
Mathcamp 2024 Algebraic complexity Homework #1

1. Let p be a polynomial. Prove that there are infinitely many algebraic formulas repre-
senting p.

2. Define a plus-minus formula to be the same as an algebraic formula, except that we
are also allowed to use the operation −. Let L±(p) denote the size of the smallest
plus-minus formula representing p. Prove that

L±(p) ⩽ L(p) ⩽ 2L±(p)

for every polynomial p.

3. Let L×(p) denote the minimum number of × symbols in an algebraic formula com-
puting p. Similarly, S×(p) denotes the minimum number of multiplication gates in an
arithmetic circuit computing p.

(a) Prove that if deg(p) = d, then L×(p) ⩾ d− 1.

(b) Prove that if deg(p) = d, then S×(p) ⩾ log d.

4. The sparsity of a polynomial p(x), denoted sp(p), is the number of non-zero monomials
in p. That is, if p(x) = a0 + a1x+ · · ·+ adx

d, then sp(p) is the number of ai which are
non-zero.

Prove that S(p) ⩽ O(sp(p) · log deg(p)).

5. Let Ψd(x) = 1 + x+ x2 + · · ·+ xd.

(a) Prove that S(Ψd) ⩽ O((log d)2).

⋆ (b) Prove that S(Ψd) ⩽ O(log d).

6. You may have noticed that I called S(p) the circuit complexity of p, but never told you
what a circuit is. An algebraic circuit is an equivalent, but sometimes more convenient,
way of thinking about straight-line programs. Read the definition in the lecture notes,
and make sure you understand it!

⋆ 7. (a) Write down a formal definition of an algebraic circuit.

(b) Prove that every algebraic circuit can be converted to a straight-line program of
the same size, and vice versa.

(c) Prove that an algebraic formula is the same as an algebraic circuit with no cycles
(that is, the underlying undirected graph is a forest). Using this, conclude again
that S(p) ⩽ L(p) for every polynomial p.

⋆ 8. Read the proof of Theorem 3.1, which says that if S(fd) ⩽ O(log d), then integers can
be efficiently factored. Ask me if you have questions about it!

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.

Mathcamp 2024 Algebraic complexity Homework #2

1. Let p(x1, . . . , xn) = x1 + · · ·+ xn. Prove that S(p) ⩾ Ω(n).

[Note: This is a special case of Theorem 4.3, which we didn’t prove. You should find
a direct proof!]

2. Recall that S×(p) denotes the minimum number of multiplications used in any algebraic
circuit computing p. Prove that S(xd

1, . . . , x
d
n) ⩾ Ω(n log d).

3. Let p1, . . . , pn be one-variable polynomials of degrees d1, . . . , dn, respectively.

(a) Prove that

S(p1(x1), . . . , pn(xn)) ⩾
n∑

i=1

log di.

Note that we are evaluating each pi on a distinct variable xi.

(b) Prove a nearly matching upper bound, namely that

S(p1(x1), . . . , pn(xn)) ⩽ 2
n∑

i=1

log di.

4. In this problem, we will see a sketch of Strassen’s algorithm for matrix multiplication,
which shows that S(MMk) ⩽ O(klog 7) ≈ O(k2.807), beating the naive bound of k3.

(a) Given two 2× 2 matrices

A =

(
a11 a12
a21 a22

)
and

(
b11 b12
b21 b22

)
,

define

c1 = (a11 + a22)× (b11 + b22)

c2 = (a21 + a22)× b11

c3 = a11 × (b12 − b22)

c4 = a22 × (b21 − b11)

c5 = (a11 + a12)× b22

c6 = (a21 − a11)× (b11 + b12)

c7 = (a12 − a22)× (b21 + b22).

Prove that

AB =

(
c1 + c4 − c5 + c7 c3 + c5

c2 + c4 c1 − c2 + c3 + c6

)
.

(b) This is not a particularly efficient way of computing MM2. However, note that we
have computed MM2 using only seven multiplications, rather than the eight that
would be used in the usual way of computing MM2.

Mathcamp 2024 Algebraic complexity Homework #2

(c) Let A,B be k × k matrices, where k is even. Write

A =

(
A11 A12

A21 A22

)
and

(
B11 B12

B21 B22

)
,

where Aij, Bij are (k/2)× (k/2) matrices. Define C1, . . . , C7 as above, except that
now every × denotes multiplication of (k/2)× (k/2) matrices. Prove that

AB =

(
C1 + C4 − C5 + C7 C3 + C5

C2 + C4 C1 − C2 + C3 + C6

)
.

(d) By recursing, come up with a way of computing MMk whenever k is a power of two.
Using this, prove that S(MMk) ⩽ O(klog 7).

(e) Figure out how to extend this to work for all k.

5. Note: This problem requires some knowledge of multivariable calculus.

In this problem, you will explore the following theorem.

Theorem (Baur–Strassen). Let p(x1, . . . , xn) be a polynomial. Then

S

(
∂p

∂x1

, . . . ,
∂p

∂xn

)
⩽ O(S(p)).

