ROTH'S THEOREM: LOGARITHMIC BOUNDS VIA ALMOST-PERIODICITY

VIVIAN KUPERBERG

1. Roth's Theorem, Classically

I'll be presenting a paper of Bloom and Sisask, [2] which provides a new proof of Roth's theorem on 3-term arithmetic progressions. Their proof uses an almost periodicity argument in physical space, rather than relying on Fourier analysis, as many previous proofs have done. Crucially, it also gives a very good bound, decreasing the minimum density of a subset of $[1, N]$ in order to see arithmetic progressions to $(\log N)^{-1+o(1)}$.

Let's start by stating (a version of) Roth's theorem and outlining the proof, largely following [4].

Theorem 1.1 (Roth, 1953). There exists a positive constant C so that if $A \subset[1, N]$ with $|A| \geq$ $C N / \log \log N$, then A has a non-trivial three term arithmetic progression.

In other words, if A has no nontrivial three-term arithmetic progressions, then $|A| \ll$ $N / \log \log N$.

Let $A \subset[1, N]$ with $|A|=\alpha N$. Broadly, the proof will proceed along these lines. Either A is in some sense unstructured, in which case there will be many non-trivial 3APs, or A doesn't. In the latter case we'll identify some structure of A which will allow us to find a subset of N on which A has a bit higher density; this step is called a density increment. Iterating the density increment enough times will ultimately yield a subset on which A has very high density, and then it will be easy to find a 3AP.

Many things in that outline were vague, but let's start with the question of "having structure." Historically, this has been done using Fourier analysis.

Let B be the set of either odd or even terms in A, whichever is larger. Let $\mathbb{1}_{A}$ be the characteristic function of A, and $\mathbb{1}_{B}$ that of B. With

$$
\hat{f}(r)=\sum_{n} f(n) e\left(-\frac{r n}{N}\right)
$$

we have

$$
\frac{1}{N} \sum_{r} \sum_{(\bmod N)} \hat{\mathbb{}}_{B}(r)^{2} \hat{\mathbb{}}_{A}(-2 r)=\#\{x+y=2 z \quad(\bmod N): x, y \in B, z \in A\}
$$

Some of these will be trivial, i.e. with $x=y=z$, so the number of non-trivial 3APs is

$$
\frac{1}{N} \sum_{r(\bmod N)} \hat{\mathbb{1}}_{B}(r)^{2} \hat{\mathbb{}}_{A}(-2 r)-|B|=\frac{|A||B|^{2}}{N}-|B|+\frac{1}{N} \sum_{r \neq 0} \hat{\mathbb{1}}_{B}(r)^{2} \hat{\mathbb{1}}_{A}(-2 r) .
$$

If $\mathbb{1}_{A}$ has no large Fourier coefficients, i.e. for all $r \neq 0$ we have $\left|\hat{\mathbb{1}}_{A}(r)\right| \leq \alpha^{2} N / 4$, then this can be used to directly bound

$$
\frac{1}{N}\left|\sum_{r \neq 0} \hat{\mathbb{1}}_{B}(r)^{2} \hat{\mathbb{}}_{A}(-2 r)\right| \leq \frac{\alpha^{2}}{4} \sum_{r}\left|\hat{\mathbb{}}_{B}(r)\right|^{2}=\frac{\alpha^{2}}{4} N|B| \leq \frac{|A||B|^{2}}{2 N} .
$$

Thus, using the triangle inequality with our formula for the number of non-trivial 3APs, we can see that there will be many non-trivial 3APs.

The "structured" case is then the case when $\left|\hat{\mathbb{1}}_{A}(r)\right| \geq \alpha^{2} N / 4$ for some r. In this case the goal is to perform a density increment. We'll fix two parameters M and Q, which will depend on N. By Dirichlet's theorem on rational approximation, there exists some b / q with $q \leq Q,(b, q)=1$, such that $|r / N-b / q| \leq \frac{1}{q Q}$.

