/2, but we were angling for k/2− 1/(7k). So
instead, they do significantly more work to get the following lemma, which again relies (in
more complicated ways) on the same fundamental lemma.

Lemma 2.5. Let k ≥ 3, and let r1, . . . , rk be squarefree numbers with ri > 1. Let r = [r1, . . . , rk],
let d = (r1, r2), and write d = st with s|r3 · · · rk and (t, r3 · · · rk) = 1. Moreover, write r1 = dr′1
and r2 = dr′2. Then

S(~r)� r1 · · · rkr−1hk/2(T1 + T2 + T3 + T4)
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where

T1 =h−1/20

T2 =d−1/4 when ri > h8/9 for all i
=0 otherwise

T3 =s−1/2 when ri > h8/9 for all i and r1 = r2

=0 otherwise

T4 =

 1
r1r2sh2 ∑

1≤τ≤t
(τ,t)=1

F
( ||r′1sτ/t||

r′1s

)2

F
( ||r′2sτ/t||

r′2s

)2


1/2

when h8/9 < ri ≤ h2 for i = 1, 2, and t > d1/2, d ≤ h5/9

=0 otherwise.

In the interest of time and clarity, I’ll omit the proof of this lemma, but let’s see how it
helps us. Again, we are considering

Vk(q; h)�∑
r|q

∑
ri>1

[r1,...,rk]=r

S(~r)
φ(r1) · · · φ(rk)

,

with

S(~r) = ∑
1≤ai≤ri
(ai,ri)=1

∑ ai/ri∈Z

F(a1/r1) · · · F(ak/rk).

Consider a fixed k-tuple~r = (r1, . . . , rk) with ri > 1, [r1, . . . , rk] = r, and each prime divisor
of r divides at least two ri’s. Now we want to apply Lemma 2.5, but we can choose how to
label the ri’s in the application of the lemma; this choice will crucially fail if the ri’s are all
equal in pairs.

If ri ≤ h8/9 for any i, then we automatically have S(~r) � r1 · · · rkr−1hk/2−1/20, which
is plenty, so we are done. Assume that ri > h8/9 for all i, and let dij = (ri, rj). Note that
ri|∏j 6=i rj, so ri|∏j 6=i dij. Thus for each i, there must be some j so that

dij ≥ h8/(9k−9).

If there is a pair (i, j) so that this is the case but di 6= dj, we take these to be r1, r2. Now
suppose that we only have dij ≥ h8/(9k−9) when ri = rj. Thus in particular for every i, there
exists rj with ri = rj, so there exists a triple (ri, rj, r`). In this case, let r1 = ri and r2 = rj.
Note also that this argument also applies when k is even, as long as we’re not specifically
in the case when the ri’s are equal in pairs.
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Returning to Vk(q; h), we have as before that

Vk(q; h)�∑
r|q

∑
ri>1

[r1,...,rk]=r

S(~r)
φ(r1) · · · φ(rk)

� hk/2 ∑
r|q

1
r ∑

ri>1

r1 · · · rk
φ(r1) · · · φ(rk)

(T1 + T2 + T3 + T4),

with T1, T2, T3, T4 as in the Lemma. By the Lemma, T1 = h1/20. We’ve chosen r1 and r2 so
that when T2 is nonzero, we have T2 = d−1/4 with d ≥ h8/(9k−9), and thus T2 � h−2/(9k−9).

As for T3, for the terms when T3 is nonzero, we have r1 = r2. By our choice of r1 and
r2, this means that there exists another r` with r` = r1 = r2. Thus in particular when we
decompose d = (r1, r2) as d = st, with s|r3 · · · rk and (t, r3 · · · rk) = 1, we get that s = r1 as
well, so s > h8/9. Thus T3 � h−4/9.

In particular, T1 + T2 + T3 � h−2/(9k−9). Thus if we only consider the contributions
from T1, T2, and T3, we get

hk/2 ∑
r|q

1
r ∑

ri>1

r1 · · · rk
φ(r1) · · · φ(rk)

(T1 + T2 + T3)� hk/2−2/(9k−9) ∑
r|q

1
r ∑

ri>1

r1 · · · rk
φ(r1) · · · φ(rk)

= hk/2−2/(9k−9) ∏
p|q

(
1 +

1
p

(
2 +

1
p− 1

)k
)

� hk/2−2/(9k−9) ∏
p|q

(
1 +

2k

p

)

� hk/2−2/(9k−9)

∏
p|q

p + 1
p

2k

� hk/2−2/(9k−9)
(

q
φ(q)

)2k

The term for T4 is dealt with separately in Montgomery-Vaughan. It’s a bit complicated
and I felt not so enlightening, so here we’ll just cite the following fact from Montgomery
and Vaughan, which uses Cauchy-Schwarz as well as some results on sums of F(x).

