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ABSTRACT

During interactive segmentation, a model and a user work together to delineate
objects of interest in a 3D point cloud. In an iterative process, the model assigns
each data point to an object (or the background), while the user corrects errors in
the resulting segmentation and feeds them back into the model. The current best
practice formulates the problem as binary classification and segments objects one
at a time. The model expects the user to provide positive clicks to indicate regions
wrongly assigned to the background and negative clicks on regions wrongly as-
signed to the object. Sequentially visiting objects is wasteful since it disregards
synergies between objects: a positive click for a given object can, by definition,
serve as a negative click for nearby objects. Moreover, a direct competition be-
tween adjacent objects can speed up the identification of their common bound-
ary. We introduce AGILE3D, an efficient, attention-based model that (1) supports
simultaneous segmentation of multiple 3D objects, (2) yields more accurate seg-
mentation masks with fewer user clicks, and (3) offers faster inference. Our core
idea is to encode user clicks as spatial-temporal queries and enable explicit inter-
actions between click queries as well as between them and the 3D scene through
a click attention module. Every time new clicks are added, we only need to run
a lightweight decoder that produces updated segmentation masks. In experiments
with four different 3D point cloud datasets, AGILE3D sets a new state-of-the-art.
Moreover, we also verify its practicality in real-world setups with real user studies.
Project page: https://ywyue.github.io/AGILE3D.

1 INTRODUCTION

Accurate 3D instance segmentation is a crucial task for a variety of applications in computer vision
and robotics. Manually annotating ground-truth segmentation masks on 3D scenes is expensive and
fully-automated 3D instance segmentation approaches (Hou et al., 2019; Engelmann et al., 2020;
Chen et al., 2021; Vu et al., 2022) do not generalize well to unseen object categories of an open-
world setting. Interactive segmentation techniques have been commonly adopted for large-scale 2D
image segmentation (Benenson et al., 2019), where a user interacts with a segmentation model by
providing assistive clicks or scribbles iteratively. While interactive image segmentation has been
the subject of extensive research (Xu et al., 2016; Li et al., 2018; Mahadevan et al., 2018; Jang
& Kim, 2019; Kontogianni et al., 2020; Sofiiuk et al., 2022; Chen et al., 2022), there are only a
few works that explore interactive 3D segmentation (Valentin et al., 2015; Shen et al., 2020; Zhi
et al., 2022). Those methods either only work for semantic segmentation or require images with
associated camera poses w.r.t. the 3D scene. The latter constraint makes them not suitable for
non-camera sensors (e.g., LiDAR), or for dynamically changing viewpoints like in AR/VR settings.
Even with available images, providing feedback for the same object from multiple viewpoints can
be tedious. Here, we focus on interactive segmentation directly in 3D point clouds.

Recently Kontogianni et al. (2023) introduced an approach for interactive 3D segmentation that
operates directly on point clouds, achieving state-of-the-art performance. The task is formulated as
a binary segmentation for one object at a time (Fig. 1, left), and follows the mainstream approach of
interactive 2D image segmentation (Xu et al., 2016; Mahadevan et al., 2018; Li et al., 2018; Jang
& Kim, 2019; Kontogianni et al., 2020; Sofiiuk et al., 2022; Chen et al., 2022): User input comes
in the form of binary clicks that identify locations with incorrect labels. Positive clicks specify
missed parts of the target object and negative clicks specify background areas falsely labeled as
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Figure 1: Architecture comparison. Left: InterObject3D (Kontogianni et al., 2023). Right: our
AGILE3D. Given the same set of 10 user clicks, AGILE3D can effectively segment three objects
while InteObject3D can only segment one. InterObject3D takes 0.5s for one object while we need
only 0.25s for all three, thanks to running a lightweight decoder per iteration and not a full forward
pass through the entire network1. Unlike InterObject3D, our backbone learns features for all objects.

foreground. The two sets of click coordinates are encoded as binary masks and concatenated with the
3D point coordinates to form the input to a deep learning model. A subtle, but important limitation
of that approach is that objects are processed sequentially, one at a time: obviously, object outlines
within a scene are boundaries between different objects (rather than between an isolated object and
a monolithic background): Positive clicks for one object can, by definition, serve as negative clicks
for other, nearby objects. In most cases also the opposite is true, as negative clicks will often also lie
on other objects of interest. Handling multiple objects jointly rather than sequentially also brings a
computational advantage, because every round of user input requires a forward pass.

In this work, we propose AGILE3D, an attention-guided interactive 3D segmentation approach that
can simultaneously segment multiple objects in context. Given a 3D scene, we first employ a stan-
dard 3D sparse convolutional backbone to extract per-point features without click input. Instead
of encoding clicks as click maps, we propose to encode them as high-dimensional feature queries
through our click-as-query module. To exploit not only the spatial locations of user clicks but also
their temporal order in the iterative annotation process, they are supplemented by a spatial-temporal
positional encoding. To enable the information exchange between different clicks, and between
clicks and the 3D scene, we propose a click attention module, where clicks explicitly interact with
the 3D scene through click-to-scene and scene-to-click attention and with each other through click-
to-click attention. Finally, we aggregate the roles of all click queries to obtain a single, holistic
segmentation mask in our query fusion module, and train the network in a way that regions compete
for space. In this manner, AGILE3D imposes no constraint on the number of objects and seamlessly
models clicks on multiple objects, including their contextual relations allowing for more accurate
segmentation masks of multiple objects together. Disentangling the encoding of the 3D scene from
the processing of the clicks makes it possible to pre-compute the backbone features, such that dur-
ing iterative user feedback one must only run the lightweight decoder (i.e. click attention and query
fusion), thus significantly reducing the computation time (Fig. 1). Moreover, our backbone learns
the representation of all scene objects while InterObject3D only learns the representation of a single
object depending on the input clicks (c.f. learned features converted to RGB with PCA in Fig. 1).

Our proposed method aims to be trainable with limited data, and able to compute valid segmentation
masks for zero-shot and few-shot setups on unseen datasets (e.g., dataset annotation). We train on
a single dataset, ScanNetV2-Train (Dai et al., 2017), and then evaluate on ScanNetV2-Val (Inc.
ScanNet20 and ScanNet40) (Dai et al., 2017), S3DIS (Armeni et al., 2016), KITTI-360 (Liao et al.,
2022). For all of them, AGILE3D outperforms the state of the art. Our main contributions are:

1. We introduce the interactive multi-object 3D segmentation task to segment multiple objects
concurrently with a limited number of user clicks in a 3D scene.

2. We propose AGILE3D, which is the first interactive approach that can segment multiple
objects in a 3D scene, achieving state-of-the-art in both interactive multi- and single-object
segmentation benchmarks.

3. We propose the setup, evaluation, and iterative training strategy for interactive multi-object
segmentation on 3D scenes and conduct extensive experiments to validate the benefits of our
task formulation.

4. We develop a user interface and perform real user studies to verify the effectiveness of our
model and the proposed training strategy in real annotation tasks.

