
Mathcamp 2024 Algebraic complexity Yuval

1 Algebraic formulas

Consider a complicated polynomial like

q(x, y) = x5 + 5x4y + 10x3y2 − x3 + 10x2y3 − 6x2y + 5xy4 − 12xy2 + y5 − 8y3. (1)

If you look at it, it might seem hopelessly unstructured, and there’s no obvious way of
simplifying it; for example, it turns out that q is irreducible, meaning it cannot be factored
as a product of simpler polynomials. Nonetheless, there is a simpler way of representing q,
since one can check that

q(x, y) = (x+ y)5 − (x+ 2y)3. (2)

Intuitively, the representation (2) is clearly “simpler” than the representation (1). The first
topic we will explore in this class, which we will shortly turn to, is a way of making this
precise, by giving formal definitions for what a “representation” of a polynomial is, and of
how “complicated” such a representation is.

However, there are more fundamental issues raised by this example: given a polynomial
as in (1), can we find a simpler representation like (2)? If not, can we at least determine
if a simpler representation exists? Can we prove that for certain polynomials, there are no
simple representations?

To start studying these questions, let us formalize them. For the rest of the class, we will
only work with polynomials with real coefficients, but we remark that almost everything we
do works in greater generality.

Definition 1.1. An algebraic formula is any way of representing a polynomial using the
following symbols: variables, constants (i.e. elements of R), parentheses, +, and ×.

More formally, we can define an algebraic formula by the following recursive rules:

• Any constant α ∈ R and any variable x is an algebraic formula.

• If F1, F2 are algebraic formulas, then so are F1 + F2 and F1 × F2.

The size of an algebraic formula is the number of operations +,× that appear in it.

Every algebraic formula represents some polynomial—by expanding out all of the paren-
theses, we end up with some sum of monomials, which is a polynomial. Conversely, by
writing a polynomial as a sum of monomials, we see that every polynomial can be repre-
sented by some algebraic formula. However, any given polynomial may have many different
algebraic formulas computing1 it. For example, here are two algebraic formulas computing

1I will generally use the words “compute” and “represent” interchangably.

1

Mathcamp 2024 Algebraic complexity Yuval

the polynomial q(x, y) above, corresponding to the two representations (1) and (2) above:

F1 :

(x× x× x× x× x) + (5× x× x× x× x× y) + (10× x× x× x× y × y)

+ (−1× x× x× x) + (10× x× x× y × y × y) + (−6× x× x× y)

+ (5× x× y × y × y × y) + (−12× x× y × y)

+ (y × y × y × y × y) + (−8× y × y × y)

F2 :
(x+ y)× (x+ y)× (x+ y)× (x+ y)× (x+ y)

+ (−1)× (x+ 2× y)× (x+ 2× y) + (x+ 2× y)

The size of F1 is 49 and the size of F2 is 19 (assuming I counted correctly). Thus, the size
of a formula2 is a reasonable way of quantifying the idea that some representations are more
efficient than others—the size of F2 is much smaller than that of F1, corresponding to the
intuitive idea that (2) is a simpler representation than (1).

Definition 1.2. The formula complexity of a polynomial p, denoted by L(p), is the size of
the smallest formula computing p.

Thus, for the polynomial q(x, y) above, we find that L(q) ⩽ 19, because F2 represents q
and has size 19. I have no idea what the exact value of L(q) is (it might be 19, but I wouldn’t
be surprised if there is a smaller formula computing q). In general, it seems quite difficult to
compute L(p) exactly for any polynomial p that is not extremely simple. And in general, we
are not really interested in determining L(p) exactly; we instead care about getting a sense
of roughly how big L(p) is.

One reason for this is that the exact value of L(p) depends a lot on the precise definition
of algebraic formulas. For example, you could wonder why we don’t allow subtraction in our
algebraic formulas. If we did allow subtraction, we could represent q even more efficiently
by replacing the multiplication by −1 in F2 by a minus sign. However, as you will show on
the homework, the value of L(p) changes by at most a factor of 2 if we allow minus signs, for
any polynomial p. In other words, while allowing minus signs might change the exact value
of L(p), it has no significant effect on the rough value—in this class, as in all of theoretical
computer science, we will usually not care too much about extra constant factors like this 2.

With that understanding, let’s see if we can get an idea of how large L(p) should be
for a general polynomial p. To warm up, let’s start with some of the simplest polynomials
imaginable.

Proposition 1.3. For the polynomial xd, we have L(xd) = d− 1.

Proof. We will prove both that L(xd) ⩽ d− 1, and that L(xd) ⩾ d− 1. The first inequality
is pretty straightforward, since we have the formula

x× x× x× · · · × x︸ ︷︷ ︸
d factors

2I will usually stop writing “algebraic formula” and simply write “fomula” from now on.

2

Mathcamp 2024 Algebraic complexity Yuval

representing xd, using d− 1 multiplications.
However, the second inequality seems harder: there are infinitely many formulas repre-

senting xd, and how can we be sure that none of them is smaller? To prove this, we will
actually prove the following lemma.

Lemma 1.4. If a formula F has size s and computes a polynomial p, then deg(p) ⩽ s+ 1.

We’ll prove Lemma 1.4 in a moment, but first let’s finish the proof that L(xd) ⩾ d − 1.
Indeed, suppose for contradiction that there is some formula F computing xd with size
s < d− 1. By Lemma 1.4, we conclude that deg(xd) ⩽ s+ 1 < d, a contradiction.

We now turn to the proof of Lemma 1.4. This proof will demonstrate one of the most
commonly used proof techniques in this subject, which is induction on the structure of the
formula. Indeed, recall that formulas are defined in a recursive fashion: we defined formulas
with no operations (size 0) to be just constants and variables, and then every other formula
is of the form F1 + F2 or F1 × F2 for some simpler formulas F1, F2. This structure naturally
lends itself to inductive proofs.

Proof of Lemma 1.4. We prove the lemma by (strong) induction on s. The base case is s = 0.
By definition, a formula of size 0 is either a variable or a constant. Thus, the polynomial
p it computes has degree 0 (if it’s a constant) or 1 (if it’s a variable), and the inequality
deg(p) ⩽ s+ 1 certainly holds for s = 0.

We now turn to the inductive step, so let us suppose we have proved the result for all
numbers at most s − 1. Let F be a formula of size s. By the definition of formulas, there
exist formulas F1, F2 such that F = F1+F2 or F = F1×F2. Let F1, F2 compute polynomials
p1, p2, respectively, and have sizes s1, s2, respectively. Note that s = s1 + s2 + 1, since F is
obtained from F1, F2 by joining them with a single extra operation.

First, suppose that F = F1 × F2. Then the polynomial p computed by F satisfies
p = p1 × p2, and in particular deg(p) = deg(p1) + deg(p2). By the inductive hypothesis, we
have that deg(p1) ⩽ s1 + 1 and deg(p2) ⩽ s2 + 1, and therefore

deg(p) = deg(p1) + deg(p2) ⩽ (s1 + 1) + (s2 + 1) = (s1 + s2 + 1) + 1 = s+ 1,

completing the proof of the inductive step.
Now, suppose instead that F = F1 +F2 so that p = p1 + p2. Adding polynomials cannot

increase the degree, therefore

deg(p) ⩽ max{deg(p1), deg(p2)} ⩽ max{s1 + 1, s2 + 1} ⩽ s+ 1,

where we use the inductive hypothesis in the second inequality, and the fact that s1, s2 ⩽ s
in the final inequality.

For the moment, let us stick with one-variable polynomials. Lemma 1.4 implies that if p
is a degree-d polynomial, then L(p) ⩾ d−1. How good is this bound for general one-variable
polynomials?

3

Mathcamp 2024 Algebraic complexity Yuval

Consider a general one-variable polynomial

p(x) = adx
d + ad−1x

d−1 + · · ·+ a1x+ a0.