We divide $[1, N]$ into progressions $(\bmod q)$, and subdivide each progression into M intervals. These $q M$ intervals, each with $N /(q M)+O(1)$ elements, are the subsets we'll consider; we'll show that A has high density on one of these intervals.

The benefit of the intervals as we've chosen them is that $e(\operatorname{ar} / N)$ changes very little on a typical interval. In particular, $e(a r / N)=e(a b / q+a \theta)$ with $|\theta| \leq 1 / q Q$. Since elements of an interval lie in the same progression $(\bmod q), e(a b / q)$ is constant. The variation in $e(a \theta)$ is at most $O(N|\theta| / M)=O(N /(q Q M))$.

Since $\left|\hat{\mathbb{1}}_{A}(r)\right| \geq \alpha^{2} N / 2$,

$$
\left|\sum_{a=1}^{N}\left(\mathbb{1}_{A}(a)-\alpha\right) e(a r / N)\right| \geq \frac{\alpha^{2}}{2} N .
$$

After some computation with splitting this sum up in terms of the intervals I above, this implies

$$
\frac{\alpha^{2} N}{2} \leq \sum_{I}\left|\sum_{a \in I}\left(\mathbb{1}_{A}(a)-\alpha\right)\right|+O\left(\frac{N^{2}}{q Q M}\right)
$$

Since

$$
0=\sum_{I} \sum_{a \in I}\left(\mathbb{1}_{A}(a)-\alpha\right),
$$

there must be an interval I with

$$
\sum_{a \in I}\left(\mathbb{1}_{A}(a)-\alpha\right) \geq \frac{\alpha^{2} N}{8 q M}
$$

and appropriate choice of Q and M here, specifically $Q=\sqrt{N}$ and $M=C \sqrt{N} /\left(q \alpha^{2}\right)$ for large C, the relative density of A within I is at least $\alpha+\alpha^{2} / 16$.

The idea is then to dilate and translate I, which preserves 3APs, and then iterate the argument applied to I. In the end for this to work, we need $\alpha>C / \log \log N$.

2. Historical Improvements and Bloom and Sisask's result

The main area of improvement has been to decrease the lower bound on the density α. If $R(N)$ is the size of the largest subset of $\{1, \ldots, N\}$ with no non-trivial 3AP, we'd like a better upper bound for $R(N)$. The history of the best known upper bounds is below [1]:

Result	$R(N)$
Roth [1953]	$N / \log \log N$
Szemerédi [1990], Heath-Brown [1987]	$N /(\log N)^{c}$ for some $c>0$
Bourgain [1999]	$(\log \log N)^{1 / 2} N /(\log N)^{1 / 2}$
Bourgain [2008]	$(\log \log N)^{2} N /(\log N)^{2 / 3}$
Sanders [2012]	$N /(\log N)^{3 / 4-o(1)}$
Sanders [2011]	$(\log \log N)^{6} N / \log N$
Bloom [2016]	$(\log \log N)^{4} N / \log N$

Our goal here is to prove that $R(N) \ll N /(\log N)^{1-o(1)}$. The approach will be using an almost-periodicity result, with very little Fourier analysis. We will not worry about optimizing the precise power of $\log \log N$, but it is worth noting that this technique can give $(\log \log N)^{7} N / \log N$ but does not directly give a result better than Bloom [2016].

The main theorem is the following, somewhat more general result.
Theorem 2.1. Let G be a finite abelian group of odd order, and let $A \subseteq G$ be a set of density $\alpha>0$. Let $T(A)$ be the number of $3 A P s$ in A; then

$$
T(A) \geq \exp \left(-C \alpha^{-1}(\log 2 / \alpha)^{C}\right)|A|^{2}
$$

for $C>0$ an absolute constant.
In this case setting $\alpha \geq(C+1)(\log \log |G|)^{C} / \log |G|$, say, gives that $T(A)>|A|$. Note also that this subsumes our goal by embedding $A \subseteq\{1, \ldots, N\}$ into $\mathbb{Z} /(2 N+1) \mathbb{Z}$, say.