1Time is measured on a single TITAN RTX GPU.
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2 RELATED WORK

3D instance segmentation. Fully-supervised 3D instance segmentation is a well-researched prob-
lem with remarkable progress (Hou et al., 2019; Yi et al., 2019; Engelmann et al., 2020; Jiang et al.,
2020; Vu et al., 2022; Schult et al., 2023; Sun et al., 2023). Like all fully-supervised methods, they
require large amounts of annotated training data. To relieve the labeling cost, Hou et al. (2021);
Chibane et al. (2022) explore weakly-supervised 3D instance segmentation by learning from weak
annotations such as sparse points or bounding boxes with the cost of performance drop. For a survey
on 3D segmentation, we refer the readers to Guo et al. (2020); He et al. (2021); Xiang et al. (2023).
Interactive 3D segmentation differs from those methods. First, fully and weakly-supervised methods
require per dataset training and are unable to generalize to classes that are not part of the training set.
Moreover, they cannot incorporate additional user input to refine any inaccuracies further, whereas
our method aims to produce high-quality masks using the model’s ability to interact with humans.

Interactive 3D segmentation. There are only a few approaches that support user input in gener-
ating 3D segmentation masks (Valentin et al., 2015; Shen et al., 2020; Zhi et al., 2022; Kontogianni
et al., 2023). Valentin et al. (2015); Zhi et al. (2022) focus on online semantic labeling of 3D scenes
rather than instance segmentation. Shen et al. (2020) shift the user interaction to the 2D domain
but require images with known camera poses. Moreover, providing feedback for the same object in
multiple viewpoints is cumbersome. The closest work to ours is InterObject3D (Kontogianni et al.,
2023), an interactive 3D segmentation approach that directly operates on point clouds. However, In-
terObject3D can only segment single objects sequentially whereas our method can segment multiple
objects simultaneously, leading to better results with less user interaction.

Interactive image segmentation has been extensively studied (Xu et al., 2016; Li et al., 2018;
Mahadevan et al., 2018; Jang & Kim, 2019; Benenson et al., 2019; Kontogianni et al., 2020; Chen
et al., 2022; Sofiiuk et al., 2022; Liu et al., 2022; Du et al., 2023; Zhou et al., 2023; Wei et al., 2023)
but all of the methods are designed to segment single objects. Only few works (Agustsson et al.,
2019; Rana et al., 2023) explore interactive full-image or multi-object segmentation but specialize
in the 2D domain. To the best of our knowledge, our method is the first approach that supports
interactive multi-object segmentation in 3D point clouds. Moreover, although simulated evaluation
is a well-established protocol in both the 2D and 3D domains, we urge the community to move
beyond simulated clicks and also evaluate with real user studies.

3 METHOD

Consider a 3D scene P ∈ R
N×C , with N number of 3D points and C the feature dimension as-

sociated with each point. C is normally set to 3 for locations xyz, otherwise 6 if colors rgb are
available.

Interactive single-object segmentation. Given such a scene, in interactive single-object segmen-
tation (Kontogianni et al., 2023), the user provides a sequence of clicks, where positive clicks are
considered on the desired object and negative clicks on the background. The segmentation mask is
obtained through an iterative process: the model provides the user with a segmentation mask, then
the user provides feedback to the model via positive/negative clicks. The model provides an updated
mask given the user corrections. The process repeats until the user is satisfied with the result.

Interactive multi-object segmentation. We extend the above formulation to incorporate interac-
tive multi-object scenarios. Let us assume a user wants to segment M target objects in a scene.

We denote user clicks as S = (c1, c2, ..., ck)
K

k=1, where k is the click index. k also doubles as a
timestamp indicator since the clicks come as a sequence in time. Each click ck is represented by
two attributes ck = {pk, ok}, where pk ∈ R

3 are the 3D coordinates and ok ∈ {0, 1, ...,M} is the
region index, indicating whether the click comes from the background (when ok = 0) or associated
with object ok (when ok ⩾ 1). S is initialized as an empty sequence and iteratively extended when
the user gives more clicks. Given the 3D scene P and click sequence S, our goal is to predict a

single, holistic segmentation mask M ∈ {0, 1, ...,M}N , which indicates the interest region each
point belongs to. Please note we aim to ensure that each point belongs to a single segmentation
mask, which is different from the interactive single-object segmentation task, where several passes
of the same scene with different objects of interest might result in some points assigned to multiple
segmentation masks. When M = 1, the above formulation matches the interactive single-object
segmentation setting as in Kontogianni et al. (2023).
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Figure 2: Model of AGILE3D. Given a 3D scene and a user click sequence, (a) the feature backbone extracts
per-point features and (b) the click-as-query module converts user clicks to high-dimensional query vectors.
(c) The click attention module refines the click queries and point features through multiple attention mecha-
nisms. (d) The query fusion module first fuses the per-click mask logits to region-specific mask logits and then
produces a final mask through a softmax. With → we denote the user click information and with → the scene
information. Colors of clicks, click queries and segmentation masks are consistent for the same object.

3.1 AGILE3D

Our overall architecture (Fig. 2) consists of (a) a feature backbone that extracts per-point features,
(b) a click-as-query module that converts user clicks to spatial-temporal query vectors, (c) a click at-
tention module that enables explicit interaction between click queries themselves and scene features,
and (d) a query fusion module that predicts a holistic segmentation of multiple objects.

Feature backbone. Our feature backbone is a sparse convolutional U-Net, based on the Minkowski
Engine (Choy et al., 2019) as in Kontogianni et al. (2023). It takes as input a 3D scene and produces

a feature map F ∈ R
N ′

×D, where D is the feature dimension. Unlike Kontogianni et al. (2023)
which sends the concatenation of P and encoded click maps to the backbone, we only input P and
insert the user clicks separately in our click-as-query module.

Click-as-query module converts each user click ck to query qk. A click is a user query indicating
a desired region. The click query should properly encode representative knowledge of an object so
that the system can correctly classify all relevant points. On the other hand, clicks are a sequence of
3D points that are inherently spatial and temporal. Motivated by this, we encode the click query as
three parts qk = {ck, sk, tk}, each of which models its content, spatial, and temporal properties.

The content part ck ∈ R
D is initialized from the point feature map F of the backbone. For each

click, we find the nearest voxel position in F and use the feature of that voxel as ck. The spatial part
sk ∈ R

D is created by mapping the click coordinates pk to the same feature space as ck using Fourier
positional encodings (Tancik et al., 2020). Similarly, we transform the timestamp k to a temporal
embedding tk ∈ R

D using a sin/cos positional encoding of (Vaswani et al., 2017). We consolidate
the spatial and temporal parts to a positional part by summing sk and tk. After initialization, the
content part of each query ck along with per-point features F will be iteratively refined through the
click attention module by interacting with each other.