The most natural way to compute such a polynomial with a formula is to compute each
term aix

i separately, and then to add them all up with d extra additions. We know that
L(xi) = i − 1 by Proposition 1.3, so L(aix

i) ⩽ i. Therefore, together with the d additions,
we conclude

L(p) ⩽ d+
d∑

i=0

i = d+

(
d+ 1

2

)
=

d2 + 3d

2
.

In particular, this bound is quadratic in the degree d, whereas our lower bound from
Lemma 1.4 is linear in d.

It seems hopeless to meaningfully improve this upper bound for general one-variable
polynomials. After all, Proposition 1.3 says that the “obvious” way of computing xi is
optimal, so how could we compute p(x) other than computing each term in turn and then
adding them up?

As it turns out, this is not at all the best way to compute one-variable polynomials.

Proposition 1.5 (Horner’s rule). If p(x) is a one-variable polynomial of degree d, then

L(p) ⩽ 2d.

Proof. Let p(x) = a0 + a1x+ · · ·+ adx
d. Now, consider the algebraic formula

a0 + x× (a1 + x× (a2 + x× (· · ·+ x× (ad) · · ·))) .

This formula computes p, and has exactly d multiplications and d additions.

Combining Lemma 1.4 and Proposition 1.5, we conclude the following theorem.

Theorem 1.6. If p(x) is a one-variable polynomial of degree d, then

d− 1 ⩽ L(d) ⩽ 2d.

This theorem gives us an essentially complete understanding of how large L(p) is for
one-variable polynomials p(x) (remember that we don’t really care about absolute constant
factors like the 2 above). Because of this, for most of the rest of the course we will mostly
be interested in multivariate polynomials, where things get much more complicated and
interesting. But before we do so, we need to introduce another way of computing polynomials.

2 Straight-line programs and algebraic circuits

Although this course is about abstract questions about polynomials, everything we are doing
has its roots in theoretical computer science. This is evident in the word “compute” that we

4

Mathcamp 2024 Algebraic complexity Yuval

use to describe how a formula represents a polynomial. Also, efficient ways of representing
polynomials, such as that in Proposition 1.5, are clearly useful if you actually want to
compute some polynomial using a small number of additions and multiplications.

However, if you were actually computing some polynomial (or, more realistically, pro-
gramming a computer to compute it), you wouldn’t restrict yourself to formulas. In partic-
ular, you would allow yourself to run subroutines (i.e. compute some auxiliary polynomials),
and then reuse the results of those subroutines multiple times. In “human” terms, this means
that you are writing things down in a notebook, and you are always allowed to go back and
use whatever you’ve done previously. The following definition formalizes this notion.

Definition 2.1. A straight-line program consists of a sequence R1, . . . , Rm of rows, such that
each row Rk is of one of the following two forms:

• Rk is a variable or a constant α ∈ R, or

• Rk is of the form Ri +Rj or Ri ×Rj, for some indices i, j with 1 ⩽ i, j < k.

The final row of the program, Rm, is the output: the program computes the polynomial
written in row Rm.

Note that this exactly formalizes the notebook idea above—you are writing down in-
creasingly complex computations, where each computation is obtained from previous ones
by either adding or multiplying. Throughout, you have access to the whole history of your
computation, and you can use it as you’d like.

Here is an example of a straight-line program. On the left I write the straight-line
program itself, and on the right the polynomial computed by every row.

R1 : x x
R2 : y y
R3 : 2 2
R4 : R2 ×R3 2y
R5 : R1 +R4 x+ 2y
R6 : R5 ×R5 (x+ 2y)2

R7 : R1 +R6 (x+ 2y)2 + x

Thus, this straight-line program computes the polynomial (x+ 2y)2 + x.
It is often convenient to express straight-line programs visually, as a graph. Such a rep-

resentation is called an algebraic circuit. Rather than giving the formal, somewhat cumber-
some, definition, let me simply draw the algebraic circuit corresponding to the straight-line
program above.

5

Mathcamp 2024 Algebraic complexity Yuval

x

G1

y

G2

2

G3

× G4

+

G5

× G6

+

G7

In an algebraic circuit, we have a number of gates, labeled G1–G7 in the picture above. The
gates correspond to the rows of the straight-line program; thus, a gate can either include a
variable or a constant α ∈ R, or it can include one of the two algebraic operations. Every
gate marked with an operation has two incoming arrows from gates labeled with a smaller
number, corresponding to how a row of a straight-line program can be the sum or product
of two earlier rows. Just as repetitions are allowed in a straight-line program, we allow two
arrows to go between the same pair of gates. It is hopefully pretty clear how to convert from
a straight-line program to an algebraic circuit, and vice versa.

Definition 2.2. The size of an algebraic circuit is the number of gates in it marked with
+ or ×. Equivalently, the size of a straight-line program is the number of rows that are
obtained from earlier rows by adding or multiplying.

The circuit complexity of a polynomial p, denoted S(p), is the minimum size of an alge-
braic circuit (or, equivalently, straight-line program) computing p.

Note that every algebraic formula computing p can be converted into a straight-line
program computing p, with the same size, just by writing every instance of + or × in the
formula as a new row in the straight-line program. Because of this, we conclude that

S(p) ⩽ L(p) (3)

for every polynomial p—the most efficient representation of p as a circuit is at least as
efficient as the most efficient representation as a formula.

Perhaps surprisingly, the inequality equation (3) is often very far from being an equality.
The simplest case demonstrating this is the following result, which stands in sharp contrast
to Proposition 1.3.

Theorem 2.3. For the polynomial xd, we have L(xd) ⩽ 2⌈log d⌉−1, where here and through-
out the course log denotes the base-2 logarithm.

6

Mathcamp 2024 Algebraic complexity Yuval

Proof. We begin by proving this when d is a power of 2, say d = 2k. Here is a straight-line
program computing xd with k = log d multiplications.

R1 : x x
R2 : R1 ×R1 x2

R3 : R2 ×R2 x4

...
...

...

Rk+1 Rk ×Rk x2k = xd

In general, suppose d is not a power of 2, and let k = ⌈log d⌉. By writing d in binary, we can
express d as a sum of at most k powers of two, each of which is at most 2k−1. But this means
that by multiplying together at most k of the rows R1, . . . , Rk above, we can compute xd. So
we had k − 1 multiplications to produce those rows, plus another at most k multiplications
to get to xd, giving the claimed bound.

In other words, for the simple polynomial xd, we have L(xd) = d − 1, whereas S(xd) is
much smaller, namely at most3 2 log d. This demonstrates the power of using straight-line
programs over formulas: the reason the repeated squaring algorithm above worked is that
we could “remember” the powers we have already computed.

Given how much more powerful straight-line programs are, maybe there is an even more
efficient way of computing xd? The following, an analogue of Lemma 1.4 for circuits, shows
that the answer is essentially no.

Lemma 2.4. If a straight-line program has size s and computes a polynomial p, then deg p ⩽
2s.

Proof. As in the proof of Lemma 1.4, we prove this by induction on the structure of the
program. The base case s = 0 is again clear, since a straight-line program of size 0 can
only compute a constant or a variable, and hence deg(p) ⩽ 1 = 2s in this case. For the
inductive step, let the rows of the straight-line program be R1, . . . , Rm. We may assume
that Rm, where the output of Rm is the polynomial p. If Rm is a constant or a variable,
then deg(p) ⩽ 1 again, and we are certainly done. If not, then we have that Rm = Ri + Rj

or Rm = Ri × Rj for some 1 ⩽ i, j < m. Note that (R1, . . . , Ri) is another straight-line
program, and it has size at most s− 1 because i < m and Rm does an operation. Similarly,
(R1, . . . , Rj) is a straight-line program of size at most s− 1.