We'll start by looking at the finite field case in a fair amount of detail to see how these arguments work, and then talk about how to generalize.

3. Notation and Normalization

For a subset $A \subseteq G$, we will write $\mathbb{1}_{A}$ for the indicator function of A, and μ_{A} for the function $\mathbb{1}_{A} /|A|$. We will use a discretely normalized Haar measure on G, so that

$$
f * g(x)=\sum_{y \in G} f(y) g(x-y)
$$

and

$$
\langle f, g\rangle=\sum_{y \in G} f(y) \overline{g(y)}
$$

The L^{p} norm is defined as usual, with

$$
\|\left. f\right|_{p} ^{p}=\frac{1}{|G|} \sum_{y \in G}|f(y)|^{p}
$$

We will also make use of Hölder's inequality for convolutions, specifically that if $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\|f * g\|_{\infty} \leq|G|\|f\|_{p}\|g\|_{q} .
$$

Note that for $A, B \subseteq G$,

$$
\mathbb{1}_{A} * \mu_{B}(x)=\mathbb{E}_{t \in B} \mathbb{1}_{A}(x-t)=\frac{1}{|B|} \sum_{t \in B} \mathbb{1}_{A}(x-t)
$$

and the number of 3APs in A is

$$
T(A)=\sum_{x+z=2 y} \mathbb{1}_{A}(x) \mathbb{1}_{A}(y) \mathbb{1}_{A}(z)=\sum_{x \in G} \mathbb{1}_{A} * \mathbb{1}_{A}(x) \overline{\mathbb{1}_{2 \cdot A}(x)}=\left\langle\mathbb{1}_{A} * \mathbb{1}_{A}, \mathbb{1}_{2 \cdot A}\right\rangle
$$

4. A New Kind of Density Increment: Finite Field case

For the following section, we will set $G=\mathbb{F}_{q}^{n}$, for \mathbb{F}_{q} a finite field. We'll get the following theorem with relatively few technical hurdles; in the next section, we'll see how this argument needs to be adjusted to apply to other cases.
Theorem 4.1. Let $A \subseteq \mathbb{F}_{q}^{n}$ be a subset with density α and $T(A) \leq \frac{\alpha}{2}|A|^{2}$. Then there is a subspace V with codimension $\ll(\log (2 / \alpha))^{C} \alpha^{-1}$ such that $\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty} \geq \frac{5}{4} \alpha$.

The conclusion is saying that there exists some x with $(x+A) \cap V$ having density $\geq \frac{5}{4} \alpha$ in V, which gives us a subspace that we can pass to and iterate. In other words, this is precisely a density increment.

We've said that we'll rely on almost-periodicity, so let's state the almost-periodicity result that we use.

Theorem 4.2 (L^{p} almost periodicity). Let $p \geq 2$ and $\varepsilon \in(0,1)$. Let $G=\mathbb{F}_{q}^{n}$ be a vector space over a finite field, with $A \subseteq G$ a subset with $|A| \geq \alpha|G|$. Then there is a subspace $V \leq G$ of codimension

$$
d \ll p \varepsilon^{-2} \log (2 / \varepsilon)^{2} \log (2 / \alpha)
$$

so that

$$
\left\|\mu_{A} * \mathbb{1}_{A} * \mu_{V}-\mu_{A} * \mathbb{1}_{A}\right\|_{p} \leq \varepsilon\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{p / 2}^{1 / 2}+\varepsilon^{2}
$$

To unpack this just a bit, note that $\mu_{A} * \mathbb{1}_{A} * \mu_{V}$ is the average over elements $t \in V$ of $\mu_{A} * \mathbb{1}_{A}(\cdot+t)$. The proof shows that $\mu_{A} * \mathbb{1}_{A}$ is "close" to translates via elements of V in the sense that its L^{p} norm is bounded, which means that the same holds for the average.