Fact 2.6.

hk/2 ∑
r|q

1
r ∑

ri>1

r1 · · · rk
φ(r1) · · · φ(rk)

T4 � hk/2−1/(7k)
(

φ(q)
q

)−2k−k/2

This constraint is stricter than that on the (T1 + T2 + T3) term, giving in total that

Vk(q; h)� hk/2−1/(7k)
(

φ(q)
q

)−2k−k/2

,

as desired.
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One important note about this is that the argument for T4 also carries through in the
case where k is even. In fact, the entire argument does, with the exception of the “diagonal”
termswhen the ri’s are equal in pairs, which we had to avoid in the treatment of T3.

2.2. When k is even: diagonal terms. In order to understand the even k case, as we’ve
seen, we need to understand specifically the terms with the ri’s equal in pairs and otherwise

distinct, since as we’ve seen, all other terms contribute at most hk/2−1/(7k)
(

φ(q)
q

)−2k−k/2
.

There are (k− 1)(k− 3) · · · 3 · 1 = µk ways for the ri’s to be paired up. Let’s take the
pairing to be ri = rk/2+i, and set bi = ai + ak/2+i. So these terms are precisely given by

µk ∑
r1 6=... 6=rk/2|q

k/2

∏
i=1

µ(ri)
2

φ(ri)2 ∑
b1,...,bk/2
1≤bi≤ri

∑ bi/ri∈Z

k/2

∏
i=1

J(bi, ri)

As we’ve seen, the terms where the ri are not distinct contribute to smaller order. This
means that we may as well sum over all values ri, without worrying about distinctness,
since it won’t affect the answer.

For each value of bi, we need to take into account all of the possible decompositions into
ai + ai+k/2, both of which are relatively prime to ri. This is exactly what J(bi, ri) does. In
particular, we have

J(b, r) =
r

∑
a=1

(a,r)=1
(b−a,r)=1

E
( a

r

)
E
(

b− a
r

)

Let’s recall from way back when our expression for V2(q; h), the second moment, and
see how we can relate it to J-functions. Specifically,

V2(q; h) = ∑
1<d|q

µ(d)2

φ(d)2

d

∑
a=1

(a,d)=1

|E(a/d)|2 = ∑
1<d|q

µ(d)2

φ(d)2 J(d, d)

So now in our expression for these terms, whenever we have bi = ri, we get a factor of
V2(q; h). Let’s see what we get by factoring those out. We’ll assume that bi < ri for exactly
j values of the i available, and that bi = ri for the remaining k/2− j values. Then we get
that the terms under consideration are

µk ∑
r1,...,rk/2|q

k/2

∏
i=1

µ(ri)
2

φ(ri)2 ∑
b1,...,bk/2
1≤bi≤ri

∑ bi/ri∈Z

k/2

∏
i=1

J(bi, ri) = µk

k/2

∑
j=0

(
k/2

j

)
V2(q; h)k/2−jWj(q; h),

with W0(q; h) = 1 and

Wj(q; h) = ∑
1<r1,...,rj|q

j

∏
i=1

µ(ri)
2

φ(ri)2 ∑
b1,...,bj

0<bi<ri
∑ bi/ri∈Z

j

∏
i=1

J(bi, ri)
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Our goal was to show that the main term is precisely the term when j = 0, which is
µkV2(q; h)k/2. So we need only show that the other terms are smaller.

Using the fact that |E(α)| ≤ F(α) = min(h, 1/||α||), one can derive the following bound
on sums of J(b, r):
Fact 2.7.

∑
0<b<r

J(b, r)2 � r3 min(r, h).

At this point we’re in a position to apply something like the Fundamental Lemma
that was necessary in the odd case as well; broadly, a bound on Wj(q; h) it is a bound
on a sum of a product of functions to C. In fact we’ll use the following variant from
Montgomery-Soundararajan.

