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“In general, we don’t know much
about these Ramsey numbers.”

Jacob Fox, 2018

1 Ramsey’s Theorem
We begin with the following innocuous-looking theorem from nearly 90 years ago.

Theorem 1 (Ramsey, 1930). For any k € N, there is some N € N so that, no matter how

we color the edges of the complete graph Ky in red or blue, there will be a monochromatic
K.

If we let (k) denote the minimal such N, then this theorem simply asserts that r(k) < oc.
In order to prove this, we will actually introduce a slightly more general notion: for k, ¢ € N,
let r(k, ) denote the minimal N so that any two-coloring of the edges of K contains either
a red K}, or a blue K,. With this notation, we have that r(k) = r(k, k).

Proof, due to Erdds and Szekeres. We will prove that r(k, ) < oo for all k, ¢, by induction
on k+/. As a base case, observe that r(k,1) = 1 for all k. Indeed, in any two-coloring of the
edges of K7 (of which there are none), we will always find a (trivial) blue K;. In particular,
r(k,1) < oo for all k.

For the inductive step, we claim that

r(k, 0) < r(k —1,0) +r(k, € — 1).

Indeed, let N = r(k —1,¢) + r(k,¢ — 1), and fix some vertex v € Ky. Consider any two-
coloring of the edges of Ky, and look at the number of red and blue edges incident with v.
Since there are N — 1 such edges in total, by the pigeonhole principle, either there are at
least r(k — 1, ¢) red edges or at least r(k, ¢ — 1) blue edges. In the first case, by the definition
of r(k — 1,¢), we can find among the red neighbors a red Kj;_; or a blue K,. If we find a
blue K,, we are done, and if we find a red K;_;, we can add to it the vertex v to form a red
Ky, since all edges from v into this red Kj_; are red. The analogous argument shows that
r(k,¢ — 1) blue edges out of v also suffice. O

It is natural to ask how large r(k, ¢) is. In fact, even though he was primarily concerned
with logic and set theory, Ramsey asked this very question in the paper where he proved
Ramsey’s Theorem, and was disappointed in how weak the bounds he found were. From the
above argument, we can read off the following upper bound.

Corollary 1 (Erdés-Szekeres).
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Proof. One way to prove this is to observe that the recurrence r(k, ) < r(k—1,0)+r(k,{—1)
looks like the recurrence defining Pascal’s triangle. In my opinion, a more satisfying proof
is to consider the following picture.
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We've placed the value 1 at each position (k,1) or (1,¢) in this grid, corresponding to the
base case r(k,1) = r(1,£) = 1 of our induction. At the point (k, /) in the grid, we know
that the value r(k, ¢) at that point is upper-bounded by the sum of the values immediately
below and immediately to the left. Applying this same recurrence to these adjacent nodes,
we see that every left/down path from (k, /) to the boundary will contribute 1 in the final
sum (corresponding to the value 1 at the boundary points). Thus, r(k, ¢) is upper-bounded
by the number of left /down paths to the boundary, which is in turn equal to the number of

left /down paths from (k,¢) to (1, 1), which is exactly (kﬁf) O

In particular, Stirling’s approximation tells us that

2k — 2 C
< ~ ——4F
T<k7k>_<k—1> vk

for some constant C'. For a lower bound, the simplest way to lower-bound r(k, k) is to exhibit
a coloring of the edges of Ky with no monochromatic Ky, which implies r(k,k) > N + 1.
For instance, one can take k — 1 clusters, each of size £ — 1, and color each cluster red
internally and blue between clusters. Then this will certainly have no monochromatic K,
and yields the bound r(k,k) > (k — 1)> + 1. Though not nothing, this quadratic bound
is miles away from the exponential upper bound above. Still today, we don’t know how to
explicitly construct an example demonstrating an exponential lower bound. Nevertheless,
Erdos proved the following theorem, which is remarkable both for the result and the proof
technique.

Theorem 2 (Erdds, 1947).
r(k, k) > ckv/2"

for some constant ¢ > 0.
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Proof. We randomly color each edge of K either red or blue, each with probability 1/2 and

. . . k .

independently. Then it is simple to check that if N = ckv/2 for ¢ sufficiently small, then
the probability of seeing a monochromatic K is less than 1. Therefore, there must exist
some coloring with no monochromatic K}, and even though we don’t know what it is, we

can deduce that r(k, k) > k2" O

Thus, we see that r(k,k) grows exponentially in k, and the base of the exponent is
between /2 and 4. To this day, more than 70 years later, no improvement has been made
to these constants. In fact, despite a lot of attention, very little improvement has happened
at all. For the lower bound, Spencer was able to use a more sophisticated probabilistic
approach to improve the constant ¢ by a factor of 2, but no one has improved anything but
the constant. For the upper bound, there have been some more substantial improvements,
which are the topic of the rest of this talk, but they have only affected the lower-order terms,
and the exponential constant of 4 remains unchanged.