Therefore, if we let pi, pj be the polynomials computed at Ri, Rj, respectively, we have by
the inductive hypothesis that deg(pi), deg(pj) ⩽ 2s−1. Now, if Rm = Ri×Rj, then p = pi×pj,
and hence

deg(p) = deg(pi) + deg(pj) ⩽ 2s−1 + 2s−1 = 2s,

and if Rm = Ri +Rj then p = pi + pj, and hence

deg(p) ⩽ max{deg(pi), deg(pj)} ⩽ 2s−1 < 2s,

and in either case we have proved the inductive step.
3I will start being lazy with keeping track of floor and ceiling signs; just as we don’t care about absolute

constant factors, we don’t really care about adding or subtracting 1 to make sure the rounding is OK.

7

Mathcamp 2024 Algebraic complexity Yuval

Corollary 2.5. If deg(p) = d, then S(p) ⩾ log d.

Proof. If s < log d, then any straight-line program of size s must compute a polynomial of
degree at most 2s < d by Lemma 2.4, and hence cannot compute p.

In particular, this result shows that S(xd) ⩾ log d. Thus, Theorem 2.3 is essentially best
possible.

To summarize, what we have shown is that for any one-variable polynomial p of degree
d, we have

log d ⩽ S(p) ⩽ L(p) ⩽ 2d,

where the lower bound is by Lemma 2.4 and the upper bound by Proposition 1.5. This is a
rather large gap; can we hope to close it?

Rather astonishingly, we are essentially at the limits of human knowledge. In particular,
the following remains a major open problem.

Open problem 2.6. Give an example of a one-variable polynomial p(x) with degree d and
S(p) ⩽̸ O(log d).

A few remarks about this open problem are in order:

• First, we recall the meaning of big-O notation; one says that f ⩽ O(g) if there is
an absolute constant C such that f(x) ⩽ Cg(x) for all x. In particular, one way of
rephrasing Theorem 2.3 is that S(xd) ⩽ O(log d).

• Because of the presence of the implicit constant hidden in the big-O, Open problem 2.6
is not “really” about a single polynomial p: every polynomial p has some finite S(p),
and thus its circuit complexity is of the form O(log d), if we are allowed to pick the
implicit constant sufficiently large.

Thus, the correct way to understand Open problem 2.6 is as asking for a infinite family
of polynomials, say p1, p2, . . . , where deg(pd) = d and S(pd) ⩽̸ O(log d). That is, we
want the function S(pd) to tend to infinity faster than log d as d → ∞.

• A result of Hrubeš and Yehudayoff implies that there exist polynomials p of degree d
and S(p) ⩾ Ω(

√
d). Here, the big-Ω is the “opposite” of the big-O; this says that, for

some absolute constant c > 0, we have S(p) ⩾ c
√
d. In particular, since

√
d grows much

faster than log d, their result does yield polynomials p with S(p) ⩽̸ O(log d). However,
this is a purely existential result: they show that such a polynomial must exist, but
give no clue as to what an example of such a polynomial is.

3 Factorials vs. factoring

Although Open problem 2.6 remains open, there are several natural candidates of polyno-
mials whose circuit complexity is expected to be much larger than log d. One such example
are the factorial polynomials, defined by

fd(x) := (x− 1)(x− 2)(x− 3) · · · (x− d).

8

Mathcamp 2024 Algebraic complexity Yuval

Note that fd has degree d; it is widely believed that S(fd) ⩽̸ O(log d). One reason to believe
this is the following remarkable result of Lipton.

Theorem 3.1 (Lipton). If S(fd) ⩽ O(log d), then there is an efficient algorithm for integer
factorization.

Before we see the proof of this result, let’s understand what it means. By integer factor-
ization, we mean the following problem: given a composite integer N , output a non-trivial
factor of it (that is, some factor m with 1 < m < N). Note that if you have an effi-
cient algorithm for this problem, then by recursing on m and N/m, you can obtain the full
factorization of N .

What does efficient mean here? Note that it takes logN binary digits to write the
integer N , so the size of the input to this problem is n := logN . As is usual in computer
science, an efficient algorithm is one that runs in polynomial time in the input, i.e. time
at most nC = (logN)C for some constant C. Note that a naive algorithm for factoring N ,
namely trying every number between 2 and

√
N , has runtime roughly

√
N = 2n/2, which is

exponential in the input length n.
While better algorithms are known, it is widely believed that there is no polynomial-time

algorithm for integer factoring. In fact, essentially the entire world economy rests on this
assumption: the RSA cryptosystem, which is used all over the internet and other forms of
digital communication, is only thought to be secure because of this assumption. If you could
efficiently factor integers, then you could break most of the world’s encryption. As such,
while Theorem 3.1 does not prove that S(fd) ⩽̸ O(log d), it gives fairly compelling evidence.

Proof sketch of Theorem 3.1. Suppose we have an algebraic circuit which computes fd with
O(log d) operations, for every d. We are given a composite integer N of length n = ⌈log n⌉
as input, and let’s say that N = ab for some integers 1 < a <

√
N < b < N .

Let d =
√
N , and note that log d = 1

2
logN = n

2
. We now run the following (randomized)

algorithm:

1. Pick a random integer 1 ⩽ x ⩽ N .

2. Using our algebraic circuit, evaluate fd(x). This uses O(log d) = O(n) algebraic op-
erations, hence this computation can be done in polynomial time, since addition and
multiplication can be done in polynomial time.

3. Using the Euclidean algorithm (another efficient, polynomial-time algorithm), compute
m := gcd(fd(x), N).

4. If 1 < m < N , we have found a non-trivial factor of N .

Recall that N = ab, where a < d < b. In particular, the fact that a < d implies that

fd(x) ≡ 0 (mod a) for every x.

9

Mathcamp 2024 Algebraic complexity Yuval

Indeed, by definition, we have that

fd(x) ≡ (x− 1)(x− 2) · · · (x− d) (mod a),

and since a < d, one of these d terms must be 0 mod a, and hence the whole product is zero.
In particular, this implies that regardless of the random outcome of x, we have that a | fd(x).
Since a | N as well, we conclude that a | m, where we recall that m = gcd(fd(x), N).

For this proof sketch, let us make two unjustified extra assumptions: b is prime, and b ⩾
2d. Since we picked x randomly, its residue x (mod b) is a random element of {0, 1, 2, . . . , b−
1}. At most half of these elements are between 1 and d, by our assumption that b ⩾ 2d.
Therefore, with probability at least 1

2
, we have

x mod b /∈ {1, 2, . . . , d}

or equivalently
fd(x) = (x− 1)(x− 2) · · · (x− d) ̸≡ 0 (mod b),

since we assumed that b is prime.
In other words, with probability at least 1

2
, we have that b ∤ fd(x), and thus b ∤ m. So

with probability at least 1
2
, the number m is a factor of N not equal to 1 (since a | m) and

not equal to N (since b ∤ m). That is, with probability at least 1
2
, we output a non-trivial

factor m of N . To deal with the fact that we fail with some probability, we simply repeat
this algorithm over and over again, with a new random choice of x every time; with high
probability, we will very quickly find a “good” x, and thus find a non-trivial factor of N .

4 Multivariate polynomials

We now move on from single-variable polynomials, and turn to multivariate polynomials.
Remember that in Proposition 1.5, we obtained a bound on S(p) that was linear in the
degree of p, and that even earlier, we saw a simple algebraic formula showing S(p) ⩽ O(d2)
for every one-variable polynomial p with deg(p) = d. It is unreasonable to expect something
like this to hold for multivariate polynomials. For example, consider the polynomial

q(x1, . . . , xn) =
∑

S⊆{1,2,...,n}

∏
i∈S

xi.

This polynomial has n variables, degree n, and 2n monomials. So the naive way of expressing
q as a formula, by summing over all monomials, has size at least 2n—much larger than n.
However, for this specific polynomial, we still have L(q) ⩽ O(n). Indeed, another way of
representing q is as

q(x1, . . . , xn) = (x1 + 1)(x2 + 1) · · · (xn + 1), (4)

and this gives an algebraic formula for q with n additions and n− 1 multiplications.
Nonetheless, it is widely believed that there should exist “natural” polynomials—we will

return shortly to what this means—which have n variables, degree n, and circuit complexity
that is exponential in n.