We now proceed with the proof of Theorem 4.1. We'll split into two cases: the first, when $\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}$ is small for some large m, and the second where $\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}$ is large for some large m.

4.1. Case 1 : $\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}$ is small for some m.

Lemma 4.3. Let $A \subseteq G=\mathbb{F}_{q}^{n}$ with density α and $T(A) \leq \frac{\alpha}{2}|A|^{2}$. If $m \gg \log (2 / \alpha)$ with

$$
\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m} \leq 10 \alpha
$$

then there is a subspace V with codimension $\ll(\log 2 / \alpha)^{C} m \alpha^{-1}$ with $\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty} \geq \frac{5}{4} \alpha$.
Proof. Apply Theorem 4.2 with $p=4 m$ and $\varepsilon=\alpha^{1 / 2} / 100$. This yields a subspace V of codimension $d \ll 400 m / \alpha \log \left(200 / \alpha^{1 / 2}\right)^{2} \log (2 / \alpha) \ll(\log (2 / \alpha))^{C} m \alpha^{-1}$ with

$$
\begin{aligned}
\left\|\mu_{A} * \mathbb{1}_{A} * \mu_{V}-\mu_{A} * \mathbb{1}_{A}\right\|_{4 m} & \leq \varepsilon\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}^{1 / 2}+\varepsilon^{2} \\
& \leq \frac{\alpha}{100}\left(\alpha^{-1 / 2}\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}^{1 / 2}+1\right) \leq \alpha / 8
\end{aligned}
$$

Let r be such that $1 / r+1 / 4 m=1$; by Hölder's inequality,

$$
\begin{aligned}
\left\|\mu_{A} * \mathbb{1}_{A} * \mathbb{1}_{-2 \cdot A} * \mu_{V}-\mu_{A} * \mathbb{1}_{A} * \mathbb{1}_{-2 \cdot A}\right\|_{\infty} & \leq|G|| | \mathbb{1}_{-2 \cdot A}\left|\left\|_{r}| | \mu_{A} * \mathbb{1}_{A} * \mu_{V}-\mu_{A} * \mathbb{1}_{A}\right\|_{4 m}\right. \\
& \leq|G|\left(\alpha^{1 / r}\right)(\alpha / 8)=|G| \alpha^{2-1 / 4 m} / 8 \leq|G| \alpha^{2} / 4
\end{aligned}
$$

Let's compare the values at 0 , which by the above differ by at most $|G| \alpha^{2} / 4$. We assumed that $T(A) \leq \frac{\alpha}{2}|A|^{2}$. Since $T(A)=\left\langle\mathbb{1}_{A} * \mathbb{1}_{A}, \mathbb{1}_{2 \cdot A}\right\rangle$, we have:

$$
\begin{aligned}
\left\langle\mathbb{1}_{A} * \mathbb{1}_{A}, \mathbb{1}_{2 \cdot A}\right\rangle & \leq \frac{\alpha}{2}|A|^{2} \\
\Rightarrow \mathbb{1}_{A} * \mathbb{1}_{A} * \mathbb{1}_{-2 \cdot A}(0) & \leq \frac{\alpha}{2}|A|^{2} \\
\Rightarrow \mu_{A} * \mathbb{1}_{A} * \mathbb{1}_{-2 \cdot A}(0) & \leq \frac{\alpha}{2}|A|=\frac{\alpha^{2}}{2}|G| .
\end{aligned}
$$