2 Quasirandomness

Since our only known exponential lower bounds for the Ramsey numbers r(k, k) come from
random constructions, many people have asked whether this is necessary, and whether all
colorings with no small monochromatic cliques exhibit various random-like properties. The
most important random-like notion is that of quasirandomness, originally defined and ex-
plored by Thomason and Chung—Graham—Wilson. For disjoint vertex sets X,Y in a graph
G, let e(X,Y) denote the number of edges between X and Y.

Definition 1. Let ¢ > 0 and p € (0,1). A graph G on n vertices is called (p, €)-quasirandom
if, for any pair of disjoint vertex sets X,Y,

[e(X,Y) = plX[]Y]| < en®. (F1)

Note that if G is a random graph where each edge exists independently with probability
p, then p|X||Y] is exactly the expected value of e(X,Y’). Moreover, standard concentration
results like the Chernoff bound imply that if n is large compared to € (namely n > 1/¢),
then a random graph will indeed be quasirandom with exponentially high probability. Note
too that in a red/blue coloring of Ky, the colors are complementary, so the red graph will
be (p,€)-quasirandom if and only if the blue graph is (1 — p, &)-quasirandom. Thus, we can
extend this definition and speak of quasirandom colorings.

This definition may feel somewhat artificial. There are many other properties satisfied
by random graphs, and it is strange to isolate this one as the one to define quasirandomness.
However, the astonishing fact, due to Chung—Graham-Wilson (and, in some special cases, to
Thomason and others) is that this definition is equivalent to many other properties shared
by random graphs. Literally dozens of equivalent properties are now known, but here are
a few of the important ones. As above, ¢ > 0 is some parameter and n is the number of
vertices in G. For two vertices u,v € V(G), let codeg(u,v) denote their codegree, namely
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the number of vertices w such that u ~ w and v ~ w. Finally, for a fixed graph H on s
vertices, let Ny (G) be the number of labeled copies of H in G (i.e. the number of times H
appears as a subgraph of GG, scaled by the number of automorphisms of H). Then we say
that G has property (Pz) if

Z |codeg(u, v) — p*n| < en®. (P)

u,veV

Note that in a random graph, any two vertices will have roughly p?n vertices in common
with high probability. For a fixed s > 4, we say that G has property (Ps(s)) if, for any graph
H on s vertices,

|Nu(G) — nspe(H)‘ <en’, (Ps(s))

where e(H) is the number of edges in H. Note that in a random graph, every ordered
collection of s vertices has a probability p*!) of producing a copy of H, and there are
roughly n® such ordered sets, if n is large. Finally, we say that G has property (P;) if

e(G) — p(Z) ' <en? and |Ne, (G) — p*n*| < en?, (Py)

where Cy is the cycle graph on four vertices. Note that (Pj(s)) says that the counts of all
graphs on s vertices are roughly the same as they would be in a random graph, whereas
property (Py) says that only the counts of edges and four-cycles are roughly correct.

Then the astonishing fact mentioned above is that all these properties are equivalent, in
the following sense. Fix p € (0,1). For every € > 0, there is some &’ > 0 such that property
(P;) with parameter ¢’ implies property (P;) with parameter ¢, for any ¢,j. The explicit
dependence on the parameter ¢ is often ignored, and we simply say that a graph satistying
any of these properties is quasirandom, with the understanding that it also satisfies all the
others, with some parameter; nevertheless, in many instances, the precise dependence of
¢’ on ¢ is very important, and there are still several cases where the correct growth order
is unknown. Probably the most surprising of these is implications is the fact that simply
correctly counting the number of edges and Cys immediately implies the correct counts for
all fixed graphs.

Before continuing, let me mention one conjecture connecting Ramsey’s theorem with
quasirandomness.

Conjecture 1 (S6s). For everye > 0, there exists some kg € N so that the following holds. If
we letk > ko and N = r(k, k)—1, then every red/blue coloring of Ky with no monochromatic
Ky, (i.e. a mazimally large coloring with no monochromatic Ky) is (%, £)-quasirandom.