Lemma 2.8. Let r1, . . . , rk be squarefree integers with ri > 1, and let d = [r1, . . . , rk]. Let
G : (0, 1)→ C be a function and let G0 be a non-decreasing function on the positive integers with

r−1

∑
a=1
|G(a/r)|2 ≤ rG0(r)

for all squarefree integers r > 1. Then∣∣∣∣∣∣∣∣∣∣
∑

a1,...,ak
0<ai<ri

∑ ai/ri∈Z

k

∏
i=1

G(ai/ri)

∣∣∣∣∣∣∣∣∣∣
≤ 1

d

k

∏
i=1

riG0(ri)
1/2.

Again here, I won’t discuss the proof, but it relies on the previous Fundamental Lemma,
whose proof in turn relied on repeated applications of Cauchy-Schwarz.

Taking G0(r) = Chr2 in the Lemma, we can apply it to the J functions, via

∑
b1,...,bj

0<bi<ri
∑ bi/ri∈Z

j

∏
i=1

J(bi, ri)�
1
d

j

∏
i=1

r2
i h1/2,

so

Wj(q; h) = ∑
1<r1,...,rj|q

j

∏
i=1

µ(ri)
2

φ(ri)2 ∑
b1,...,bj

0<bi<ri
∑ bi/ri∈Z

j

∏
i=1

J(bi, ri)

� hj/2 ∑
d|q

1
d

∑
r|d

µ(r)2r2

φ(r)2

j

= hj/2 ∏
p|q

(
1 +

1
p

(
1 +

p2

(p− 1)2

)j)

� hj/2
(

q
φ(q)

)2j

.
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Meanwhile, we can bound V2(q; h) in these terms via

V2(q; h) ≤∑
d|q

µ(d)2

φ(d)2

d−1

∑
a=1

F(a/d)2

� h ∑
d|q

µ(d)2d
φ(d)2

= h ∏
p|q

(
1 +

p
(p− 1)2

)
� h

q
φ(q)

.

Thus we get that these diagonal terms add to

µk

k/2

∑
j=0

(
k/2

j

)
V2(q; h)k/2−jWj(q; h)

= µkV2(q; h)k/2 + O

(
k/2

∑
j=1

(
k/2

j

)
V2(q; h)k/2−jWj(q; h)

)

= µkV2(q; h)k/2 + O

(
k/2

∑
j=2

(
k/2

j

)
hk/2−j

(
q

φ(q)

)k/2−j
hj/2

(
q

φ(q)

)2j)

= µkV2(q; h)k/2 + O

(
hk/2−1

(
q

φ(q)

)2k/2)
,

which is finally exactly what we wanted!

3. THE DISTRIBUTION OF PRIMES

Now we’d like to get from the world of reduced residues mod q to the world of primes;
we will outline the connection in broad strokes.

We’d like to study the moments of ψ(x + h)− ψ(x)− h when xδ ≤ h ≤ x1−δ. In order
to study these delicate moments, we’ll consider a shifted von Mangoldt function (and
correspondingly shifted singular series). In particular let Λ0(n) = Λ(n)− 1, so that

ψ(x + h)− ψ(x)− h = ∑
x<n≤x+h

Λ0(n)

We can state the Hardy-Littlewood prime k-tuple conjecture in terms of this shifted von
Mangoldt function:

Conjecture 3.1 (Hardy-Littlewood k-tuples).

∑
n≤x

k

∏
i=1

Λ0(n + di) = (S0(D) + o(1))x

as x → ∞.

Here we have

S0(D) = ∑
J⊆D

(−1)cardJS(J ) and S(D) = ∑
J⊆D

S0(J ),
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where S(D) = ∏p
1−νp(D)
(1−1/p)k is the singular series. Both of these have series representations;

we’ll work with S0, and we will use the expression

S0(D) = ∑
1<q1,...,qk<∞

(
k

∏
i=1

µ(qi)

φ(qi)

)
∑

a1,...,ak
1≤ai≤qi
(ai,qi)=1

∑ ai/qi∈Z

e

(
k

∑
i=1

aidi

qi

)

The crucial result on the way to a result about moments of primes (dependent on
Hardy-Littlewood) is a result about averaging S0(D) over bounded sets D. We define

Rk(h) = ∑
d1,...,dk
1≤di≤h

di distinct

S0(D)

Montgomery and Soundararajan prove the following.

Theorem 3.2. For h > 1,

Rk(h) = µk(−h log h + Ah)k/2 + Ok(hk/2−1/(7k)+ε)

for any nonnegative integer k, where A = 2− γ− log 2π.