Using this with our L^{∞} bound and the triangle inequality gives

$$
\begin{aligned}
& \mu_{A} * \mathbb{1}_{A} * \mathbb{1}_{-2 \cdot A} * \mu_{V}(0) \leq \frac{\alpha^{2}}{4}|G|+\frac{\alpha^{2}}{2}|G| \\
\Rightarrow & \mathbb{1}_{A} * \mathbb{1}_{A} * \mathbb{1}_{-2 \cdot A} * \mu_{V}(0) \leq|A||G| \frac{3 \alpha^{2}}{4}=\frac{3}{4} \alpha^{3}|G|^{2} .
\end{aligned}
$$

We'd still like to convert this upper bound into a lower bound for $\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty}$. Assume that $\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty} \leq(1+c) \alpha$, and let $f(x)=(1+c)^{-1} \alpha^{-1} \mathbb{1}_{A} * \mu_{V}(x)$. Note that $0 \leq f(x) \leq$ 1 , and that

$$
\begin{aligned}
\|f\|_{1} & =\frac{(1+c)^{-1} \alpha^{-1}}{|G|} \sum_{y \in G} \mathbb{1}_{A} * \mu_{V}(y) \\
& =\frac{(1+c)^{-1} \alpha^{-1}}{|G|} \sum_{z \in G} \mathbb{1}_{A}(z)\left(\sum_{y \in G} \mu_{V}(y-z)\right) \\
& =\frac{(1+c)^{-1} \alpha^{-1}}{|G|} \sum_{z \in G} \mathbb{1}_{A}(z) \\
& =\frac{(1+c)^{-1} \alpha^{-1}}{|G|}|A|=(1+c)^{-1} .
\end{aligned}
$$

Thus considering $(1-f) *(1-f)$, we get

$$
0 \leq(1-f) *(1-f)=f * f-\left.2|G|| | f\right|_{1}+|G|=(1+c)^{-2} \alpha^{-2} \mathbb{1}_{A} * \mathbb{1}_{A} * \mu_{V}-\frac{1-c}{1+c}|G|
$$

In particular, this implies that

$$
\left(1-c^{2}\right) \alpha^{2}|G| \leq \mathbb{1}_{A} * \mathbb{1}_{A} * \mu_{V}(x)
$$

for all x, so taking the inner product with $\mathbb{1}_{2 \cdot A}$ implies

$$
\left(1-c^{2}\right) \alpha^{2}|G||A|=\left(1-c^{2}\right) \alpha^{3}|G|^{2} \leq\left\langle\mathbb{1}_{A} * \mathbb{1}_{A} * \mu_{V}, \mathbb{1}_{2 \cdot A}\right\rangle \leq \frac{3}{4} \alpha^{3}|G|^{2}
$$

so choosing $c=1 / 4$ gives a contradiction, which in turn implies that $\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty}>$ $\frac{5}{4} \alpha$.
4.2. Case 2: $\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}$ is large for some m. We'll now turn to address the case when one of the $L^{2 m}$ norms is large; this case is in fact a more direct application of Theorem 4.2 .

Lemma 4.4. Assume that $\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m} \geq 10 \alpha$. Then there is a subspace V of codimension $\ll(\log (2 / \alpha))^{C} m \alpha^{-1}$ such that $\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty} \geq 5 \alpha$.

Proof. Again, we'll start by applying Theorem 4.2, but in this case with $p=2 \mathrm{~m}$. Again we use $\varepsilon=\alpha^{1 / 2} / 100$. Theorem 4.2 yields a subspace V of codimension

$$
d \ll(200 m / \alpha) \log \left(200 / \alpha^{1 / 2}\right)^{2} \log (2 / \alpha) \ll(\log (2 / \alpha))^{C} m \alpha^{-1}
$$

The subspace V satisfies

$$
\left\|\mu_{A} * \mathbb{1}_{A} * \mu_{V}-\mu_{A} * \mathbb{1}_{A}\right\|_{2 m} \leq \frac{\alpha}{100}\left(\alpha^{-1 / 2}\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{m}^{1 / 2}+1\right)
$$