Click attention module is designed to enable interaction between the click queries themselves
and between them and the point features. Each decoder layer consists of a click-to-scene attention
module (C2S), a click-to-click attention module (C2C), a feed-forward network, and finally a scene-
to-click attention module (S2C). All queries are represented by the positional and the content part.
We denote the positional part of all click queries as Qp and the content part at layer l ∈ {0, 1, ..., L}
as Ql

c. We use the same representation for the scene points. We denote the point features at layer l
as F l

c , where F 0
c = F , which represents the content part of the 3D points. The positional part of 3D

points Fp is encoded via Fourier positional encodings (Tancik et al., 2020) based on voxel positions
to ensure access to point cloud geometric information to the decoder.

The C2S performs cross-attention from click queries to point features, which enables click queries
to extract information from relevant regions in the point cloud. In the C2C, we let each click query
self-attend to each other to realize inter-query communications. The C2C is followed by an FFN
that further updates each query. All three steps only update click queries while the point features are
static. To make the point features click-aware, we add the S2C that performs cross-attention from
point features to click queries. Details on these attention formulations can be found in the Appendix.

Query fusion module. We apply a shared mask head (MLP) fmask(·) to convert the per-click
content embeddings QL

c to K mask embeddings and then compute the dot product between these

mask embeddings and the refined point features, which produces K mask logits maps Cζ ∈ R
N ′

×K ,
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i.e., Cζ = FL
c · fmask(Q

L
c )

T . Since there can be multiple queries representing the same region
(object or background), we apply a per-point max operation on Cζ that shares the same region. This
step can be achieved through the association between each click and its region index ok, and gives

us M + 1 region-specific mask logits map Rζ ∈ R
N ′

×(M+1). We obtain the final segmentation

mask M ∈ {0, 1, ...,M}N
′

through a softmax, which indicates the region each point belongs to.

3.2 USER SIMULATION AND TRAINING

Simulated clicks are commonly used in the interactive community for both training and evaluation.
In Kontogianni et al. (2023) positive clicks are uniformly sampled on the object and negative ones
are sampled from the object neighborhood. At test time they imitate a user who always clicks at
the center of the largest error region. However, the training and test strategies are different since
randomly sampled clicks are independent of network errors and lack a specific order. We propose
an iterative strategy that approximates real user behavior even during training. Although iterative
training has been explored in interactive image segmentation (Mahadevan et al., 2018; Sofiiuk et al.,
2022), those methods can only work for single object setup. A detailed comparison with Mahadevan
et al. (2018); Sofiiuk et al. (2022) can be found in Tab. 8 and the Appendix.

Multi-object iterative training. Our iterative strategy is shown in Fig. 3. We simulate user
clicks for each batch separately in an iterative way with n number of iterations sampled

5/14/2023Organisational unit (edit via “Insert” > “Header & Footer”) 9

�0

Sample Next �1
Clicks

�1

Iteration 1 (�0, �1)

�2

Iteration 2 Iteration �
Batch 

Training End

(�0,…, ��−1)
Forward Pass Forward Pass

Sample Next �2
Clicks

Forward Pass

Figure 3: Multi-object iterative
training.

uniformly from 1 to Niter. Si are the clicks sampled in the i-
th iteration. The training starts from the initial clicks (S0) col-
lected from each target object’s center. Full iterative training,
like in testing, is costly, requiring an iteration after each sampled
click. Therefore, when sampling clicks for the next iteration, in-
stead of only sampling one click from the largest error region,
we sample Ni clicks from the top Ni error regions (one click per
region). This strategy can generate training samples that contain
a large number of clicks in a small number of iterations, keeping
the training complexity manageable. We freeze the model when
sampling clicks in iterations 1 to Niter − 1 and only allow backpropagation in the last iteration.

Multi-object user simulation during test. Interactive single-object segmentation (Xu et al., 2016;
Sofiiuk et al., 2022; Kontogianni et al., 2023) evaluation strategies imitate a user who clicks at the
largest error region. In our multi-object scenario, we share the spirit and enable users to focus first
on the largest errors in the whole scene. Our user simulation strategy starts with one click at the
center of each object to get an initial prediction. We then compute a set of error clusters (comparing
prediction to ground truth) and sample the next click from the center of the largest cluster.

Loss. We supervise our network with the cross-entropy and the Dice loss (Deng et al., 2018) for
multi-class segmentation since we want neighboring masks to compete for space and ensure that
each point is assigned to a single label. The number of classes varies per scene and is M + 1,
where M is the number of objects the user wants to segment. The total loss is defined as: L =
1
N

∑
p∈P wp(λCELCE(p)+λDiceLDice(p)) where λCE and λDice are the balancing loss weights and wp

the distance of the points to the user click. Additional implementation details are in the Appendix.

4 EXPERIMENTS

Tasks. AGILE3D is a versatile model, able to perform both interactive single- and multi-object 3D
segmentation. Since there is no existing benchmark for interactive multi-object segmentation we
propose this new task including an evaluation protocol and metrics. We evaluate in both scenarios.

Datasets. A key aspect of interactive segmentation systems is their ability to work on datasets that
exhibit significant variations in data distribution compared to the training data. To this end, we
train the system on ScanNetV2-Train (Dai et al., 2017), an indoor dataset, and subsequently, we
evaluate on datasets that follow distinct distributions, including ScanNetV2-Val (Dai et al., 2017)
(same distribution), S3DIS (Armeni et al., 2016) (different sensor), and even KITTI-360 (Liao et al.,
2022) (outdoor LiDAR point clouds). We also train two models on ScanNet-train: one with 40
classes and another with only the subset of 20 benchmark classes.
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Table 1: Quantitative results on interactive single-object segmentation. We compare our method
with the current state-of-the-art InterObject3D (Kontogianni et al., 2023) and our enhanced InterOb-
ject3D++ in several datasets. Our method offers 3D masks of higher quality with fewer user clicks
and generalizes better to new classes and datasets.

Method Train → Eval IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ NoC@80 ³ NoC@85 ³ NoC@90 ³
InterObject3D 67.6 77.6 81.2 9.6 11.8 14.6
InterObject3D++ ScanNet20 → ScanNet40 (+ unseen) 76.4 82.2 83.8 7.8 10.2 13.4
AGILE3D (Ours) 78.5 82.9 84.5 7.4 9.8 13.1

InterObject3D 72.4 79.9 82.4 8.9 11.2 14.2
InterObject3D++ ScanNet40 → ScanNet40 78.0 82.9 84.2 7.7 10.0 13.2
AGILE3D (Ours) 79.9 83.7 85.0 7.1 9.6 12.9

InterObject3D 72.4 83.6 88.3 6.8 8.4 11.0
InterObject3D++ ScanNet40 → S3DIS-A5 80.8 89.2 91.5 5.2 6.7 9.3
AGILE3D (Ours) 83.5 88.2 89.5 4.8 6.4 9.5

InterObject3D 14.3 26.3 35.0 19.1 19.4 19.7
InterObject3D++ ScanNet40 → KITTI-360 19.9 40.6 55.1 17.0 17.7 18.4
AGILE3D (Ours) 44.4 49.6 54.9 14.2 15.5 16.8

Evaluation metrics. For single-object evaluation we follow the evaluation protocol of Kontogianni
et al. (2023). We compare the methods on (1) NoC@q% ³, the average number of clicks needed to
reach q% IoU, and (2) IoU@k ↑, the average IoU for k number of clicks per object (capped at 20).
We extend the evaluation protocol for multi-object. We no more enforce a per-object budget but we
allow a total budget of M × 20 clicks for a user who wants to segment M objects in a scene. We
propose the IoU@k ↑ metric, which represents the average IoU of all target objects after an average
of k clicks allocated to each object. k is an average of k over M and each object does not necessarily
share exactly k clicks. Similarly, we report NoC@q% ³, which represents the average number of
clicks to reach an average q% IoU for all target objects in the scene.