10

Mathcamp 2024 Algebraic complexity Yuval

Unfortunately, we are extremely far from proving this. In fact, the following two problems
remain wide open.

Open problem 4.1. Give an example of a polynomial p(x1, . . . , xn) with n variables, degree
deg(p) ⩽ n, and S(p) ⩽̸ O(n log n).

Open problem 4.2. Give an example of a polynomial p(x1, . . . , xn) with n variables, degree
deg(p) ⩽ 10000, and S(p) ⩽̸ O(n).

Note that for the second problem, the polynomial p(x1, . . . , xn) = x1+ · · ·+xn has degree
1, and it is not hard to show that S(p) ⩾ Ω(n). So Open problem 4.2 basically asks for a
constant-degree polynomial that is “substantially harder” than this simple example.

But what’s up with the n log n in Open problem 4.1? That comes from the following
remarkable theorem.

Theorem 4.3 (Strassen, Baur–Strassen). The polynomial td,n(x1, . . . , xn) = xd
1 + · · · + xd

n

satisfies S(td,n) ⩾ Ω(n log d). In particular, tn,n has n variables, degree n, and S(tn,n) ⩾
Ω(n log n).

There are two important remarks to make about Theorem 4.3. The first is that, as
indicated by Open problem 4.1, this theorem is at the limit of human knowledge: we do
not know how to prove a stronger lower bound for any polynomial. The second is that this
theorem is not obvious.

To indicate what I mean by the second point, let me try to convince you that Theorem 4.3
is obvious. First, we know by Corollary 2.5 that S(xd

i) ⩾ Ω(log d) for each variable xi. Second,
the n monomials in td,n each involve a different variable, so there’s no way of combining these
n computations. Each computation has circuit complexity at least Ω(log d), so in total we
conclude that S(td,n) ⩾ Ω(n log d).

This argument is bogus, and specifically the part that’s bogus is that we cannot combine
the n computations. It turns out that in some cases, there are ways of combining seemingly
disparate computations, in such a way that the total complexity is less than the sum of its
parts. A simple example is the polynomial x2 − y2. The naive computation of it involves
two multiplications (to square x, and to separately sqauare y). But we know that x2 − y2 =
(x+ y)(x− y), which shows that we can instead use only one multiplication, by combining
the variables in an unexpected way.

A more dramatic example, more closely related to the above, has to do with matrix
multiplication. To state this example correctly, we need to extend our definition of S to
tuples of polynomials. Let (p1, . . . , pℓ) be a tuple of polynomials. We say that an algebraic
circuit computes (p1, . . . , pℓ) if there is a collection of ℓ special gates in the circuit, such that
the ith special gate computes pi. We denote by S(p1, . . . , pℓ) the minimum size of a circuit
computing (p1, . . . , pℓ). We certainly have

S(p1, . . . , pℓ) ⩽ S(p1) + · · ·+ S(pℓ),

since we can just take an optimal circuit for each pi in turn. The bogus argument above
suggests that this inequality should always be an equality, but this is not at all the case.

11

Mathcamp 2024 Algebraic complexity Yuval

Definition 4.4. The matrix multiplication tuple MMk is a tuple of k2 polynomials in 2k2

variables {xij, yij}ki,j=1, defined as follows. Make two k× k matrices of the variables, namely

X =


x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...
xk1 xk2 · · · xkk

 Y =


y11 y12 · · · y1k
y21 y22 · · · y2k
...

...
. . .

...
yk1 yk2 · · · ykk

 .

The k2 polynomials in the tuple MMk are then the k2 entries of the matrix XY .

Thus, for example, the first entry of MMk is the polynomial

x11y11 + x12y21 + · · ·+ x1kyk1.

This polynomial has circuit complexity Ω(k), as does every polynomial in MMk. As there
are k2 polynomials in this tuple, the intuition above would suggest that S(MMk) ⩾ Ω(k3),
since we need to do k2 different computations, each of complexity k. And if you think about
how you multiply matrices, this makes sense: whenever I have to multiply two matrices,
I go through the entries of the output one-by-one. Nonetheless, the following remarkable
theorem is true.

Theorem 4.5 (Strassen, Coppersmith–Winograd, Vassilevska Williams–Xu–Xu–Zhou, and
many others). S(MMk) is much smaller than k3. Concretely, S(MMk) ⩽ O(k2.371552).

In fact, it is widely believed that S(MMk) ⩽ O(k2+ε) for any ε > 0. Note that this is
essentially best possible, since MMk has 2k2 variables, so cannot be computed by any circuit
of size less than k2. That is, for the matrix multiplication problem, remarkable “economies
of scale” are possible, and many seemingly independent computations can be efficiently
combined.

5 The only lower bound we know

As we saw above, Theorem 4.3 is not obvious. So let’s prove it!
Actually, we won’t quite prove it—the proof uses some properties of partial derivatives

which are beyond the scope of this class. But we will see a proof of the following closely
related theorem.

Theorem 5.1 (Strassen). S(xd
1, . . . , x

d
n) ⩾ n log d.

That is, this theorem shows that (in contrast to other examples, such as matrix mul-
tiplication) there really are no “economies of scale” here. The best way to compute the
n polynomials xd

1, . . . , x
d
n is basically to just compute each of them independently. On the

homework, if you are interested, you will see a proof of Theorem 4.3 from Theorem 5.1.
The proof of Theorem 5.1 relies on a foundational theorem of algebraic geometry, known

as Bézout’s theorem. Before we state it, recall the following two simple facts:

12

Mathcamp 2024 Algebraic complexity Yuval

• A one-variable polynomial equation f(x) = 0 has at most deg(f) solutions.

• A system of linear equations has zero, one, or infinitely many solutions.

Bézout’s theorem is a common generalization of these two facts. We do not state its strongest
version, but a simple consequence that will suffice for us.

Theorem 5.2 (Bézout). Consider a system of multivariate polynomial equations
f1(x1, . . . , xn) = 0

f2(x1, . . . , xn) = 0

...

fm(x1, . . . , xn) = 0

Over C, this system has either infinitely many solutions, or at most deg(f1) · · · deg(fm)
solutions.

Note that the case where there is only one polynomial gives the first bullet point above,
whereas the case when all the polynomials have degree 1 gives the second bullet point. We
remark too that, since every solution over R is also a solution over C, the same conclusion
holds if we are only interested in solutions over R.

We will not prove Theorem 5.2 in this class. But once we know it, it is not too hard to
prove Theorem 5.1.

Proof of Theorem 5.1. Let (R1, . . . , Rm) be a straight-line program of size s computing
xd
1, . . . , x

d
n. Let pk be the polynomial computed at row Rk. Additionally, for every row

Rk, we introduce a new variable yk. We now define a system of m+n polynomial equations,
as follows:

• If row Rk is a variable xi, we add the equation yk = xi.

• If row Rk is a constant α ∈ R, we add the equation yk = α.

• If row Rk is of the form Ri +Rj, we add the equation yk = yi + yj.

• If row Rk is of the form Rk = Ri ×Rj, we add the equation yk = yiyj.

• If row Rk is one of our special output rows, we add the equation yk = 1.

Note that we have m+ n polynomial equations—one equation for each of the m rows, plus
n extra equations for our n special output rows. Additionally, at most s of these equations
have degree 2, namely those equations corresponding to multiplication rows, and all other
equations have degree 1. Call the system of equations we have defined S; S is a system of
equations in the variables x1, . . . , xn, y1, . . . , ym.