This conjecture, in some sense, would explain why proving explicit (i.e. non-random)
lower bounds on Ramsey numbers is so hard; it asserts that every maximal Ramsey coloring
is random-like in a precise sense. Note however that the converse of this conjecture is very
false, because quasirandomness is a sort of “global” property that cannot by itself detect
“local” properties such as small monochromatic cliques. For instance, if we fix a graph G,

4
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we can construct its blow-up by replacing every vertex by t vertices and every edge by a
complete bipartite graph K, ;; then it is simple to check that if G was quasirandom, then
its blow-up will be as well, whereas this blow-up will contain some independent sets of size
t. In particular, if we blow up a quasirandom coloring, we will obtain a new quasirandom
coloring, but it will have enormous cliques in one of the two colors, and in particular will be
very far from a maximal Ramsey coloring.

Though this conjecture is still open (and potentially quite difficult), other connections
between Ramsey theory and quasirandomness are known, and quasirandomness is used to
prove the strongest upper bound on r(k, k) to date. Recall that the Erdés—Szekeres argument
gave an upper bound of r(k, k) = O(f/—%); the following theorem remains the only known
super-polynomial improvement on this bound.

Theorem 3 (Conlon, 2009). There is a constant ¢ > 0 so that
clogk
r(k, k) < k™ Torlozk 45,

This result builds on and improves previous results of Rédl, who showed that r(k, k) =
0(4*/v/k), and Thomason, who gave the polynomial improvement r(k, k) = O(4*/k); the
main additional idea in Conlon’s proof is the introduction of quasirandomness techniques.

Proof idea. The basic idea in Conlon’s proof is to suppose that the Erdos—Szekeres bound
were close to true, obtain strong structural information about extremal colorings, and ulti-
mately derive a contradiction.

What sort of structural information can one obtain? As a toy model, let’s suppose the
Erd6s—Szekeres bound were exactly correct for all k, ¢, and let’s fix a maximal coloring (on
N = r(k,¢) — 1 vertices) with no red K}, or blue K;,. Then the observation that drives the
Erdds—Szekeres argument is that in this coloring, every vertex must have red degree at most
r(k —1,¢) — 1 and blue degree at most r(k,¢ — 1) — 1. However, since the Erd6s—Szekeres
bound is assumed to be tight, there are precisely r(k — 1,¢) + r(k,{ — 1) — 2 vertices other
than v, so both these upper bounds must be tight. Thus, under this assumption, we see
that every vertex must have the same red degree (namely r(k —1,¢) — 1) and the same blue
degree. Let p = (r(k — 1,¢) — 1)/N, so that every vertex has red degree pN. Then by our
assumption that the Erd6s—Szekeres bound is always tight, we see that

(k+€f3)

5 k-1 k
. _

() k4 l—-27 k4L

In fact, we can generalize this observation to get stronger structural results. Namely, let
@ be some red K; in the coloring, for some ¢ < k. Then we claim that ) lies in fewer than
r(k —t,0) red K;1s. Said differently, there are fewer than r(k — ¢, ¢) vertices all of which
have a red edge to every vertex of (). Indeed, suppose there were at least r(k — t,¢) such
vertices. Then by the definition of r(k — ¢, ¢), they would contain among them either some
blue K, contradicting our assumption, or some red K;_,. But we can then take the union
of this red Kj_; with @) to obtain a red K}, using the fact that all the edges between () and
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the Kj_; would be blue. By the same argument, we can conclude that every blue K; lies in
fewer than r(k, ¢ —t) blue Ky 8.

Now, let’s first apply this observation in the case when ¢ = 2. Then this says that for
every red edge, say the edge uv, there are fewer than r(k — 2,¢) other vertices w such that
uw and vw are both red. In other words, the red codegree of u and v is less than r(k — 2, ¢).
However, by our assumption that the Erd6s—Szekeres bound is tight, we have that

[k l—4\ (k—3)(k—2) k+0—-2\
CodegR(u,v)<T(k‘—2,€)—< k3 >_(kj+€—2)(k+€—3)( k1 )NpN.

We can in fact obtain a matching lower bound, as follows. Note that the number of vertices
w so that ww is red while vw is blue is less than r(k — 1,/ — 1) = p(1 — p)N, by the same
argument as before. By interchanging the roles of v and v, we obtain the same bound for
the number of w with uw blue and vw red. However, by applying the inclusion-exclusion
principle to the red neighborhoods of v and v, this implies that

codegp(u,v) > r(k—1,0) —r(k —1,0 —1) = p*N.

Finally, again by inclusion-exclusion, we see that this also implies that the blue codegree
of u and v is approximately (1 — p)2NN. At this point, we can interchange the roles of red
and blue, and we find that for any pair of vertices, their red codegree is approximately p? N
and their blue codegree is approximately (1 — p)?N. Thus, our coloring is quasirandom, by
property (Ps).