Baseline. We use InterObject3D (Kontogianni et al., 2023) as our baseline in interactive
single-object segmentation. However, InterObject3D is designed to segment objects sequentially
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Figure 4: Open-world segmen-
tation from ScanNet20. AGILE3D
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and phone.

and cannot directly be evaluated by our interactive multi-object
segmentation protocol. To this end, we use InterObject3D to pro-
cess each object with one click per object sequentially and ob-
tain a binary mask for each object. We merge those binary masks
manually and then use our user simulation protocol to sample the
next click. Note this hand-crafted baseline is just for a complete
comparison and cannot be seen as interactive multi-object seg-
mentation. We additionally created a strong implementation of
InterObject3D, an enhanced baseline (InterObject3D++) by in-
corporating our proposed iterative training. Outperforming this
even stronger baseline shows that there is merit in leveraging the
clicks of multiple objects together rather than handling objects
in isolation.

4.1 EVALUATION ON SINGLE-OBJECT SEGMENTATION.

Comparison with state-of-the-art. Results are summarized in Tables 1, 2, 3 and Fig 5, 4. We
perform the evaluation in scenarios of increasing difficulty and distribution shift:

Table 2: Quantitative results on interactive single-object
segmentation (⩽ 3 clicks). Our method performs signifi-
cantly better than baselines, especially in the low click regime.
Our results for just 1 click are comparable or better than the 3
clicks of the baselines. Models are trained on ScanNet40.

Method IoU@1↑ IoU@2 ↑ IoU@3 ↑

S
ca

n
N

et InterObject3D 40.8 55.9 63.9
InterObject3D++ 40.7 60.7 70.2
AGILE3D (Ours) 63.3 70.9 75.4

S
3
D

IS InterObject3D 38.5 54.0 62.5
InterObject3D++ 32.7 55.8 69.0

AGILE3D (Ours) 58.5 70.7 77.4

K
IT

T
I-

3
6
0 InterObject3D 2.0 5.1 8.5

InterObject3D++ 3.4 7.0 11.0

AGILE3D (Ours) 34.8 40.7 42.7

Table 3: Comparison with fully-supervised. We compare our
method with the state-of-art fully supervised instance segmenta-
tion method. Both methods were trained on ScanNet20-seen and
evaluated on the ScanNet20-seen and ScanNet20-unseen.

Method #clicks AP AP50% AP25%

B
en

ch
m

a
rk

C
la

ss
es Mask3D – 51.5 77.0 90.2

AGILE3D
(Ours)

1 53.5 75.6 91.3
2 64.0 86.4 96.0
3 70.3 91.4 98.1
10 83.2 98.3 99.8
20 86.8 99.2 100.0

U
n

se
en

C
la

ss
es

Mask3D – 5.3 13.1 24.7

AGILE3D
(Ours)

1 24.8 45.7 72.4
2 36.9 63.5 85.8
3 45.5 74.4 92.2
10 67.8 94.8 99.7
20 74.5 97.6 99.9
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Figure 5: Qualitative results on interactive single-object segmentation.

ScanNet-train→ScanNet-val: We evaluate on the ScanNet-val dataset, considering small distribu-
tion shifts. In both the ScanNet20 and ScanNet40 setups, our method surpasses the baseline and the
enhanced baseline, as shown in Tab. 1 (ln.1,2). We test the generalization of our method to novel
classes by evaluating the trained model on ScanNet 20 classes with the additional 20 unseen classes.
Tab. 1 clearly demonstrates that our AGILE3D outperforms the current state-of-the-art in all metrics.

ScanNet-train→S3DIS: We further assess the effectiveness of our model’s generalization by evalu-
ating it on S3DIS, an another indoor dataset with different characteristics than ScanNet. Our model
outperforms the state-of-the-art baseline. For example, with only 5 clicks, our AGILE3D achieves
an impressive IoU of 83.5 on S3DIS, surpassing the baseline’s performance of 72.4.

ScanNet-train→KITTI-360: Our method also excels in the challenging domain shift of training on
ScanNet and testing on KITTI-360, an outdoor dataset captured with a LiDAR sensor. Our method
surpasses the baseline by a factor of 4 and the enhanced baseline by a factor of 2 on IoU@5.

Our method’s performance is particularly impressive in the low click regime (f 3 clicks). With
just a single click, our method achieves ≈ 60 IoU on both ScanNet and the unseen dataset of
S3DIS (Tab. 2). It is a significant improvement over the baseline of ≈ 40 IoU. With three clicks, our
method achieves even higher IoU scores of 75.4 and 77.4 on ScanNet and S3DIS, respectively.

Comparison with fully-supervised methods. Results are summarized in Tab. 3 and Fig. 4. Fully
supervised methods for 3D instance segmentation achieve remarkable results on tasks and data dis-
tributions similar to those encountered during training. However, we demonstrate that with minimal
human feedback, we can surpass the performance of fully supervised methods, particularly in classes
that were not seen during training. Our method achieves precision 4 times higher than the state-of-
the-art method Mask3D (Schult et al., 2023) for unseen classes with just one click (Tab. 3). In Fig. 4,
AGILE3D obtains high-quality masks of novel objects (e.g., statue, phone) with few clicks.

4.2 EVALUATION ON MULTI-OBJECT SEGMENTATION.

Table 4: Quantitative results on interactive multi-object segmentation. We adapt the state-of-
the-art method in interactive single-object segmentation to be evaluated by our multi-object protocol
for a complete comparison (Baseline paragraph of Sec. 4). Note the baselines still predict binary
masks for single-object and final masks must be merged manually.