By the triangle inequality,

$$
\left\|\mu_{A} * \mathbb{1}_{A} * \mu_{V}\right\|_{2 m} \geq\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}-\frac{\alpha}{100}\left(\alpha^{-1 / 2}\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{m}^{1 / 2}+1\right)
$$

Since for $f \geq 0$ we have $\mid f\left\|_{p} \leq\right\| f \|_{q}$ whenever $p \leq q$, we can replace $\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{m}$ above with $\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}$ to get

$$
\left\|\mu_{A} * \mathbb{1}_{A} * \mu_{V}\right\|_{2 m} \geq\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}-\frac{\alpha}{100}\left(\alpha^{-1 / 2}| | \mu_{A} * \mathbb{1}_{A} \|_{2 m}^{1 / 2}+1\right)
$$

However, $\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m} \geq 10 \alpha$. Considering the above as a function of $x=\left\|\mu_{A} * \mathbb{1}_{A}\right\|_{2 m}^{1 / 2}$, specifically $f(x)=x^{2}-\frac{\sqrt{\alpha}}{100} x-\frac{\alpha}{100}$, the minimum of $f(x)$ is at $x=\frac{\sqrt{\alpha}}{200}<\sqrt{10 \alpha}$, so the smallest value of $f(x)$ among $x \geq \sqrt{10 \alpha}$ is when $x=\sqrt{10 \alpha}$. Plugging this in shows that

$$
\left\|\mu_{A} * \mathbb{1}_{A} * \mu_{V}\right\|_{\infty} \geq 5 \alpha
$$

say, where 5 is not chosen particularly carefully.
Thus

$$
\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty} \geq\left\|\mu_{A} * \mathbb{1}_{A} * \mu_{V}\right\|_{\infty} \geq\left\|\mu_{A} * \mathbb{1}_{A} * \mu_{V}\right\|_{2 m} \geq 5 \alpha
$$

which is the desired density increment.
So now we have the density increment that we wanted; these two cases imply Theorem 4.1.

These lower bounds on $\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty}$ show that some translate of A has higher density, since

$$
\left\|\mathbb{1}_{A} * \mu_{V}\right\|_{\infty}=\max _{t \in G} \sum_{y \in G} \mathbb{1}_{A}(y) \mu_{V}(t-y)=\max _{t \in G} \frac{1}{|V|}(|(t-A) \cap V|)
$$

Let's briefly see how this gives the precise statement of Theorem 2.1. Translating A still preserves three-term arithmetic progressions, so at every step we either have a subspace V so that some translate $t+A$ of A has $\geq \frac{\alpha}{2}|(t+A) \cap V|^{2}$, or we can find a further subspace of V with increased density. The first question is, how many subspaces do we need to take?

If $k \geq \frac{\log (1 / \alpha)}{\log (5 / 4)}$, then $1<\left(\frac{5}{4}\right)^{k} \alpha$, so the number of iterations can't be more than \ll $C(\log (1 / \alpha))$. At that point, we have a subspace of \mathbb{F}_{q}^{n} of codimension $\ll k \log (2 / \alpha)^{C} \alpha^{-1} \ll$ $\left(\log (2 / \alpha)^{C} \alpha^{-1}\right.$, where the Cs are not necessarily equal but are each absolute constants.

Thus we must have a subspace V of codimension $\ll(\log (2 / \alpha))^{C} \alpha^{-1}$ with

$$
T((t+A) \cap V) \geq \frac{\alpha}{2}|(t+A) \cap V|^{2}
$$

where $|(t+A) \cap V| \geq \alpha|V|$. Thus

$$
\begin{aligned}
T(A) & \geq T((t+A) \cap V) \\
& \geq \frac{\alpha}{2} \alpha|V|^{2} \\
& =\frac{\alpha}{2}|A|^{2} q^{-\operatorname{codim}(V)} \\
& =\frac{\alpha}{2}|A|^{2} \exp \left(-C(\log (2 / \alpha))^{C} \alpha^{-1}\right) \\
& =|A|^{2} \exp \left(-C(\log (2 / \alpha))^{C} \alpha^{-1}-\log (2 / \alpha)\right)
\end{aligned}
$$