However, once we have this quasirandomness, we can use property (P3) to count the

number of monochromatic cliques in our coloring. For instance, there are roughly ntp(g) red
K;s, and roughly n!*! (3") red K;,1s. However, we also know that each red K; can lie in
at most r(k — t,0) red Kyyqs. If our counts are sufficiently precise and hold for sufficiently
many values of £, these bounds contradict each other, which implies that the Erd6s—Szekeres
bound is not tight.

Similarly, if we instead assume that the Erdés—Szekeres bound is “close to” tight, then
we will deduce that all vertices have roughly the same red degree and roughly the same blue
degree, with the approximation error here depending on how close to true the Erdos—Szekeres
bound is assumed to be. Similarly, we can get that the red codegrees all roughly equal their
expected values, where the quality of the approximation again depends on the assumption
we make. Thus, we see that as we try to prove stronger and stronger upper bounds via this
approach (namely assuming that the bound is less and less close to true), we will obtain
weaker and weaker structural information, since all our approximations will become less
precise. In particular, at some point we will stop getting sufficiently strong quasirandomness
in order to gain precise counts of K;s, which means we will no longer be able to obtain the
desired contradiction. O]

3 Ramsey numbers of books

We begin with an important definition, which generalizes the Ramsey numbers studied above.
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Definition 2. For a fixed graph H, its Ramsey number r(H) is the minimal N such that
any red/blue coloring of Ky contains a monochromatic copy of H. Note that since every
graph H is contained in some complete graph, Ramsey’s theorem implies that r(H) exists
and is finite for all graphs H.

The basic question in the field of graph Ramsey theory is to understand how the function
r(H) depends on the graph H. Of course, this question includes the classical question on
the growth of the Ramsey numbers r(k, k), since r(Ky) = r(k, k). However, it turns out
that for many different classes of graphs, the behavior of r(H) is markedly different from
the behavior of r(k, k), and an extremely rich theory has developed around graph Ramsey
numbers.

Recall that the key observation that allowed Conlon to both derive the quasirandomness
property of extremal colorings and to use it to obtain a contradiction was the following
generalization of the Erdés—Szekeres observation: in a coloring of Ky with no monochromatic
K}, every monochromatic K has fewer than n = r(k — t, k) extensions into a monochromatic
Ky, for every 1 <t < k — 1. Indeed, if some monochromatic (say red) Kj had at least n
extensions into red Ky, s, then those extending vertices would contain among them either
a blue Kj or a red Kj_,;, which could be added to the original K; to obtain a red Kj. This
motivates the following definition.

Definition 3. The book graph B is the graph on t + n vertices consisting of n copies of
K, glued along a common K;. The terminology comes from the case t = 2, where we have
n triangles glued along a common edge; we picture the triangles as “pages” and the edge as
the “spine” of a book.

With this language, the observation above is that for any choice parameters 1 <t < k—1,
we have that a coloring of K with no monochromatic K} also contains no monochromatic
By(f), where n = r(k — t, k). In other words, if we set n = r(k — t, k), we obtain the bound

r(k, k) < T(Bnt)).

This suggests that understanding the Ramsey numbers of book graphs could be used to
improve the upper bound on r(k, k). Notice too that in this regime, n is generally much
larger than ¢, so we will often limit ourselves to the case when t is fixed and n — oo.

To understand r(B,(f)), let’s begin with lower bounds. As is often the case in Ramsey
theory, a random bound is a good starting point. Indeed, let’s suppose we color each edge
of Ky red or blue independently with probability 1/2. Then if @ is a fixed monochromatic
K; and v is a vertex not in (), the probability that v forms a monochromatic extension
of  is precisely 27¢, since there are t edges from () to v and they all need to receive the
same color as ). Thus, by linearity of expectation, @ will have 27*(N — ) monochromatic
extensions in expectation. By using standard concentration results, we can show that with
high probability the number of extensions will not greatly exceed its expectation, and we
find that for ¢ fixed,

r(BW) > 2'n — o(n).
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Thomason conjectured that this was asymptotically tight. In fact, he conjectured the fol-
lowing very precise conjecture, which seems hopelessly out of reach with present techniques.

Conjecture 2 (Thomason).
r(BW) <2'(t+n—2)+2.

Notice that Bf) is just the clique K31, so plugging in n = 1 to this conjecture would
imply the bound r(t +1,¢+ 1) < #2', which would already be a tremendous improvement on
the current best bound. This suggests one reason why this conjecture seems unlikely to be
resolved soon.