13

Mathcamp 2024 Algebraic complexity Yuval

Note that solutions to the system S are rather constrained. Indeed, fix some solution
(x1, . . . , xn, y1, . . . , ym), where each xi, ym is some complex number, such that this sequence
of complex numbers is a solution of S. We claim that, for every k, we have

yk = pk(x1, . . . , xn). (5)

Indeed, this is proved by induction on k. For rows Rk which are variable or constant rows,
(5) is immediate from the equation yk = xi and yk = α, respectively. For the operation rows,
we maintain (5) by induction: if Rk = Ri+Rj, then pk = pi+ pj, and therefore the equation
yk = yi + yj implies

yk = yi + yj = pi(x1, . . . , xn) + pj(x1, . . . , xn) = pk(x1, . . . , xn).

Similarly, rows Rk = Ri × Rj also preserve (5). Finally, recall that at the n special output
rows, we have pk = xd

i , since we assumed this straight-line program computes (xd
1, . . . , x

d
n).

Therefore, our solution also satisfies
xi

d = 1 (6)

for all 1 ⩽ i ⩽ n.
Now, consider the system of equations S ′ defined by

S ′ =


xd
1 = 1

xd
2 = 1

...

xd
n = 1

The argument above shows that solutions to S are in bijection with solutions to S ′. Indeed,
by (6), every solution to S is also a solution to S ′. Conversely, given a solution to S ′, we
may uniquely construct a solution to S by using the rule (5) to define the value of each of
the variables yk. These two operations are inverses, so we conclude that indeed, there is a
bijection between solutions of S and solutions of S ′.

Now, we observe that S ′ has exactly dn solutions over C. In particular, S ′ has finitely
many solutions over C, so S also has finitely many solutions over C. Recall that S consists of
at most s equations of degree 2, plus some number of equations of degree 1. By Theorem 5.2,
and the fact that S has only finitely many solutions, we conclude that S has at most 2s

solutions over C. But recalling that S and S ′ have the same number of solutions, we conclude
that

2s ⩾ dn

or equivalently
s ⩾ n log d.

We stress again that this simple but beautiful argument remains the best lower bound
we know on the circuit complexity of any polynomial!

14

Mathcamp 2024 Algebraic complexity Yuval

6 The determinant

One of the most important polynomials in all of mathematics is the determinant of a matrix.
There are a number of different ways to define it; for our purposes, we will define the
determinant of a k × k matrix

X =


x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...
xk1 xk2 · · · xkk


by the Leibniz formula, namely

det(X) :=
∑
σ∈Sk

sgn(σ)
k∏

i=1

xiσ(i). (7)

Here, Sk denotes the set of all permutations σ : {1, . . . , k} → {1, . . . , k}, and sgn(σ) denotes
the sign of a permutation. If you’ve never seen the sign of a permutation, don’t worry too
much about it; it is a natural way of declaring half of the permutations “positive” and half
“negative”. Thus, (7) tells us that in order to compute det(X), we need to run over all
“generalized diagonals” of X (i.e. pick one entry from each row and each column of X),
multiply the entries on this generalized diagonal, multiply by the sign of the permutation,
and add up all of these contributions.

Note that we may view detk := det(X) as a degree-k polynomial in the k2 variables
x11, . . . , xkk. The formula (7) also gives an algebraic formula for computing this polynomial,
implying that

S(detk) ⩽ L(detk) ⩽ O(k · k!).
Note that k! grows super-exponentially quickly in k, so this is a very poor bound.

However, if you’ve ever had to compute determinants by hand, you know it can be done
much more quickly by using Gaussian elimination (aka row reduction). This algorithm should
prove that S(detk) ⩽ O(k3), but there’s a catch: when you do Gaussian elimination, you
frequently have to divide by matrix entries, and we do not allow division in our algebraic
circuits! There are (at least) three ways of getting around this issue.

• We can say “eh” and allow division in our algebraic circuits.

• Strassen proved that, in fact, division is never necessary! Every algebraic circuit which
does allow division but computes a polynomial can be converted into another circuit,
not much larger, which has no division whatsoever.

• Berkowitz found a beautiful way to reduce the computation of the determinant to the
computation of a bunch of matrix multiplication problems. In particular, his result
implies that S(detk) ⩽ S(MMk) ·O(log k). Plugging in Theorem 4.5, we obtain an even
better upper bound on S(detk) than the O(k3) bound given by Gaussian elimination,
which uses no division.

15

Mathcamp 2024 Algebraic complexity Yuval

If you are interested, you can learn about Berkowitz’s algorithm (as well as another algorithm
for computing the determinant) on the homework.

Thus, the determinant can be efficiently computed. Big whoop. Why should we care?
Well, it turns out that there is a sort of converse to this statement: if a polynomial can be
efficiently computed, then it is a determinant! To state this more precisely, we need the
following definition.

Definition 6.1. A symbolic matrix X is a matrix whose entries are elements of R or variables.
All of our symbolic matrices will always be square matrices, and we denote their size (i.e.
number of rows or columns) by |X|.

Note that the determinant of a symbolic matrix is a polynomial in the variables appearing
in it. Then the result stated informally above is rigorously stated as follows.

Theorem 6.2 (Valiant). Let p(x1, . . . , xn) be a polynomial with L(p) = s. There exists a
symbolic matrix Xp, of size |Xp| = O(s) and using the variables x1, . . . , xn, such that

det(Xp) = p(x1, . . . , xn).

In the language of computational complexity theorem, we would say that “the determi-
nant is VL-complete”; this means precisely that whenever a polynomial can be efficiently
computed by an algebraic formula, then it can be efficiently “simulated” by a determinant
of a symbolic matrix.

Theorem 6.2 can give an explanation for why determinants appear so frequently in so
many different branches of mathematics, including combinatorics, differential equations, knot
theory, and statistical physics: if we have a naturally-appearing polynomial which we can
efficiently compute, Theorem 6.2 says that it simply is a determinant, regardless of where it
came from!

For the proof of Theorem 6.2, we will need a few basic facts about the determinant. All
of these are well-known, and you may have seen them in your linear algebra class; if there is
one that is unfamiliar to you, please try to prove it or come ask me at TAU!

Lemma 6.3. The determinant satisfies the following properties.

(a) If M = (α) is a 1× 1 matrix whose only entry is α, then det(M) = α.

(b) For a 2× 2 matrix, we have

det

(
a b
c d

)
= ad− bc.

(c) Suppose that M is a square matrix of the form

M =

(
A 0
0 B

)
,

where A,B are square matrices (not necessarily of the same size), and 0 denotes a
submatrix all of whose entries are 0. Then det(M) = det(A) det(B).

16

Mathcamp 2024 Algebraic complexity Yuval

(d) If M ′ is obtained from M by swapping two rows, then det(M ′) = ± det(M), where the
sign is determined by the parity of the distance between the two swapped rows.

Proof of Theorem 6.2. We are given a polynomial p, as well as a formula F computing p,
and would like to construct a symbolic matrix Xp satisfying det(Xp) = p. By the same
“induction on structure” idea we’ve seen a number of times, it suffices to figure out how to
do the following steps:

1. Define Xp in case F is a formula of size 0, consisting of a constant or a variable.

2. Define Xp in case F is of the form F1×F2. Concretely, this means that given symbolic
matrices X1, X2, we would like to construct a symbolic matrix X× such that det(X×) =
det(X1) det(X2).

3. Define Xp in case F is of the form F1+F2. Concretely, this means that given symbolic
matrices X1, X2, we would like to construct a symbolic matrix X+ such that det(X+) =
det(X1) + det(X2).

Then, so long as we ensure that X×, X+ are not much bigger than X1, X2, we will have
proved the theorem.

The first step is quite straightforward. Indeed, if F consists of a variable x, we can simply
define Xp to be the 1 × 1 symbolic matrix x. Similarly, if F consists of a constant α ∈ R,
then we can again set Xp = (α). By Lemma 6.3(a), this will make the first step work.

Similarly, the second step is pretty easy, given Lemma 6.3(c): we can simply set

X× =

(
X1 0
0 X2

)
.

