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1. ROTH’S THEOREM, CLASSICALLY

I’ll be presenting a paper of Bloom and Sisask, [2] which provides a new proof of Roth’s
theorem on 3-term arithmetic progressions. Their proof uses an almost periodicity argument
in physical space, rather than relying on Fourier analysis, as many previous proofs have
done. Crucially, it also gives a very good bound, decreasing the minimum density of a
subset of [1, N] in order to see arithmetic progressions to (log N)−1+o(1).

Let’s start by stating (a version of) Roth’s theorem and outlining the proof, largely
following [4].

Theorem 1.1 (Roth, 1953). There exists a positive constant C so that if A ⊂ [1, N] with |A| ≥
CN/ log log N, then A has a non-trivial three term arithmetic progression.

In other words, if A has no nontrivial three-term arithmetic progressions, then |A| �
N/ log log N.

Let A ⊂ [1, N] with |A| = αN. Broadly, the proof will proceed along these lines. Either
A is in some sense unstructured, in which case there will be many non-trivial 3APs, or A
doesn’t. In the latter case we’ll identify some structure of A which will allow us to find
a subset of N on which A has a bit higher density; this step is called a density increment.
Iterating the density increment enough times will ultimately yield a subset on which A
has very high density, and then it will be easy to find a 3AP.

Many things in that outline were vague, but let’s start with the question of “having
structure.” Historically, this has been done using Fourier analysis.

Let B be the set of either odd or even terms in A, whichever is larger. Let 1A be the
characteristic function of A, and 1B that of B. With

f̂ (r) = ∑
n

f (n)e
(
−rn

N

)
,

we have

1
N ∑

r (mod N)

1̂B(r)21̂A(−2r) = #{x + y = 2z (mod N) : x, y ∈ B, z ∈ A}.

Some of these will be trivial, i.e. with x = y = z, so the number of non-trivial 3APs is

1
N ∑

r (mod N)

1̂B(r)21̂A(−2r)− |B| = |A||B|
2

N
− |B|+ 1

N ∑
r 6=0

1̂B(r)21̂A(−2r).
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If 1A has no large Fourier coefficients, i.e. for all r 6= 0 we have |1̂A(r)| ≤ α2N/4, then
this can be used to directly bound

1
N

∣∣∣∣∣∑r 6=0
1̂B(r)21̂A(−2r)

∣∣∣∣∣ ≤ α2

4 ∑
r
|1̂B(r)|2 =

α2

4
N|B| ≤ |A||B|

2

2N
.

Thus, using the triangle inequality with our formula for the number of non-trivial 3APs,
we can see that there will be many non-trivial 3APs.

The “structured” case is then the case when |1̂A(r)| ≥ α2N/4 for some r. In this case
the goal is to perform a density increment. We’ll fix two parameters M and Q, which will
depend on N. By Dirichlet’s theorem on rational approximation, there exists some b/q
with q ≤ Q, (b, q) = 1, such that |r/N − b/q| ≤ 1

qQ .
We divide [1, N] into progressions (mod q), and subdivide each progression into M

intervals. These qM intervals, each with N/(qM) + O(1) elements, are the subsets we’ll
consider; we’ll show that A has high density on one of these intervals.

The benefit of the intervals as we’ve chosen them is that e(ar/N) changes very little on
a typical interval. In particular, e(ar/N) = e(ab/q + aθ) with |θ| ≤ 1/qQ. Since elements
of an interval lie in the same progression (mod q), e(ab/q) is constant. The variation in
e(aθ) is at most O(N|θ|/M) = O(N/(qQM)).

Since |1̂A(r)| ≥ α2N/2, ∣∣∣∣∣ N

∑
a=1

(1A(a)− α)e(ar/N)

∣∣∣∣∣ ≥ α2

2
N.

After some computation with splitting this sum up in terms of the intervals I above, this
implies

α2N
2
≤∑

I

∣∣∣∣∣∑a∈I
(1A(a)− α)

∣∣∣∣∣+ O
(

N2

qQM

)
.

Since
0 = ∑

I
∑
a∈I

(1A(a)− α),

there must be an interval I with

∑
a∈I

(1A(a)− α) ≥ α2N
8qM

,

and appropriate choice of Q and M here, specifically Q =
√

N and M = C
√

N/(qα2) for
large C, the relative density of A within I is at least α + α2/16.