Method Train → Eval IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ NoC@80 ³ NoC@85 ³ NoC@90 ³
InterObject3D 75.1 80.3 81.6 10.2 13.5 16.6
InterObject3D++ ScanNet40 → ScanNet40 79.2 82.6 83.3 8.6 12.4 15.7
AGILE3D (Ours) 82.3 85.0 86.0 6.3 10.0 14.4

InterObject3D 76.9 85.0 87.3 6.8 8.8 13.5
InterObject3D++ ScanNet40 → S3DIS-A5 81.9 88.3 89.3 5.7 7.6 11.6
AGILE3D (Ours) 86.3 88.3 90.3 3.4 5.7 9.6

InterObject3D 10.5 22.1 31.0 19.8 19.8 19.9
InterObject3D++ ScanNet40 → KITTI-360 16.7 37.1 52.2 18.3 18.9 19.3
AGILE3D (Ours) 40.5 44.3 48.2 17.4 18.3 18.8

Results are summarized in Tab. 4 and Fig. 6, 7. More qualitative results in Appendix. We adapted
InterObject3D for our multi-object protocol for a complete comparison. We do not enforce a per-
object click budget for the baselines but allow them to sample the next click from the biggest error
region across all target objects. Nevertheless, the baselines are still limited to segmenting one object
in each forward pass. AGILE3D outperforms all the baselines, requiring significantly fewer clicks
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Figure 6: Qualitative results on interactive multi-object segmentation on ScanNet40. A user wants to
segment 4 chairs using InterObject3D++ (top) or AGILE3D (bottom). (a)-(d) show the results for each object
and (e) shows the final merged prediction after a total of 8 clicks for InterObject3D++. (f)-(j) show the results
of AGILE3D after each iteration. New click in each iteration is marked with a red circle.

InterObject3D++ AGILE3D (Ours)
IoU@4 = 96.1 IoU@4 = 63.2 IoU@8 = 79.7 IoU@4 = 98.23D Scene

Merged

IoU@6 = 90.4 IoU@1 = 55.5 IoU@2 = 81.73D Scene IoU@9 = 75.8 IoU@9 = 89.9

Merged

InterObject3D++ AGILE3D (Ours)
(a) Qualitative comparison on S3DIS-A5 (b) Qualitative comparison on KITTI-360 

Figure 7: More qualitative comparison. AGILE3D achieves higher IoU, e.g., when segmenting cabinets and
boxes on S3DIS-A5 (left) and pedestrians on KITTI-360 (right).

for the same quality of masks, e.g., 4 clicks less than InterObject3D and 2 clicks less than Inter-
Object3D++ to achieve on average 80% IoU on ScanNet40 (Tab. 4, ln 1-3). The benefits of multi-
object handling in AGILE3D are also validated qualitatively in Fig. 6. In this scene, after a total of
8 clicks (both methods), AGILE3D achieves an average IoU of 83.4 vs. 76.0 of InterObject3D++.
These results highlight the benefits of interactive multi-object segmentation: (1) Click sharing: in
AGILE3D, clicks on one object are naturally utilized to segment other objects, e.g., the positive
click on Chair 1 (Fig. 6-g) naturally serves as a negative click for Chair 2 and improves the
segmentation for both objects (compare with Fig. 6-f). By contrast, in the baselines, clicks are indi-
vidually given and only have an effect on that one object. Please note simply equipping the baselines
with click sharing does not bring performance gains (see Appendix). (2) Holistic reasoning: since
we segment all the objects together, AGILE3D can capture their contextual relationships, enabling
holistic reasoning. For example, clicks on the armrest of one chair help correct the armrests of other
chairs (Fig. 6-i,j). (3) Globally-consistent mask: AGILE3D encourages different regions to directly
compete for space in the whole scene so that each point is assigned exactly one label. By contrast,
in single-object segmentation, the mask for each object is obtained separately. Post-processing is
required to generate non-overlapping masks. (4) Faster inference: AGILE3D pre-computes back-
bone features once per scene (∼0.05s) and runs a light-weight decoder per iteration (∼0.02s). By
contrast, InterObject3D++ goes through the entire network per iteration (∼0.05s). In this scene,
after 8 clicks, AGILE3D has an inference time of 0.15s vs. 0.4s of InterObject3D++.

Efficiency Comparison is shown in Tab. 5. The inference time is measured after on average 5/10/15
clicks allocated to each object in each scene. The results show that our model has comparable
memory consumption but our inference time (which is much more critical for real-time applications)
is 2× faster than the baselines due to our model architecture design (Fig. 1).We report FLOPs for
completeness however the results are not comparable since the MinkowskiEngine uses some clever
hashing operations that can not be measured by existing FLOPs profilers.

4.3 USER STUDY

To go beyond simulated user clicks and assess the performance with real human clicks, we perform
a user study. Tab. 6 demonstrates that real users achieve results comparable to the simulator. The
results also verify that our iterative training strategy can improve the performance of both the real
user and the simulator. Moreover, the variance indicates that the model trained with iterative training
is more robust across different user behaviors.

In Tab. 7, we compare the results of real users in single-object and multi-object settings. We report
the total given clicks per object, the achieved IoU per object, and the time spent per scene. In multi-
object settings, users achieved higher IoU with significantly fewer clicks in less time, indicating that
the multi-object setting can be more beneficial. Details on the user study design in the Appendix.
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Table 5: Efficiency comparison. Our
method is 2× faster than the baselines.

Method FLOPs/G Mem/Mb t@5 t@10 t@15

InterObject3D 1.58 924 1.2 2.4 3.6

InterObject3D++ 1.58 924 1.2 2.4 3.5

AGILE3D 16.57 710 0.5 1.0 1.6

Table 6: User study on itera-
tive vs random sampling.

User Training IoU@3 ↑ var. NoC@80 ↓ var.

Human
Iterative

86.8 5e-5 1.6 0.02

Sim. 88.2 - 2.1 -

Human
Random

85.5 6e-4 1.8 0.51

Sim. 86.4 - 3.3 -

Table 7: User study on
annotation of 30 objects.

Settings NoC IoU t

Single-object 12.6 87.4 4min

Multi-object 5.8 88.0 3min

4.4 ABLATION STUDIES AND DISCUSSION

We ablate several aspects of our architecture and training in Tab. 8, 9. All the experiments are con-
ducted on the ScanNet40 dataset on multi-object scenario unless stated otherwise. More ablations
are available in the Appendix.

Table 8: Iterative training
strategies (single-object).

Method IoU@10 ↑ NoC@85 ³
ITIS 79.9 11.1
RITM 81.4 10.3
AGILE3D 82.9 9.8

Iterative training. We validate the effectiveness of our iterative
training strategy (Sec. 3.2) by training a model with randomly sam-
pled clicks. Tab. 9, 1⃝ shows that the random sampling strategy
performs noticeably worse than our iterative training (82.0 vs. 84.4
IoU@10). We also compare with two popular iterative strategies:
ITIS (Mahadevan et al., 2018) and RITM (Sofiiuk et al., 2022). We
compare in the single-object setting for a fair comparison since they
are designed for such a setting. Tab. 8 shows that the model trained using our proposed training strat-
egy significantly outperforms models trained using ITIS or RITM. More details in the Appendix.

Table 9: Ablation study.