but the $\log (2 / \alpha)$ is of smaller order, so for appropriate choice of constants it can be omitted. This is exactly the desired statement!
4.3. A few notes about the transition. I won't go into detail about the general case (or even the integer case), but I do want to mention an important ingredient that allows these same ideas to work in greater generality. Specifically, we frequently and crucially passed to subspaces in the vector space case; in general, we need a different kind of structure that we can pass to. This is accomplished by defining Bohr sets.

Definition 4.5. Let G be a finite abelian group and let $\hat{G}=\left\{\gamma: G \rightarrow \mathbb{C}^{\times}\right\}$be the dual group of G. For a subset $\Gamma \subseteq \hat{G}$ and a constant $\rho \geq 0$, the Bohr set corresponding to Γ and ρ is defined as

$$
\operatorname{Bohr}(\Gamma, \rho)=\{x \in G:|\gamma(x)-1| \leq \rho \forall \gamma \in \Gamma\}
$$

In the vector space case, the dual group is the group of linear functionals, and subspaces and their translates are Bohr sets with $\rho=0$. For arbitrary G, one can prove L^{p}-almostperiodicity results relative to Bohr sets instead of to subspaces, and then follow a similar argument to the above to yield a density increment.

5. BACKGROUND ON ALMOST-PERIODICITY

At various times we crucially used Proposition 4.2, so let's talk a bit about what goes into proving it. We will prove Proposition 3.1 from [3] , which has a somewhat different statement; the biggest difference being that it only addresses L^{2} almost-periodicity, rather than L^{p}. However, the proof still contains many of the same ideas.

Proposition 5.1 (L^{2}-almost-periodicity, left-translates). Let G be an abelian group, let $A, B \subseteq$ G be finite subsets, and fix a parameter $\varepsilon \in(0,1)$. Let $S \subseteq G$ be a subset such that $|S+A| \leq K|A|$. Then there is a set $T \subseteq-S$ of size

$$
|T| \geq \frac{|S|}{(2 K)^{9 / \varepsilon^{2}}}
$$

such that for all $t \in T-T$,

$$
\left\|\mathbb{1}_{A} * \mathbb{1}_{B}(\cdot+t)-\mathbb{1}_{A} * \mathbb{1}_{B}\right\|_{2}^{2} \leq \varepsilon^{2}|A|^{2}|B| .
$$

Proof. Let k be an integer with $1 \leq k \leq|A| / 2$; we will fix k later. Let $C \subseteq A$ be a subset of size $|C|=k$, which we choose uniformly randomly out of all such sets. All
expectations and probabilities to come, if unspecified, will be over this distribution. Write $v_{C}=\mathbb{1}_{C} \cdot|A| / k$; then for all $x \in G$,

$$
\begin{aligned}
\mathbb{E} v_{C} * \mathbb{1}_{B}(x) & =\binom{|A|}{k}^{-1} \sum_{C \subseteq A} \frac{|A|}{k} \mathbb{1}_{C} * \mathbb{1}_{B}(x) \\
& =\binom{|A|}{k}^{-1} \frac{|A|}{k}\binom{|A|-1}{k-1} \sum_{y \in G} \mathbb{1}_{A}(y) \mathbb{1}_{B}(x-y) \\
& =\mathbb{1}_{A} * \mathbb{1}_{B}(x) .
\end{aligned}
$$

We also consider the variance

$$
\operatorname{Var}\left(v_{C} * \mathbb{1}_{B}(x)\right)=\mathbb{E}_{C}\left|v_{C} * \mathbb{1}_{B}(x)-\mathbb{1}_{A} * \mathbb{1}_{B}(x)\right|^{2}
$$

where again the expectation is taken over the choice of set C. The variance satisfies

$$
\operatorname{Var}\left(v_{C} * \mathbb{1}_{B}(x)\right) \leq \frac{|A|}{k} \mathbb{1}_{A} * \mathbb{1}_{B}(x)
$$