Then the size of X is simply |X1| + |X2|, and we are still in good shape to obtain a good
inductive bound on |Xp|.

However, the big problem is figuring out how to defineX+. This isn’t simply me forgetting
some useful property in Lemma 6.3: I am not aware of any way of building, from two general
matrices X1, X2, a matrix X+ with det(X+) = det(X1) + det(X2).

This seems like bad news for proving Theorem 6.2, but luckily Valiant came up with a
beautiful way of strengthening the induction hypothesis. We will now ensure that all of our
matrices Xp have the following form: 

∗ ∗ ∗ ∗
1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗

 (8)

That is, all of our matrices will have unconstrained entries on and above the main diagonal,
have all ones on the first sub-diagonal, and have all entries below that 0.

17

Mathcamp 2024 Algebraic complexity Yuval

Given this new constraint, we have to go back and redo the steps we’ve already done,
but luckily this is pretty easy. For formulas of size 0, we can simply define

Xp =

(
1 0
1 x

)
in case F is a single variable x, and similarly

Xp =

(
1 0
1 α

)
in case F is a constant α. Lemma 6.3(b) implies that these two matrices have determinants
x and α respectively, and they are of the desired form as in (8). So we have the base case of
our induction established.

Similarly, it is not too hard to figure out how to define X× and maintain the structure
(8). Namely, we define X× as before, except we now change a single 0 entry to 1 to maintain
the property that we have ones on the first sub-diagonal. For example, if

X1 =

3 x −7
1 y 0
0 1 2

 and X2 =

x z π
1 y −2
0 1 1

 ,

then we define

X× =


3 x −7 0 0 0
1 y 0 0 0 0
0 1 2 0 0 0

0 0 1 x z π
0 0 0 1 y −2
0 0 0 0 1 1

 ,

where the only difference from before is that the entry in the box is now a 1 and not a 0.
As this example shows, and as is not hard to prove in general, this operation maintains the
structure (8). We also need to check that det(X×) = det(X1) det(X2) is still true. To prove
this, consider which “generalized diagonals” can use the special, boxed 1. If we pick this
entry, then we are not allowed to pick any other entry from its column. But then, if X1

has k1 rows, then from the first k1 rows we must select k1 entries in different columns, and
only k1 − 1 of these columns have any non-zero entries in them. Therefore, if we select the
boxed 1, any way of completing to a generalized diagonal will have to take a 0 entry, and
thus the product of the entries on the generalized diagonal is 0. This shows that we may
as well ignore the generalized diagonal taking this entry. But in that case, we might as well
turn this entry back to a 0, bringing us back to the setting of Lemma 6.3(c).

Finally, we need to define X+. Let’s first define another matrix, X̃+, which will almost

but not quite work, and then we will see how to fix it to obtain X+. We define X̃+ according

18

Mathcamp 2024 Algebraic complexity Yuval

to the following picture:

X̃+ :=



X1

X20

0
1

1

1 1


=

 0

0
1

1

1 1

1
1

1
1
1
1
1

∗ ∗
∗
∗
∗
∗
∗ ∗
∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗


That is, we start with a block-diagonal matrix consisting of X1 and X2, then add a row
and a column to the left and top. The row is all zeroes, except for a 1 at the positions
corresponding to the last columns of X1, X2. Similarly, the column is all zeroes, except for
a 1 at the positions corresponding to the first rows of X1, X2.

Let’s compute det(X̃+). Any generalized diagonal must use one of the entries in the first
column, and if it selects a 0 from the first column then it gives a contribution of 0. So we
may restrict our attention to generalized diagonals that select one of the two 1 entries in
the first column. Suppose first that such a diagonal uses the first 1. Now, it needs to select
something non-zero from the second column, and the only option is the 1 under the main
diagonal of X1—all other entries in the second column are 0, except for one in the row we’ve
already used. Similarly, in the third column, we must again select the 1 under the main
diagonal of X1, and so on. So we select all ones from X1. Finally, in the final column of X1,
we are forced to select the 1 from the top row. In the remaining rows and columns, we may
select any generalized diagonal from X2, and nothing else. So we end up with a contribution
of ± det(X2), where the sign is determined by the parity of the size of X1.

On the other hand, if we select the second 1 from the first column, then a similar argument
shows that our contribution is ± det(X1). So in total, we find that

det(X̃+) = ± det(X1)± det(X2),

where the signs are determined by the parities of |X1| and |X2|. However, we already know
how to fix the signs, since we know how to construct X×—that is, if we end up with a
negative sign on, say, X1, we simply do the above construction with X1 replaced by X ′

1,
defined so that det(X ′

1) = − det(X1) by adding two rows and two columns to X1. By doing
this, we construct a matrix whose determinant is exactly det(X1) + det(X2).

However, the bigger issue is that X̃+ does not have the structure (8), so we cannot keep

the induction going. Luckily, there is a simple fix for this, by swapping two rows of X̃+,

19

Mathcamp 2024 Algebraic complexity Yuval

namely the first row and the row corresponding to the top of X2. 0

0
1

1

1 1

1
1

1
1
1
1
1

∗ ∗
∗
∗
∗
∗
∗ ∗
∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗
∗

∗
∗
∗
∗
∗
∗


=

 0

0
1
1

1 1

1
1

1
1
1
1
1

∗ ∗
∗
∗
∗
∗

∗ ∗
∗
∗
∗
∗

∗
∗
∗
∗

∗
∗
∗
∗
∗

∗ ∗ ∗ ∗ ∗ ∗


Doing so does return us to the structure in (8), and either preserves det(X̃+) or negates it,
by Lemma 6.3(d). And if it negates it, we already know how to deal with that!

In other words, we define X+ as follows. First, we check whether it is necessary to add
a pair of rows to X1 or X2 (or both) to negate their determinant, by computing a product
X× with the matrix (1 0

1 −1) corresponding to the size-0 formula computing the constant −1.

Then, we build X̃+ with these matrices. We then swap the two rows as described above,
and, if necessary add two more rows to again negate the determinant. All in all, we end up
with det(X+) = det(X1) + det(X2), as desired. And the size of X+ satisfies

|X+| ⩽ |X1|+ |X2|+ 7,

since we add one row in building X̃+, and at most three pairs of rows to fix the signs. We
also have that

|X×| = |X1|+ |X2|

and that |Xp| = 2 if p is a variable or a constant, i.e. a size 0 formula.
These bounds imply, by induction, that a formula of size s can be represented as a

determinant of a matrix of size at most 9s+ 2.

20

Mathcamp 2024 Algebraic complexity Yuval

7 P vs. NP, VP vs. VNP

What does all of this have to do with computer science? At first glance, not much; but
it turns out that there is a deep and fruitful connection between algebraic complexity and
more “standard” topics within theoretical computer science.

At an extremely high level of abstraction, all of computer science is concerned with the
following problem: given some input, which we think of as a string of 0s and 1s, evaluate
some output, which is itself (say) either a 0 or a 1. That is, computer science is concerned
with the evaluation of Boolean functions, namely functions f : {0, 1}n → {0, 1}.

Just as every polynomial can be built up from constants, variables, addition, and multi-
plication, there is a similar structure for Boolean functions: every Boolean function can be
expressed in terms of the variables of the input, plus three basic operations: negation (¬),
AND (∧), and OR (∨).

Thus, every Boolean function can be computed by a Boolean formula, which is just an
expression such as (x3∧x4)∨ (x5∨ (¬x1)), consisting of variables, parentheses, and the three
basic operations above. It is then natural to define the formula complexity of a Boolean
function as the minimum size of a Boolean formula computing it. Similarly, every Boolean
function can be computed by a Boolean circuit (or, equivalently, Boolean straight-line pro-
gram), whose gates again correspond to the three basic operations, and we can similarly
define the circuit complexity of a Boolean function. The “circuit” terminology actually
comes from here—Boolean circuits were originally introduced as an abstract representation
of what actually goes on in a computer chip, which has physical wires performing these
computations.