Methods IoU@10 ↑ NoC@85 ³
AGILE3D (Ours) 84.4 10.7

1⃝ − iterative training 82.0 12.2

2⃝ − C2S attn 82.8 12.0
3⃝ − C2C attn 84.0 10.8
4⃝ − S2C attn 83.1 11.4
5⃝ − all attention 79.2 13.7

6⃝ − spatial part 84.2 10.8
7⃝ − temporal part 83.9 10.8
8⃝ − both parts 83.7 11.2

Attention design. We design a click attention module to enable ex-
plicit interaction between the click queries themselves and between
them and the point features. Tab. 9 shows that the absence of any
type attention mechanism harms the model’s performance. Espe-
cially, the cross-attention between click queries and point features,
i.e., 2⃝ C2S attn and 4⃝ S2C attn, have a more pronounced effect
compared to the self-attention between click queries 3⃝ C2C attn.
We note that C2C attn has a significant effect on the transfer exper-
iments for KITTI-360, e.g. 37.4 (with C2C) vs. 33.8 (wo. C2C) on
IoU@5, indicating that C2C plays a crucial role for improving the model’s generalization ability.

(a) 3D scene (b) 3 clicks (c) 20 clicks

(a) 3D scene (b) 1 click (c) 3 clicks (d) 15 clicks

Figure 8: Failure cases on fine-grained
segmentation, e.g. part segmentation of
a chair.

Spatial-temporal encodings for click queries. We regard
user clicks as an ordered sequence of 3D coordinates and
supplement each click query with a spatial-temporal en-
coding. Tab. 9, 6⃝ 7⃝ demonstrates that both the spatial and
temporal encoding contribute to improved performance.
Additionally, on KITTI-360, we note the effect of spatial-
temporal encodings is even more pronounced, e.g. remov-
ing the temporal part led to a drop from 42.3 to 40.5 and
removing the spatial part led to a drop to 36.9 on IoU@10.

Limitations and failure cases. When users click on the seat of a chair, do they want to segment
the entire chair or only the seat? Our model might not handle such ambiguity explicitly. Although
AGILE3D can segment objects in its entirety very well (often with a single click as shown in Fig. 8
b), it may struggle when segmenting object parts (Fig. 8 c) and requires more clicks to segment
object parts correctly (Fig. 8 d). This can be potentially solved by learning object-part relations and
we leave it as future work. Second, like all interactive segmentation models, AGILE3D does not
support yet a prediction of semantic labels along with the predicted mask. Equipping interactive
segmentation models with semantic-awareness could be a potential future work.

5 CONCLUSION

We have proposed AGILE3D, the first interactive 3D segmentation model that simultaneously seg-
ments multiple objects in context. This is beyond the capabilities of existing interactive segmenta-
tion approaches, which are limited to segmenting single objects one by one. While offering faster
inference, AGILE3D further achieves state-of-the-art in both interactive single- and multi-object
benchmarks, in particular in the challenging low-click regime. We believe AGILE3D opens a new
door for interactive multi-object 3D segmentation and can inspire further research along this line.
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Appendix

The appendix is organized as follows:

• §A: Additional model details including:

– Architecture and detailed formulations of our click attention module.

– Implementation details of the whole model and training procedure.

• §B: More experimental results including:

– More qualitative results in various challenging cases.

– Labeling new datasets without ground truth for ARKitScenes.

– More qualitative results on KITTI-360, the outdoor LiDAR scan dataset.

– Additional ablation study on the design choices of our query fusion strategies.

– Additional ablation study on the term balance in our spatial-temporal query encoding.

– Theoretical and experimental comparison of our proposed iterative training strategy with
ITIS (Mahadevan et al., 2018) and RITM (Sofiiuk et al., 2022).
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– Additional ablation study on extending baselines (InterObject3D and InterObject3D++) for
click sharing.

– More analysis on backbone feature maps and click query attention maps.

• §C: Additional details about user studies including study designs and our developed user interface.

• §D: Details of datasets and the data preparation procedure for our interactive multi-object seg-
mentation setup.

A MODEL DETAILS

A.1 CLICK ATTENTION FORMULATIONS

The detailed architecture of our click attention module is shown in Fig. 9. All queries are represented
by the positional part Qp and the content part Ql

c, which are initialized through our click-as-query
module. We use the same representation for each point in the 3D scene. The content part of the scene
F l
c is initialized from backbone features and the positional part is obtained via Fourier positional

encodings (Tancik et al., 2020). First, a click-to-scene attention module performs cross-attention
from click queries to point features, which enables click queries to extract information from relevant
regions in the point cloud (Eq. 1). In practice, we employ masked attention (Cheng et al., 2022),
which applies an attention mask H to constrain the attention of each click query to the points within
its intermediate predicted mask from the previous layer. Then in the click-to-click attention module,
each click query self-attends to each other to realize inter-query communications (Eq. 2). To make
the point features click-aware, we let the point features cross-attend to the click queries in a scene-to-
click attention module (Eq. 3). In equations (1) to (3), we omit the layer normalization and dropout
for simplicity. WQ, WK , WV are learnable weights for query, key and value as in the standard
attention mechanism (Vaswani et al., 2017). In all attention modules, we add the positional part to
their respective keys/queries.

Ql+1
c = softmax

(

WQ(Q
l
c +Qp) ·WK(F l

c + Fp) +H√
D

)

·WV F
l
c +Ql

c (1)
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·WV Q
l
c + F l
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A.2 IMPLEMENTATION DETAILS

Model setting. We use the same Minkowski Res16UNet34C (Choy et al., 2019) backbone as Kon-
togianni et al. (2023); Schult et al. (2023). We first quantize the 3D scene into N ′ voxels with a fixed
size of 5cm as in Kontogianni et al. (2023); Schult et al. (2023). The backbone takes as input the

sparse voxelized 3D scan and produces a feature map F ∈ R
N ′

×96. The feature maps are further
projected to 128 channels by a 1×1 convolution. The click attention module consists of 3 layers
with 128 channels. All attention modules in each layer have 8 heads. The feed-forward network
has a feature dimension of 1024. In addition to regular background click queries generated from
users’ given background clicks, we also additionally use 10 learnable background queries, which
are omitted in the architecture figure (Fig. 2) for visual clarity.

Training. We set the λCE = 1 and the λDice = 2 in the loss function. The loss is applied to
every intermediate layer of the click attention module. We use the AdamW optimizer (Loshchilov
& Hutter, 2019) with a weight decay factor 1e-4. We train the model on ScanNet40 for 1100 epochs
with an initial learning rate 1e-4, which is decayed by 0.1 after 1000 epochs. Due to the smaller
data size, we train the model on ScanNet20 for 850 epochs with an initial learning rate 1e-4, which
is decayed by 0.1 after 800 epochs. We use a single TITAN RTX GPU with 24GB memory for
training.
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B ADDITIONAL RESULTS

B.1 MORE QUALITATIVE RESULTS IN VARIOUS CHALLENGING CASES.

We include more qualitative results of interactive multi-object 3D segmentation in various chal-
lenging cases in Fig. 11, e.g., target objects that are occluded by other objects, small objects, con-
nected/overlapped objects, un-rigid objects, thin structures around objects, and extremely sparse
outdoor scans.