This theorem was actually rediscovered in several different contexts by several different
people, and is extremely useful in practice. For example, all of the modern work on AI
requires rapid computation of gradients for multivariate optimization, and this theorem
basically says that this can be done efficiently.

(a) Assuming the Baur–Strassen theorem is true, prove that S(td,n) ⩾ Ω(n log d) (The-
orem 4.3 in the lecture notes).

⋆⋆ (b) Prove the Baur–Strassen theorem.

Hint: Given a straight-line program computing p, add in its “mirror image” to
compute partial derivatives of p.

If this hint is not enough, you can read a proof starting on page 78 here:
https://www.math.ias.edu/~avi/PUBLICATIONS/ChenKaWi2011.pdf

https://www.math.ias.edu/~avi/PUBLICATIONS/ChenKaWi2011.pdf

Mathcamp 2024 Algebraic complexity Homework #3

1. Construct a symbolic matrix whose determinant is xy + xz + yz − 4. (Or pick your
favorite polynomial and construct a symbolic matrix with that determinant.)

2. If you know what eigenvalues are, do the rest of this problem. If not, read the rest of
this problem and accept it as true.

(a) Prove that if M is an n × n matrix with eigenvalues λ1, . . . , λn, then Md has
eigenvalues λd

1, . . . , λ
d
n.

(b) Recall that the trace of a square matrix is the sum of its diagonal entries. Prove
that tr(M) = λ1 + · · ·+ λn.

(c) Prove that det(M) = λ1 · · ·λn.

3. In this problem, you will see one way of efficiently computing the determinant. For this
problem, you will need the results of problem 2 (but you can do this problem without
knowing what eigenvalues are; all you need about them is the results of problem 2).

(a) Let td(x1, . . . , xn) = xd
1 + · · ·+ xd

n. Prove that if an n× n matrix has eigenvalues
λ1, . . . , λn, then

tr(Md) = td(λ1, . . . , λn).

⋆ (b) Let ed(x1, . . . , xn) be the dth elementary symmetric polynomial, defined by

ed(x1, . . . , xn) =
∑

S⊆{1,2,...,n}
|S|=d

∏
i∈S

xi.

For example,

e2(x1, x2, x3, x4) = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4.

Prove the Newton identities, which state that for all n ⩾ d ⩾ 1, we have

d · ed(x1, . . . , xn) =
d∑

i=0

(−1)i−1ed−i(x1, . . . , xn)ti(x1, . . . , xn).

(c) Come up with a way of efficiently computing the determinant (i.e. show that
S(detk) is at most some polynomial in k).

4. (a) Let p(x) be a degree-n polynomial in one variable. Prove that p is uniquely
determined by the n+ 1 numbers p(0), p(1), . . . , p(n).

(b) Strengthen part (a) as follows. Prove that for every i, there exist real numbers

α
(i)
0 , α

(i)
1 , . . . , α

(i)
n such that the ith coefficient of p equals α

(i)
0 p(0) + · · ·+ α

(i)
n p(n).

⋆ means that a problem is hard.
? means that a problem is open.

means that a problem is on a topic beyond the scope of the course.

Mathcamp 2024 Algebraic complexity Homework #3

(c) Recall that the elementary symmetric polynomials are defined by

ed(x1, . . . , xn) =
∑

S⊆{1,2,...,n}
|S|=d

∏
i∈S

xi.

Prove that ed(x1, . . . , xn) is the coefficient of tn−d in the polynomial

n∏
i=1

(t+ xi).

(d) Using the previous parts, prove the following theorem of Ben-Or:

S(ed(x1, . . . , xn)) ⩽ O(n2).

This is surprising, since ed has
(
n
d

)
monomials, and cannot obviously be expressed

in a simple manner!

(e) Using the same idea, we can see how Strassen’s division elimination argument
works. Let p = f/g, where p, f, g are polynomials. Prove that

p(x1, . . . , xn) =
∞∑
k=0

f(x1, . . . , xn)(1− g(x1, . . . , xn))
k.

(f) Assume for simplicity that g(0, . . . , 0) = 1. Let Hi(p) denote the ith homogeneous
part of p, that is, the sum of all the monomials in p of degree exactly i. Prove
that

Hi(p) =
i∑

k=0

Hi(f(1− g)k).

(g) Using the same interpolation idea as above as in parts (a)–(d), show how to
compute Hi(q) given a way of computing q. Using this and the above, figure out
how to compute p given ways of computing f and g.

5. In practice, the algorithm used for computing determinants is the Berkowitz–Samuelson
algorithm.

(a) Read the German Wikipedia article for the Berkowitz–Samuelson algorithm:
https://de.wikipedia.org/wiki/Algorithmus_von_Samuelson-Berkowitz

(you can use Google translate if you don’t speak German).

⋆ (b) Edit the English Wikipedia article to be better.

https://de.wikipedia.org/wiki/Algorithmus_von_Samuelson-Berkowitz