We can then sum this inequality over all $x \in A+B$, since $A+B$ is the support of $\mathbb{1}_{A} * \mathbb{1}_{B}$. This gives

$$
\mathbb{E}_{C}\left\|v_{C} * \mathbb{1}_{B}-\mathbb{1}_{A} * \mathbb{1}_{B}\right\|_{2}^{2} \leq|A|^{2}|B| / k
$$

We say that C approximates A if

$$
\left\|v_{C} * \mathbb{1}_{B}-\mathbb{1}_{A} * \mathbb{1}_{B}\right\|_{2}^{2} \leq 2|A|^{2}|B| / k
$$

By the expectation bound and Markov's inequality,

$$
\mathbb{P}_{C}(C \text { approximates } A) \geq 1 / 2
$$

Now let $Y=S+A$ and let $t \in-S$, so that $A \subseteq t Y$. Then

$$
\begin{aligned}
\mathbb{P}_{C \in\binom{Y}{k}}(t C \text { approximates } A) & =\mathbb{P}_{C \in\binom{t Y}{k}}(C \text { approximates } A) \\
& \geq \mathbb{P}_{C \in\binom{t Y}{k}}(C \subseteq A) \mathbb{P}_{C \in\binom{A}{k}}(C \text { approximates } A) \\
& \geq\binom{|A|}{k}\binom{|S+A|}{k}^{-1} \frac{1}{2} \\
& \geq \frac{1}{(2 K)^{k}},
\end{aligned}
$$

the last step using the hypothesis that $|S+A| \leq K|A|$. Summing this over all $t \in-S$ gives

$$
\mathbb{E}_{\left.\left.C \in\binom{Y}{k} \right\rvert\,\{t \in-S: t C \text { approximates } A\} \right\rvert\, \geq \frac{|S|}{(2 K)^{k}} . . . ~ . ~}^{\text {. }}
$$

So, there exists some set C which is above average, i.e. for which the size of $T=\{t \in-S$: $t C$ approximates $A\}$ is at least $|S| /(2 K)^{k}$. For this C, we have

$$
\left\|\mu_{C} * \mathbb{1}_{B}-\mathbb{1}_{A} * \mathbb{1}_{B}(\cdot+t)\right\|_{2}^{2} \leq 2|A|^{2}|B| / k
$$

for all $t \in T$, so by the triangle inequality, for all $t \in T-T$ we have

$$
\left\|\mathbb{1}_{A} * \mathbb{1}_{B}(\cdot+t)-\mathbb{1}_{A} * \mathbb{1}_{B}\right\|_{2}^{2} \leq 8|A|^{2}|B| / k .
$$

Fixing $k=\left\lceil 8 / \varepsilon^{2}\right\rceil$ completes the proof of the proposition.

The L^{p} version instead relies on higher moments of random variables that look like $\mathbb{1}_{C} * \mathbb{1}_{B}$, which follow a hypergeometric distribution.

REFERENCES

[1] Bloom, T.F. "A quantitative improvement for Roth's theorem on arithmetic progressions" J. Lond. Math. Soc. (2) 93 (2016): 643-663. arXiv:1405.5800
[2] Bloom, T.F. and Sisask, O. "Logarithmic bounds for Roth's theorem via almost-periodicity" Disc. Anal. 4 (2019). arXiv:1810.12791
[3] Croot, E. and Sisask, O. "A probabilistic technique for finding almost-periods of convolutions" Geom. Funct. Anal. 20 (2010): 1367-1396. arXiv:1003.2978
[4] Soundararajan, K. "Additive combinatorics" http://math.stanford.edu/~ksound/Notes.pdf. 2007.