B.2 LABELING NEW DATASETS WITHOUT GROUND TRUTH FOR ARKITSCENES

In the main paper, we conducted extensive evaluations on real-world datasets ScanNet (Dai et al.,
2017), S3DIS (Armeni et al., 2016) and KITTI-360 (Liao et al., 2022). To further demonstrate
the practical usage of our work, we use our interactive tool to annotate a variety of challenging
scenes from ARKitScenes (Baruch et al., 2021), which is a diverse real-world dataset captured with
the Apple LiDAR scanner but does not contain annotations for instance masks. Here we show
our generated segmentation results in Fig. 12. Although our model is only trained on ScanNet, it
can generalize well to unseen datasets, which is a crucial ability to label new datasets in practice.
Typically with only about 1 click on average per object (Second column), our model can already
produce visually satisfying results. With more clicks, our model can further refine the segmentation
and produce higher-quality masks (Third column).

B.3 MORE QUALITATIVE RESULTS ON KITTI-360

We show more qualitative results of our method in multi-object setting on KITTI-360 in Fig. 13.
KITTI-360 (Liao et al., 2022) has the largest domain gap with ScanNet40 since it is an outdoor
dataset and the point cloud is much sparser. To push the limits of our model, we additionally eval-
uate our model on the single scan, which is even sparser. Our model is effective for multi-object
segmentation on both accumulated scans and single scans. Please note we only train our model
on the indoor dataset ScanNet and directly evaluate on the outdoor dataset without any fine-tuning.
Those results again demonstrate the strong generalization ability of our model on datasets with large
domain shifts.
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3D Scan  IoU@1 = 86.3  IoU@2 = 88.5Ground Truth

3D Scan  IoU@1 = 71.6  IoU@7 = 80.0Ground Truth

3D Scan  IoU@1 = 71.6  IoU@2 = 76.2Ground Truth

3D Scan  IoU@1 = 52.6  IoU@3 = 74.4Ground Truth

3D Scan  IoU@1 = 63.4  IoU@5 = 73.0Ground Truth

3D Scan  IoU@3 = 62.2  IoU@10 = 90.4Ground Truth

Figure 11: More results on challenging cases in interactive multi-object segmentation. AG-
ILE3D is robust across various challenging scenarios, e.g., (a) a table is largely occluded by boxes
and shelf. (b) small objects like bottles and jars. (c) three pillows are connected and overlap each
other. (d) un-rigid objects such as curtains and bathrobes. (e) Very thin structures like door frames
around doors. (f) extremely sparse scans in outdoor scenes. Best viewed in color and zoom in.
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Figure 12: Labeling new scenes for ARKitScenes (Baruch et al., 2021). Since ARKitScenes does
not contain ground truth instance masks, we show qualitative results annotated using our interactive
tool. Although our model is only trained on ScanNet (Dai et al., 2017), it can be effectively used to
annotate unseen datasets. Typically with only about 1 click per object, our model can already gen-
erate visually satisfying results (Second column). More clicks further improved the segmentation.
The number of clicks is averaged over all target objects.

B.4 ABLATION ON QUERY FUSION STRATEGY

In our query fusion module, we apply a per-point max operation to aggregate click-specific masks to
region-specific masks (Fig. 10 a). To validate this design, we compare with an early fusion strategy
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Figure 13: Qualitative results on interactive multi-object segmentation on outdoor scans. We
evaluate AGILE3D on both accumulated scans and single scans. Even though AGILE is only trained
on the indoor dataset ScanNet40, it can effectively segment outdoor scans (either accumulated or
single scans).

Table 10: Ablation on query fusion.

Methods IoU@10 ↑ NoC@85 ↓

Late fusion - max (ours) 84.4 10.7

Late fusion - mean 83.8 10.9

Early fusion - max 78.5 13.6

Early fusion - mean 79.0 13.4

Table 11: Ablation on term balance in
spatial-temporal query encoding.

Spatial:Temporal IoU@10 ↑ NoC@85 ↓

1:1 83.9 11.1

1:2 83.6 11.2

2:1 83.7 11.2

Concatenation+Projection 83.7 11.3

where we aggregate all initial click queries that share the same region into a single query before
feeding them to our click attention module (Fig. 10 b). For both fusion strategies, we investigate
both max and mean aggregation. Tab. 10 shows the late fusion strategy outperforms the early fu-
sion strategy significantly. Although the early fusion strategy can reduce the query number and is
more computationally efficient, it may cause information loss. By contrast, the late fusion strategy
encourages each query to learn to represent different parts of the target object (Fig. 15). The final
fusion of these queries produces a strong and global representation of the target object.

B.5 ABLATION ON TERM BALANCE IN SPATIAL-TEMPORAL ENCODING

In our click-as-query module, we consolidate the spatial and temporal parts to a positional part by
direct summation. We show the ablation on the weights of the spatial and temporal part in the
summation in Tab. 11. In addition to the weighted sum, we also try to concatenate the spatial
and temporal parts into a feature vector then followed by a linear projection layer. The results
show our method works well with different weights. The weighted sum has similar scores with
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the concatenation+projection strategy but is more efficient without introducing additional model
parameters. We choose 1:1 in the main paper to avoid extensive hyperparameter tuning.

B.6 COMPARISON OF ITERATIVE TRAINING STRATEGIES

Table 12: Comparison of iterative training strategies.

Method IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ NoC@80 ↓ NoC@85 ↓ NoC@90 ↓

ITIS 74.7 79.9 81.9 8.7 11.1 14.2
RITM 77.7 81.4 82.9 7.9 10.3 13.5
AGILE3D 78.5 82.9 84.5 7.4 9.8 13.1

While acknowledging the previous exploration of iterative training in interactive 2D segmenta-
tion (Mahadevan et al., 2018; Sofiiuk et al., 2022), we underline two key distinctions in our approach:
(1) Multi-object in 3D setup: Adapting the iterative training strategy directly from single-object 2D
segmentation to our context is not possible. Unlike simple click sampling from false-positives or
false-negatives, our strategy addresses error regions of multiple objects holistically. (2) Fully it-
erative sampling: Prior approaches use random sampling as initialization to avoid computational
complexity and then incorporate a few iterative samples. In contrast, our training follows a fully it-
erative process. We start with one click per object and then sample clicks from the top error regions
(one per region) in each iteration. Our method generates numerous training samples/clicks in a few
iterations. Thus, it maintains reasonable training complexity while enhancing performance.

Here, we experimentally compare with previous training strategies: ITIS (Mahadevan et al., 2018)
and RITM (Sofiiuk et al., 2022). The training strategy in RITM is built upon ITIS with improve-
ments, e.g., batch-wise iterative training instead of epoch-wise iterative training. However, both
methods are designed for interactive single-object image segmentation. For comparison, we adopt
ITIS and RITM to train our model in single-object setting and compare with our model trained using
our training strategy. The results on ScanNet40 are shown in Tab. 12.