The idea is then to dilate and translate I, which preserves 3APs, and then iterate the
argument applied to I. In the end for this to work, we need α > C/ log log N.

2. HISTORICAL IMPROVEMENTS AND BLOOM AND SISASK’S RESULT

The main area of improvement has been to decrease the lower bound on the density α.
If R(N) is the size of the largest subset of {1, . . . , N} with no non-trivial 3AP, we’d like a
better upper bound for R(N). The history of the best known upper bounds is below [1]:
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Result R(N)
Roth [1953] N/ log log N

Szemerédi [1990], Heath-Brown [1987] N/(log N)c for some c > 0
Bourgain [1999] (log log N)1/2N/(log N)1/2

Bourgain [2008] (log log N)2N/(log N)2/3

Sanders [2012] N/(log N)3/4−o(1)

Sanders [2011] (log log N)6N/ log N
Bloom [2016] (log log N)4N/ log N

Our goal here is to prove that R(N) � N/(log N)1−o(1). The approach will be using
an almost-periodicity result, with very little Fourier analysis. We will not worry about
optimizing the precise power of log log N, but it is worth noting that this technique can
give (log log N)7N/ log N but does not directly give a result better than Bloom [2016].

The main theorem is the following, somewhat more general result.

Theorem 2.1. Let G be a finite abelian group of odd order, and let A ⊆ G be a set of density α > 0.
Let T(A) be the number of 3APs in A; then

T(A) ≥ exp(−Cα−1(log 2/α)C)|A|2,

for C > 0 an absolute constant.

In this case setting α ≥ (C + 1)(log log |G|)C/ log |G|, say, gives that T(A) > |A|. Note
also that this subsumes our goal by embedding A ⊆ {1, . . . , N} into Z/(2N + 1)Z, say.

We’ll start by looking at the finite field case in a fair amount of detail to see how these
arguments work, and then talk about how to generalize.

3. NOTATION AND NORMALIZATION

For a subset A ⊆ G, we will write 1A for the indicator function of A, and µA for the
function 1A/|A|. We will use a discretely normalized Haar measure on G, so that

f ∗ g(x) = ∑
y∈G

f (y)g(x− y),

and
〈 f , g〉 = ∑

y∈G
f (y)g(y).

The Lp norm is defined as usual, with

|| f ||pp =
1
|G| ∑

y∈G
| f (y)|p.

We will also make use of Hölder’s inequality for convolutions, specifically that if 1
p +

1
q = 1,

then
|| f ∗ g||∞ ≤ |G||| f ||p||g||q.

Note that for A, B ⊆ G,

1A ∗ µB(x) = Et∈B1A(x− t) =
1
|B| ∑t∈B

1A(x− t),
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and the number of 3APs in A is

T(A) = ∑
x+z=2y

1A(x)1A(y)1A(z) = ∑
x∈G

1A ∗ 1A(x)12·A(x) = 〈1A ∗ 1A, 12·A〉.

4. A NEW KIND OF DENSITY INCREMENT: FINITE FIELD CASE

For the following section, we will set G = Fn
q , for Fq a finite field. We’ll get the following

theorem with relatively few technical hurdles; in the next section, we’ll see how this
argument needs to be adjusted to apply to other cases.

Theorem 4.1. Let A ⊆ Fn
q be a subset with density α and T(A) ≤ α

2 |A|2. Then there is a
subspace V with codimension� (log(2/α))Cα−1 such that ||1A ∗ µV ||∞ ≥ 5

4 α.

The conclusion is saying that there exists some x with (x + A) ∩V having density ≥ 5
4 α

in V, which gives us a subspace that we can pass to and iterate. In other words, this is
precisely a density increment.

We’ve said that we’ll rely on almost-periodicity, so let’s state the almost-periodicity
result that we use.

Theorem 4.2 (Lp almost periodicity). Let p ≥ 2 and ε ∈ (0, 1). Let G = Fn
q be a vector space

over a finite field, with A ⊆ G a subset with |A| ≥ α|G|. Then there is a subspace V ≤ G of
codimension

d� pε−2 log(2/ε)2 log(2/α)

so that
||µA ∗ 1A ∗ µV − µA ∗ 1A||p ≤ ε||µA ∗ 1A||1/2

p/2 + ε2.