Leaving out many details, we’ll present a sketch of the argument here. The first goal
is to restrict the outer sum in S0(D) to only terms with only small prime factors. Let
Q = ∏p≤hk+1 p. Using a lemma of Hardy and Littlewood, one can argue that

Rk(h) = ∑
d1,...,dk
1≤di≤h

di distinct

∑
1<q1,...,qk|Q

(
k

∏
i=1

µ(qi)

φ(qi)

)
∑

a1,...,ak
1≤ai≤qi
(ai,qi)=1

∑ ai/qi∈Z

e

(
k

∑
i=1

diai

qi

)
+ O(1),

where the only change here is that we require qi|Q, and in return gain an O(1) error.
Now in fact, the main term would be exactly Vk(Q; h) if only we were not requiring that

the di’s be distinct, so the main obstruction is finding something that we can work with
that doesn’t have this distinctness condition. After quite a bit of work, Montgomery and
Soundararajan arrive at

Rk(h) = ∑
0≤j≤k/2

(
k
2j

)
(2j)!
j!2j

−h ∑
d|Q
d>1

µ(d)2

φ(d)


j

Vk−2j(Q; h) + O(h(k−1)/2+ε).



10 VIVIAN KUPERBERG

Now, if k is odd, then so is k− 2j, so every term in this expression will be small. If k is
even, the main term is

∑
0≤j≤k/2

(
k
2j

)
(2j)!
j!2j

−h ∑
1<d|Q

µ(d)2

φ(d)

j

µk−2jV2(q; h)k/2−j

= µk

V2(Q; h)− h ∑
1<d|Q

µ(d)2

φ(d)

k/2

,

where this is not an obvious step, but is derived from the binomial theorem. The last step
is the following lemma concerning the size of V2(Q; h):

Lemma 3.3.

V2(Q; h)− h ∑
1<d|Q

µ(d)2

φ(d)
= −h log h + (2− γ− log 2π)h + O(h1/2+ε).

This precisely gives us that for k even, we have

Rk(h) = µk(−h log h + (2− γ− log 2π)h)k/2 + O(h(k−1)/2+ε).

Now, there’s still a question of connecting this to a true result about the distribution of
primes, rather than a result about sums of singular series. We’ll briefly see how this ties in.
We have (log N)1+δ ≤ h ≤ N1−δ and want to evaluate

1
N ∑

n≤N
(ψ(n + h)− ψ(n)− h)r = ∑

d1,...,dr≤h

1
N ∑

n≤N
Λ0(n + d1) · · ·Λ0(n + dr).

After a little combinatorics, this can be written as
r

∑
k=1

∑
m1,...,mk≥1

∑ mi=r

(
r

m1, . . . , mk

)
1
k! ∑

h1,...,hk≤h
hj distinct

1
N

N

∑
n=1

k

∏
i=1

Λ0(n + hi)
mi .

There are two different scenarios here: either mi = 1 or mi > 1. Let I ⊆ {1, . . . , k} be the
subset of indices such that mi = 1 precisely for i ∈ I . If i 6∈ I , we think of Λ0(n + hi) as
being essentially (log N)mi−1Λ(n+ hi), since both quantities have about the same expected
value, namely (log N)mi−1. This is unlike the case when mi = 1, where the expected value
of Λ(n + hi) is 1, but that of Λ0 is 0. So the inner sum above is close to

(log N)r−k

N

N

∑
n=1

∏
i∈I

Λ0(n + hi) ∏
1≤i≤k

i 6∈I

(Λ0(n + hi) + 1)

=
(log N)r−k

N ∑
I⊆J⊆{1,...,k}

N

∑
n=1

∏
j∈J

Λ0(n + hj)

At this point we’re at a place where invoking our effective version of Hardy-Littlewood for
this product over j ∈ J is helpful; it is then summed over the hi’s, which further allows us
to invoke our estimate for Rk(h). This ultimately yields the following theorem:
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Theorem 3.4. Let Ek(x;D) be given by

∑
n≤x

k

∏
i=1

Λ(n + di) = S(D)x + Ek(x;D),

and suppose that Ek(x;D)� N1/2+ε uniformly for 1 ≤ k ≤ K, 0 ≤ x ≤ N, and distinct di with
1 ≤ di ≤ H. Then

MK(N; H) =
N

∑
n=1

(ψ(n + H)− ψ(n)− H)K

= µK HK/2
∫ N

1
(log x/H + B)K/2dx

+ O

(
N(log N)K/2HK/2

(
H

log N

)−1/(8K)
+ HK N1/2+ε

)
uniformly for log N ≤ H ≤ N1/K, where B = 1− γ− log 2π.
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