The model trained using our proposed training strategy significantly outperforms models trained
using ITIS or RITM. Please note we evaluate the model in single-object setting, which already
favors ITIS and RITM since they are designed for that. The results demonstrate the superiority of
our proposed iterative multi-object training scheme.

B.7 EQUIPPING THE BASELINE WITH CLICK SHARING ABILITY

Table 13: Additional ablations on click-sharing for the baselines on ScanNet40 dataset

Method IoU@5 ↑ IoU@10 ↑ IoU@15 ↑ NoC@80 ↓ NoC@85 ↓ NoC@90 ↓

InterObject3D 75.1 80.3 81.6 10.2 13.5 16.6
InterObject3D w. click sharing 73.7 80.0 81.2 10.7 13.7 16.7
InterObject3D++ 79.2 82.6 83.3 8.6 12.4 15.7
InterObject3D++ w. click sharing 79.4 83.0 83.7 8.6 12.2 15.5
AGILE3D (Ours) 82.3 85.0 86.0 6.3 10.0 14.4

It is natural to ask whether we can simply equip the baseline with the click-sharing ability. We tried
to adapt the baseline to be evaluated by our interactive multi-object segmentation protocol for a fair
comparison in Tab. 4. Now we further modify the baseline to support click sharing: we save the
positive clicks of already segmented objects and add those clicks to the negative clicks for the next
object. We report the new evaluation results on ScanNet40 in Tab. 13.

The results show that this extension only brings marginal gains to InterObject3D++ and even harms
the performance of the original InterObject3D. We speculate that this is due to limitations inherent
in the single-object network design and training process:

(1) The baseline models encode clicks as two clicks maps: one for positive and one for negative
clicks. During training, the models only see clicks related to a single object and typically those
clicks are spatially close. However, if we directly equip the single-object model with click-sharing
during inference, the model encounters “unrelated” clicks from other objects. This would introduce
a different distribution on the clicks maps from those during training.
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(2) Even though equipped with click-sharing, the baseline model still only predicts a binary mask
and the masks of different objects have no direct communication. In contrast, our AGILE3D is an
end-to-end model that directly predicts the multi-object masks in a holistic manner.

B.8 MORE ANALYSIS ON BACKBONE FEATURE MAPS AND CLICK QUERY ATTENTION MAPS

What does the backbone learn? As we only input the 3D scene to the backbone, the backbone
learns general object-level features which we visualize in Fig. 14. These features are beneficial for
click queries for extracting target object features in the click-to-scene attention module.

What does each click query attend to? We encode clicks as queries, which undergo iterative up-
dates by cross-attending to point features and self-attending to one another, resulting in a meaningful
representation of the target object. In Fig. 15, we visualize the attention maps of each click query
which reveal that each query attends to specific regions, e.g., click c1 attends to the entire chair with
emphasis on legs, c2 captures the general shape of the table while c3 focuses on the nearby leg,
aligning well with the user’s intention to use click c3 for refining the segmentation of the table leg.

Figure 14: Learned backbone features. AGILE3D learns general object-level features. The point
features are projected to RGB space using principal component analysis (PCA).

Figure 15: Attention maps for click query c1, c2, c3, respectively. Each query attends to specific
regions.

C USER STUDY

Design. To go beyond simulated user clicks and assess performance with clicks from real human
user behavior, we perform real user studies. To that end, we first implement an interactive annotation
tool with a user-friendly interface (Fig. 16). Our users were not professional labelers and they have
not used such a tool before. We showed them written instructions and also explained verbally to
them how the tool works. We did not explicitly instruct the user to click the overall max error
region but instead allowed them to follow their preferences. Before recording their results, we allow
the users to label an example scene to familiarize themselves with the tool. Each user is asked to
annotate 5 scenes, each of which consists of 4-7 objects. Those objects cover a variety of categories,
including chairs, tables, beds, lamps, telephones, etc. Please note all users labeled the same random
objects for comparable results. We conducted two user studies:

(1) 12 real users are split into two groups, where 6 users use our model trained with our proposed
iterative training strategy (Sec. 3.2 in the main paper), and the other 6 users use our model trained
with random sampling.

(2) 12 real users are split into two groups, where 6 users annotate objects one by one in a single-
object setting, and the other 6 users annotate objects in our proposed multi-object setting.

The results and analysis can be found in Sec. 4.3 in the main paper.

User interface. Our user interface is shown in Fig. 16 and developed based on the library
Open3D (Zhou et al., 2018). The software can run across platforms and on browsers, and sup-
ports both interactive single- and multi-object segmentation. We develop various keyboard shortcuts

19



Published as a conference paper at ICLR 2024

Figure 16: User interface

to ease user interaction, e.g., Ctrl + Click would identify the background, and Number + Click would
identify an object. We will release the source code of AGILE3D as well as the annotation tool to
facilitate future research.

D BENCHMARK DETAILS

D.1 DATASET

ScanNetV2 (Dai et al., 2017) is a richly-annotated dataset of 3D indoor scenes, covering diverse
room types such as offices, hotels, and living rooms. It contains 1202 scenes for training and 312
scenes for validation as well as 100 hidden test scenes. ScanNetV2 contains the segmentation mask
for 40 classes, referred to as ScanNet40. However, the official benchmark evaluates only on a 20-
class subset, referred to as ScanNet20. To test the model’s generalization ability, we also use the
20-class subset training set to train the model and evaluate on both the benchmark 20 classes and the
remaining unseen 20 classes.

S3DIS (Armeni et al., 2016) is a large-scale indoor dataset covering six areas from three campus
buildings. It contains 272 scans annotated with semantic instance masks of 13 object categories.
Following Kontogianni et al. (2023), we evaluate on the commonly used benchmark split (“Area 5
test”).

KITTI-360 (Liao et al., 2022) is a large-scale outdoor driving dataset with 100k laser scans in a
driving distance of 73.7km. It is annotated with dense semantic and instance labels for both 3D point
clouds and 2D images. The dataset consists of 11 individual sequences, each of which corresponds
to a continuous driving trajectory. We evaluate the task of interactive segmentation on the sequence
2013 05 28 drive 0000 sync.

D.2 DATA PREPARATION

In our interactive multi-object benchmark, we aim to segment multiple objects in a scene simultane-
ously. However, a 3D scene may contain a large number of objects. As shown in Fig. 17, most of the
scenes in ScanNetV2 (Dai et al., 2017) training set contain 20-40 objects and several scenes even
contain more than 100 objects. Moreover, S3DIS (Armeni et al., 2016) contains a few very large
spaces, e.g., hallways with even more than millions of points. In practice, it would not be feasible
for a user to simultaneously annotate all the objects in a large scene. Motivated by this considera-
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tion, we set the maximum number of target objects in each evaluation sample as 10. For each scene,
we randomly select M ∈ [1, 2, ..., 10] nearby objects as evaluation samples. Since such selection
involves randomness, we plan to release the object ids for a fair comparison with our method.
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Figure 17: Object counts in ScanNet training set
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