To unpack this just a bit, note that µA ∗ 1A ∗ µV is the average over elements t ∈ V of
µA ∗ 1A(·+ t). The proof shows that µA ∗ 1A is “close” to translates via elements of V in
the sense that its Lp norm is bounded, which means that the same holds for the average.

We now proceed with the proof of Theorem 4.1. We’ll split into two cases: the first,
when ||µA ∗ 1A||2m is small for some large m, and the second where ||µA ∗ 1A||2m is large
for some large m.

4.1. Case 1: ||µA ∗ 1A||2m is small for some m.

Lemma 4.3. Let A ⊆ G = Fn
q with density α and T(A) ≤ α

2 |A|2. If m� log(2/α) with

||µA ∗ 1A||2m ≤ 10α,

then there is a subspace V with codimension� (log 2/α)Cmα−1 with ||1A ∗ µV ||∞ ≥ 5
4 α.

Proof. Apply Theorem 4.2 with p = 4m and ε = α1/2/100. This yields a subspace V of
codimension d� 400m/α log(200/α1/2)2 log(2/α)� (log(2/α))Cmα−1 with

||µA ∗ 1A ∗ µV − µA ∗ 1A||4m ≤ ε||µA ∗ 1A||1/2
2m + ε2

≤ α

100

(
α−1/2||µA ∗ 1A||1/2

2m + 1
)
≤ α/8.

Let r be such that 1/r + 1/4m = 1; by Hölder’s inequality,

||µA ∗ 1A ∗ 1−2·A ∗ µV − µA ∗ 1A ∗ 1−2·A||∞ ≤ |G|||1−2·A||r||µA ∗ 1A ∗ µV − µA ∗ 1A||4m

≤ |G|(α1/r)(α/8) = |G|α2−1/4m/8 ≤ |G|α2/4.
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Let’s compare the values at 0, which by the above differ by at most |G|α2/4. We assumed
that T(A) ≤ α

2 |A|2. Since T(A) = 〈1A ∗ 1A, 12·A〉, we have:

〈1A ∗ 1A, 12·A〉 ≤
α

2
|A|2

⇒1A ∗ 1A ∗ 1−2·A(0) ≤
α

2
|A|2

⇒µA ∗ 1A ∗ 1−2·A(0) ≤
α

2
|A| = α2

2
|G|.

Using this with our L∞ bound and the triangle inequality gives

µA ∗ 1A ∗ 1−2·A ∗ µV(0) ≤
α2

4
|G|+ α2

2
|G|

⇒1A ∗ 1A ∗ 1−2·A ∗ µV(0) ≤ |A||G|
3α2

4
=

3
4

α3|G|2.

We’d still like to convert this upper bound into a lower bound for ||1A ∗ µV ||∞. Assume
that ||1A ∗ µV ||∞ ≤ (1+ c)α, and let f (x) = (1+ c)−1α−11A ∗ µV(x). Note that 0 ≤ f (x) ≤
1, and that

|| f ||1 =
(1 + c)−1α−1

|G| ∑
y∈G

1A ∗ µV(y)

=
(1 + c)−1α−1

|G| ∑
z∈G

1A(z)

(
∑

y∈G
µV(y− z)

)

=
(1 + c)−1α−1

|G| ∑
z∈G

1A(z)

=
(1 + c)−1α−1

|G| |A| = (1 + c)−1.

Thus considering (1− f ) ∗ (1− f ), we get

0 ≤ (1− f ) ∗ (1− f ) = f ∗ f − 2|G||| f ||1 + |G| = (1 + c)−2α−21A ∗ 1A ∗ µV −
1− c
1 + c

|G|.

In particular, this implies that

(1− c2)α2|G| ≤ 1A ∗ 1A ∗ µV(x)

for all x, so taking the inner product with 12·A implies

(1− c2)α2|G||A| = (1− c2)α3|G|2 ≤ 〈1A ∗ 1A ∗ µV , 12·A〉 ≤
3
4

α3|G|2,

so choosing c = 1/4 gives a contradiction, which in turn implies that ||1A ∗ µV ||∞ >
5
4 α. �

4.2. Case 2: ||µA ∗ 1A||2m is large for some m. We’ll now turn to address the case when
one of the L2m norms is large; this case is in fact a more direct application of Theorem 4.2.