In computational complexity theory, the fundamental question is to understand which
Boolean functions can be efficiently evaluated by a computer, and which ones cannot be.
There are many complexity classes capturing different levels of difficulty, the most famous and
important of which are P and NP. P consists of all problems that can be solved in polynomial
time, meaning in a number of operations that depends polynomially on the input length. By
contrast, NP consists of all problems whose solution can be efficiently verified—it may be
difficult to solve them, but if someone shows us the answer, we can check in polynomial time
that the answer is indeed correct. A good example is a huge Sudoku puzzle—you may not
know how to solve it, and doing it by brute force might take years, but it’s not hard to check
that a filled-in grid is indeed a correct solution. Speaking less precisely, NP consists of all
“natural problems”, i.e. problems that we might actually wish to solve in real life. Indeed,
how could we even think about solving a problem not in NP—what does it mean to solve a
problem if we can’t even recognize a correct answer?

The most famous problem in theoretical computer science is the P vs. NP problem, which
conjectures that P ̸= NP. That is, there should exist “natural” problems that cannot be
efficiently solved. Despite decades of intense effort, this conjecture remains wide open.

Moving back to the world of Boolean circuits, one can define the complexity class P/poly
to consist of all Boolean functions f : {0, 1}n → {0, 1} whose Boolean circuit complexity is
polynomial in n, the input size. In this language, the P vs. NP problem is essentially the

21

Mathcamp 2024 Algebraic complexity Yuval

same4 as the assertion NP ⊈ P/poly. That is, there should exist natural Boolean functions
that cannot be computed by small (i.e. polynomially-sized) circuits.

In 1979, Valiant introduced analogues of these questions in the world of algebraic com-
plexity, which we now turn to. The first complexity class he defined, now called VP, consists
of all polynomials that can be computed by polynomial-sized algebraic circuits. Formally,
we make the following definition.

Definition 7.1. Let {pn}n⩾1 be a sequence of polynomials. We say that the sequence {pn}
lies in the class VP if there exists a polynomial function s : N → N such that the following
holds for all n:

• pn is a polynomial in at most s(n) variables,

• pn has degree at most s(n), and

• S(pn) ⩽ s(n).

Of these conditions, the last one is the important one: it says that the circuit complexity
of pn is at most polynomial in n. The first two conditions simply enforce that the “input
size”, which in the algebraic world means the number of variables and the degree, are also
both polynomial in n.

We remark that there is a closely related complexity class, called VL, which is defined
identically except that we now require L(pn) ⩽ s(n) rather than S(pn) ⩽ s(n). This is
a stronger condition, so VL is a smaller complexity class. However, an important result of
Hyafil and of Valiant–Skyum–Berkowitz–Rackoff implies that, in a precise sense, S(p) cannot
be “much bigger” than L(p), and therefore VL is roughly the same as VP.

The class VNP is also not difficult to define, but I will not do so in this course. However,
I will give two vague descriptions of VNP. The first is that, just as NP consists of all “natural
problems”, VNP consists of all “natural polynomials”, that is, all polynomials we have any
hope of even trying to understand. The second is that VNP consists of all polynomials whose
coefficients can be efficiently described. More precisely, consider a polynomial

p(x1, . . . , xn) =
∑

α1,...,αn⩾0

cα1,...,αnx
α1
1 . . . xαn

n .

This polynomial is said to be in VNP (roughly) if there is a polynomial-time algorithm which
takes as input a sequence (α1, . . . , αn) and computes as output cα1,...,αn . This makes precise
the idea that VNP contains all polynomials we might hope to understand—if we can’t even
describe the coefficients, we have little hope of saying much about the polynomial.

4It is not hard to show that P ⊆ P/poly, since any efficient algorithm can be converted into a small circuit.
The reverse inclusion is actually false—circuits are a more powerful computational model than algorithms,
because they are non-uniform. This is an important, but somewhat subtle, distinction, and I won’t dwell on
it; come ask me at TAU if you’re interested!

22

Mathcamp 2024 Algebraic complexity Yuval

It is not hard5 to show that VP ⊆ VNP. The algebraic analogue of the P vs. NP problem
is called Valiant’s hypothesis, and asserts that VP ̸= VNP; that is, there should be “natural”
polynomials that cannot be efficiently computed by algebraic circuits.

This question is an analogue of the P vs. NP question, but it also turns out to be
intimately related to it. We won’t discuss this in any detail, but it turns out that stronger
forms of the statement P ̸= NP imply the statement VP ̸= VNP. Because of this, and
because there is so much more algebraic structure in the world of polynomials, many people
consider VP vs. VNP a natural first step to solve in the direction of eventually proving
P ̸= NP.

Our final topics are three examples of simple statements, each of which would imply
(essentially) VP ̸= VNP. All of these are very promising directions, and it may be that one
or two clever new ideas could lead to a major breakthrough.

8 Permanent vs. determinant

Given a k × k matrix

X =


x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...
xk1 xk2 · · · xkk

 (9)

its permanent is the polynomial defined by

per(X) :=
∑
σ∈Sk

k∏
i=1

xiσ(i).

Note that this is the same as the definition of det(X), except that we do not include the
pesky signs. The permanent is a less famous polynomial than the determinant, but it still
appears in a ton of places in mathematics, including knot theory, graph theory, and statistical
mechanics.

Given that there are no signs in the definition of the permanent, it seems like it should
be easier to compute than the determinant. Unfortunately, the usual tricks we have for
computing the determinant, such as Gaussian elimination, do not directly work for computing
the permanent. And in fact, it is widely believed that computing the permanent is very hard.

Conjecture 8.1. S(perk) is exponential in k.

In particular, it is believed that perk /∈ VP. However, perk ∈ VNP. In fact, Valiant
proved that the permanent is complete for VNP, which roughly means that any polynomial in
VNP can be efficiently represented as a permanent of a symbolic matrix (in the same way that
Theorem 6.2 says that the determinant is VL-complete, i.e. that any polynomial computed

5OK, I haven’t told you what VNP is, so I suppose it’s extremely hard. But hopefully you can convince
yourself that if p ∈ VP, then you can efficiently compute its coefficients.

23

Mathcamp 2024 Algebraic complexity Yuval

by a small formula can be efficiently represented as a determinant). Thus, Conjecture 8.1
would imply that VP ̸= VNP.

For an integer k, let us define m(k) to be the minimum integer m such that there exists
an m×m symbolic matrix Y such that

det(Y) = per(X),

where X is the k × k symbolic matrix from (9). In other words, m(k) measures the most
efficient way we can represent perk as a determinant of some symbolic matrix. Note that
m(k) is well-defined, since we know by Theorem 6.2 that we can represent perk as the
determinant of some symbolic matrix.

A simple example, first observed by Pólya, is that m(2) = 2. Indeed, we have that

per2 = per

(
a b
c d

)
= ad+ bc = det

(
a −b
c d

)
.

The determination of m(k) is a purely linear-algebraic question: how big does a symbolic
matrix have to be for its determinant to compute the permanent of a smaller, given symbolic
matrix? And yet, as proved by Valiant, this question is essentially the same as the VP
vs. VNP question. Indeed, since the permanent and determinant are complete for their
respective classes, we have the following result6.

Theorem 8.2 (Valiant). m(k) is exponential in k if and only if VP ̸= VNP.

The best known lower bound, due to Mignon and Ressayre, is that m(k) ⩾ Ω(k2), and
improving this is a major open problem.

9 Polynomial identity testing

The polynomial identity testing (PIT) problem is the following problem. Given two algebraic
circuits C1, C2, determine if they compute the same polynomial. At first glance, this sounds
pretty easy: just write down the two polynomials and check whether they are the same!
More formally, write each polynomial as a sum of monomials, and see whether the coefficients
match.