Lemma 4.4. Assume that ||µA ∗ 1A||2m ≥ 10α. Then there is a subspace V of codimension
� (log(2/α))Cmα−1 such that ||1A ∗ µV ||∞ ≥ 5α.



6 VIVIAN KUPERBERG

Proof. Again, we’ll start by applying Theorem 4.2, but in this case with p = 2m. Again we
use ε = α1/2/100. Theorem 4.2 yields a subspace V of codimension

d� (200m/α) log(200/α1/2)2 log(2/α)� (log(2/α))Cmα−1.

The subspace V satisfies

||µA ∗ 1A ∗ µV − µA ∗ 1A||2m ≤
α

100

(
α−1/2||µA ∗ 1A||1/2

m + 1
)

.

By the triangle inequality,

||µA ∗ 1A ∗ µV ||2m ≥ ||µA ∗ 1A||2m −
α

100

(
α−1/2||µA ∗ 1A||1/2

m + 1
)

.

Since for f ≥ 0 we have | f ||p ≤ || f ||q whenever p ≤ q, we can replace ||µA ∗ 1A||m above
with ||µA ∗ 1A||2m to get

||µA ∗ 1A ∗ µV ||2m ≥ ||µA ∗ 1A||2m −
α

100

(
α−1/2||µA ∗ 1A||1/2

2m + 1
)

.

However, ||µA ∗ 1A||2m ≥ 10α. Considering the above as a function of x = ||µA ∗ 1A||1/2
2m ,

specifically f (x) = x2 −
√

α
100 x − α

100 , the minimum of f (x) is at x =
√

α
200 <

√
10α, so the

smallest value of f (x) among x ≥
√

10α is when x =
√

10α. Plugging this in shows that

||µA ∗ 1A ∗ µV ||∞ ≥ 5α,

say, where 5 is not chosen particularly carefully.
Thus

||1A ∗ µV ||∞ ≥ ||µA ∗ 1A ∗ µV ||∞ ≥ ||µA ∗ 1A ∗ µV ||2m ≥ 5α,

which is the desired density increment. �

So now we have the density increment that we wanted; these two cases imply Theorem
4.1.

These lower bounds on ||1A ∗ µV ||∞ show that some translate of A has higher density,
since

||1A ∗ µV ||∞ = max
t∈G

∑
y∈G

1A(y)µV(t− y) = max
t∈G

1
|V| (|(t− A) ∩V|) .

Let’s briefly see how this gives the precise statement of Theorem 2.1. Translating A still
preserves three-term arithmetic progressions, so at every step we either have a subspace V
so that some translate t + A of A has ≥ α

2 |(t + A) ∩V|2, or we can find a further subspace
of V with increased density. The first question is, how many subspaces do we need to
take?

If k ≥ log(1/α)
log(5/4) , then 1 <

(5
4

)k
α, so the number of iterations can’t be more than �

C(log(1/α)). At that point, we have a subspace of Fn
q of codimension� k log(2/α)Cα−1 �

(log(2/α)Cα−1, where the Cs are not necessarily equal but are each absolute constants.
Thus we must have a subspace V of codimension� (log(2/α))Cα−1 with

T((t + A) ∩V) ≥ α

2
|(t + A) ∩V|2,
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where |(t + A) ∩V| ≥ α|V|. Thus

T(A) ≥ T((t + A) ∩V)

≥ α

2
α|V|2

=
α

2
|A|2q−codim(V)

=
α

2
|A|2exp(−C(log(2/α))Cα−1)

= |A|2exp(−C(log(2/α))Cα−1 − log(2/α)),

but the log(2/α) is of smaller order, so for appropriate choice of constants it can be omitted.
This is exactly the desired statement!

4.3. A few notes about the transition. I won’t go into detail about the general case (or
even the integer case), but I do want to mention an important ingredient that allows these
same ideas to work in greater generality. Specifically, we frequently and crucially passed
to subspaces in the vector space case; in general, we need a different kind of structure that
we can pass to. This is accomplished by defining Bohr sets.