But actually, this is a lot trickier than it seems. For example, Degen’s eight-square
identity states that the polynomial(

a21 + a22 + a23 + a24 + a25 + a26 + a27 + a28
) (

b21 + b22 + b23 + b24 + b25 + b26 + b27 + b28
)

6Strictly speaking, this is not 100% correct, but it’s both morally and almost actually a true statement.

24

Mathcamp 2024 Algebraic complexity Yuval

is equal to

(a1b1 − a2b2 − a3b3 − a4b4 − a5b5 − a6b6 − a7b7 − a8b8)
2

+ (a1b2 + a2b1 + a3b4 − a4b3 + a5b6 − a6b5 − a7b8 + a8b7)
2

+ (a1b3 − a2b4 + a3b1 + a4b2 + a5b7 + a6b8 − a7b5 − a8b6)
2

+ (a1b4 + a2b3 − a3b2 + a4b1 + a5b8 − a6b7 + a7b6 − a8b5)
2

+ (a1b5 − a2b6 − a3b7 − a4b8 + a5b1 + a6b2 + a7b3 + a8b4)
2

+ (a1b6 + a2b5 − a3b8 + a4b7 − a5b2 + a6b1 − a7b4 + a8b3)
2

+ (a1b7 + a2b8 + a3b5 − a4b6 − a5b3 + a6b4 + a7b1 − a8b2)
2

+ (a1b8 − a2b7 + a3b6 + a4b5 − a5b4 − a6b3 + a7b2 + a8b1)
2 .

Good luck checking this by expanding everything out and comparing coefficients! There are
64 monomials in the first expression, which you have to compare with 224 monomials in the
second (of which 160 will eventually cancel).

More formally, as we’ve seen in examples such as the determinant and (4), small algebraic
circuits can compute polynomials with a huge number of monomials. In particular, a circuit
of size s can compute a polynomial with exponentially many (in s) monomials.

An equivalent formulation of the PIT problem is to determine whether a given algebraic
circuit C computes the zero polynomial (simply because p1 = p2 if and only if p1 − p2 = 0).
As is standard in theoretical computer science, we would hope to have a polynomial-time
algorithm for this problem: given a circuit of size s, compute in time polynomial in s whether
it computes the zero polynomial or not. And as discussed above, simply expanding out
everything in terms of monomials will not work—a circuit of size s can still have exponentially
many monomials, so even writing all of them down will take much longer than polynomial
time.

Nevertheless, there is an efficient randomized algorithm for solving PIT. Namely, given
an algebraic circuit C computing some polynomial p(x1, . . . , xn), pick random assignments
a1, . . . , an for each of the variables (say, let each of them be a random real number in the
interval [0, 1]). Using C, we can efficiently compute p(a1, . . . , an). If p is the zero polynomial,
then p(a1, . . . , an) = 0 with probability 1. However, if p is not the zero polynomial, then the
probability that p(a1, . . . , an) = 0 is zero. This is perhaps easiest to intuitively see in the
case of two variables: in this case, the set of (x, y) such that p(x, y) = 0 is some curve in the
plane. Although this curve may be very complicated, it’s still one-dimensional, so if pick a
random point in the square [0, 1]2, the probability that we lie on the curve is 0.

Thus, PIT is a central problem in derandomization, which is a field of theoretical computer
science that seeks to convert randomized algorithms into efficient deterministic ones. For a
long time, people thought of PIT as a good test case for derandomization, since there is so
much algebraic structure which seems useful for building clever, efficient algorithms. But to
this day, no one has found a polynomial-time algorithm for PIT. And in fact, the following
remarkable theorem shows that finding such an algorithm would have big consequences.

25

Mathcamp 2024 Algebraic complexity Yuval

Theorem 9.1 (Kabanets–Impagliazzo). If there is a polynomial-time algorithm for PIT,
then VP ̸= VNP.

OK, as I’ve stated, this theorem is a slight lie, but it is morally what Kabanets and
Impagliazzo proved. And it’s pretty amazing! In particular, it shows that if this specific
problem—PIT—can be efficiently solved, then other problems cannot be efficiently solved!

Theorem 9.1 is too advanced to prove in this course, but it is actually not so hard once
one develops some basic results in computational complexity theory.

Finally, let’s remark that thanks to Theorem 6.2, the following is an (essentially) equiv-
alent formulation of the PIT problem: given a symbolic matrix X, determine whether
det(X) = 0. This, in turn, can be equivalently formulated as a linear algebra problem:
given a collection of n × n matrices over R, determine whether some linear combination of
them is invertible. Again, if you find an efficient algorithm for this linear-algebraic problem,
you have proved VP ̸= VNP!

10 Elusive functions

A polynomial mapping is a function Γ : Rn → Rm each of whose coordinates is a polynomial.
The degree of Γ is just the maximum degree of its coordinate functions. Thus, a polynomial
mapping of degree at most 1 is the same as an affine linear map.

A very simple example of a polynomial mapping is the moment curve (also known as the
rational normal curve), which is the function f : R → Rm defined by

f(t) = (t, t2, . . . , tm).

For example, if m = 2, the image of f is just the parabola y = x2 in the plane. A cool fact
about the moment curve, whose proof is an exercise in linear algebra, is that its image does
not lie in any affine hyperplane in Rm. For example, in case m = 2, this just says that the
parabola is not a subset of any line, which is pretty clear; the same statement remains true
in higher dimensions.

We can turn this observation into a definition.

Definition 10.1. A polynomial mapping f : Rn → Rm is called r-elusive if for every
polynomial mapping Γ : Rm−1 → Rm of degree at most r,

im(f) ⊈ im(Γ).

In this language, the fact above states that the moment curve is 1-elusive. Indeed, if Γ is
a polynomial mapping of degree at most 1, then im(Γ) is an affine hyperplane, and we said
that the image of the moment curve is not contained in any affine hyperplane.

That’s cool, but affine hyperplanes are fairly simple objects to understand. Can we find
a 2-elusive polynomial mapping?

Theorem 10.2 (Raz). Let m grow exponentially with n. If there is an explicit 2-elusive
polynomial mapping Rn → Rm, then VP ̸= VNP.

26

Mathcamp 2024 Algebraic complexity Yuval

Here, as in Open problems 2.6, 4.1 and 4.2, the key point is having an explicit example.
It is not very hard to show that 2-elusive functions exist, but in order to use Raz’s result to
conclude that VP ̸= VNP, we would need an explicit construction of one.

The way Raz proved Theorem 10.2 is roughly as follows. If we pick m appropriately, we
can identify Rm with the space of all polynomials in n variables of degree at most n, simply
by identifying a polynomial with its list of coefficients. One can then show, using ideas we
have seen (plus some extra ones) that the set of all polynomials computed by circuits of
size s is of the form im(Γ), for some Γ of degree 2. That is, the polynomials computed
by small circuits have a nice structure, and that structure is “algebraic”: thus the set of
all such polynomials is some algebraic variety, i.e. a set of the form im(Γ). Finally, if we
have an explicit 2-elusive function f , we can use it to construct a polynomial in VNP that
does not lie on im(Γ): basically, a point in im(f) that is not on im(Γ) corresponds to some
polynomial, and the fact that f is explicit implies that this polynomial is in VNP. Since it
does not lie on im(Γ), it cannot be computed by a small circuit, hence VP ̸= VNP!

A more detailed (but still incomplete) proof sketch of Theorem 10.2 can be found at
https://n.ethz.ch/~ywigderson/math/static/ElusiveFunctions.pdf.

27

https://n.ethz.ch/~ywigderson/math/static/ElusiveFunctions.pdf

	Algebraic formulas
	Straight-line programs and algebraic circuits
	Factorials vs. factoring
	Multivariate polynomials
	The only lower bound we know
	The determinant
	P vs. NP, VP vs. VNP
	Permanent vs. determinant
	Polynomial identity testing
	Elusive functions