Definition 4.5. Let G be a finite abelian group and let Ĝ = {γ : G → C×} be the dual
group of G. For a subset Γ ⊆ Ĝ and a constant ρ ≥ 0, the Bohr set corresponding to Γ and ρ
is defined as

Bohr(Γ, ρ) = {x ∈ G : |γ(x)− 1| ≤ ρ ∀γ ∈ Γ}.

In the vector space case, the dual group is the group of linear functionals, and subspaces
and their translates are Bohr sets with ρ = 0. For arbitrary G, one can prove Lp-almost-
periodicity results relative to Bohr sets instead of to subspaces, and then follow a similar
argument to the above to yield a density increment.

5. BACKGROUND ON ALMOST-PERIODICITY

At various times we crucially used Proposition 4.2, so let’s talk a bit about what goes
into proving it. We will prove Proposition 3.1 from [3] , which has a somewhat different
statement; the biggest difference being that it only addresses L2 almost-periodicity, rather
than Lp. However, the proof still contains many of the same ideas.

Proposition 5.1 (L2-almost-periodicity, left-translates). Let G be an abelian group, let A, B ⊆
G be finite subsets, and fix a parameter ε ∈ (0, 1). Let S ⊆ G be a subset such that |S+ A| ≤ K|A|.
Then there is a set T ⊆ −S of size

|T| ≥ |S|
(2K)9/ε2

such that for all t ∈ T − T,

||1A ∗ 1B(·+ t)− 1A ∗ 1B||22 ≤ ε2|A|2|B|.

Proof. Let k be an integer with 1 ≤ k ≤ |A|/2; we will fix k later. Let C ⊆ A be a
subset of size |C| = k, which we choose uniformly randomly out of all such sets. All
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expectations and probabilities to come, if unspecified, will be over this distribution. Write
νC = 1C · |A|/k; then for all x ∈ G,

EνC ∗ 1B(x) =
(
|A|
k

)−1

∑
C⊆A

|A|
k

1C ∗ 1B(x)

=

(
|A|
k

)−1 |A|
k

(
|A| − 1
k− 1

)
∑

y∈G
1A(y)1B(x− y)

= 1A ∗ 1B(x).

We also consider the variance

Var(νC ∗ 1B(x)) = EC|νC ∗ 1B(x)− 1A ∗ 1B(x)|2,

where again the expectation is taken over the choice of set C. The variance satisfies

Var(νC ∗ 1B(x)) ≤ |A|
k

1A ∗ 1B(x).

We can then sum this inequality over all x ∈ A + B, since A + B is the support of 1A ∗ 1B.
This gives

EC||νC ∗ 1B − 1A ∗ 1B||22 ≤ |A|2|B|/k.
We say that C approximates A if

||νC ∗ 1B − 1A ∗ 1B||22 ≤ 2|A|2|B|/k.

By the expectation bound and Markov’s inequality,

PC(C approximates A) ≥ 1/2.

Now let Y = S + A and let t ∈ −S, so that A ⊆ tY. Then

PC∈(Y
k)
(tC approximates A) = PC∈(tY

k )
(C approximates A)

≥ PC∈(tY
k )
(C ⊆ A)PC∈(A

k )
(C approximates A)

≥
(
|A|
k

)(
|S + A|

k

)−1 1
2

≥ 1
(2K)k ,

the last step using the hypothesis that |S + A| ≤ K|A|. Summing this over all t ∈ −S gives

EC∈(Y
k)
|{t ∈ −S : tC approximates A}| ≥ |S|

(2K)k .

So, there exists some set C which is above average, i.e. for which the size of T = {t ∈ −S :
tC approximates A} is at least |S|/(2K)k. For this C, we have

||µC ∗ 1B − 1A ∗ 1B(·+ t)||22 ≤ 2|A|2|B|/k

for all t ∈ T, so by the triangle inequality, for all t ∈ T − T we have

||1A ∗ 1B(·+ t)− 1A ∗ 1B||22 ≤ 8|A|2|B|/k.

Fixing k = d8/ε2e completes the proof of the proposition. �
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The Lp version instead relies on higher moments of random variables that look like
1C ∗ 1B, which follow a hypergeometric distribution.
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