Nevertheless, a weaker conjecture is just that the random construction is asymptotically
tight. Indeed, this is true.

Theorem 4 (Conlon, 2018). For any fized t,
r(BY) < 2'n + o(n).

Proof sketch. The key tool used in Conlon’s proof is Szemerédi’s regularity lemma. For two
vertex sets X and Y in a graph, we define their density to be the fraction of pairsin X xY
that are edges, namely
e(X,Y)
(XY
For € > 0, we say that the pair (X,Y) is e-reqular if

[d(X,Y) —d(X"Y')| <e

for any X' C XY’ C Y with | X'| > ¢|X]|,|Y’| > ¢|Y|. This property basically says that the
edges between X and Y are fairly uniformly distributed, and is closely reminiscent of the
property (P;) defining quasirandomness; indeed, there is a close connection between the two
notions, and e-quasirandomness is essentially equivalent to all pairs of “large” subsets being
e-regular.

The main reason we care about e-regularity is that, much like property (Ps) of quasir-
andomness, it allows us to count subgraphs of a graph as though the edges were randomly
distributed. Specifically, for any graph H with s vertices, and any collection of vertex sets
Vi, ..., V, such that all pairs (V;, V;) are e-regular, the counting lemma says that the number
of copies of H with the ith vertex in V; is roughly

[T dvi.vpITvil,
) =1

(i,j)eE(H

d(X,Y) =

where the quality of the approximation depends on €. Note that this quantity is the expected
number of copies of H if the edges between the Vs were distributed randomly according to
the densities d(V;,V}), so this counting lemma is analogous to the implication (P) =
(Ps(s)).

Szemerédi’s regularity lemma says that for any ¢ > 0, there exists some M € N, such
that for every graph G on N vertices, we can find a partition V(G) = V3 U --- UV, so that
the following properties hold.
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e k < M, meaning that the complexity of the partition depends only on ¢,
o ||Vi] = |V;|| <1 for all ¢, j, meaning that all parts have essentially the same size, and
e for all but 5(75) pairs (i, j), we have that (V;,V}) is e-regular.

In our simplification of Conlon’s proof, Jacob Fox and I used a slight strengthening of
Szemerédi’s regularity lemma, that guarantees the following properties as well.

e For every i, the pair (V;,V;) is e-regular, and

e there are at most em values of j so that (V;,V;) is not e-regular, meaning that the
irregular pairs are “spread out.”

The proof proceeds by starting with a coloring of Ky, with N = (2! + o(1))n, and applying
the regularity lemma to the red graph. Note that since the colors are complementary, a pair
is e-regular in red if and only if it’s e-regular in blue. Suppose that among the regularity
partition, we can find a collection of parts Uy,...,U; so that all pairs (U;, U;) and (U;, U;)
are e-regular, the red density inside each U; is at least ¢, and the blue density between each
U; and U; is also at least ¢; it is not hard to show that if no such configuration (or such
a configuration with the colors flipped) exists, our coloring must have an extremely large
monochromatic book, and in particular a monochromatic B,(f).

In such a configuration, we can find many blue Ks spanning the U;s, in addition to many
red K;s inside each U;, by the counting lemma. Suppose we pick a random clique of one
of these types, and some vertex v outside the configuration. Thanks to a technical analytic
lemma (i.e. just a fact about real numbers), one can show that the probability that v yields
a monochromatic extension of such a random clique is at least 2. Specifically, the lemma

says that for any real numbers z,...,z; € [0, 1],
t 1 t
T+ — 1 — ;) > 2t
Lmrgpfios)

If we let z; be fraction of vertices in U; that are blue to v, then the first term measures
the probability that v extends a spanning blue clique, while the second term measures the
average probability that v extends a red clique inside some V;, averaged over all i. The lemma
asserts that the average of these two values is at least 27!. By adding this fact up over all
vertices v, we obtain at least (27" — o(1))N = n extensions in expectation, so there must

exist some clique with at least that many extensions, yielding our monochromatic BY. O

This theorem is an example of an instance where the magnitude of the error term really
matters, for if we could get very strong control over this o(n) term, we could dramatically
improve the upper bound for r(k, k). Indeed, this theorem implies that if n (and thus k)
is sufficiently large, then T(B,(f)) < 2%1n. Let’s suppose we had sufficiently strong control
on the error, so that this “sufficiently large” already kicks in when k is linear in ¢; namely,
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suppose that if & > Ct, then r(B,(f)) < 2% 1p, for some C' > 1, where n = r(k — t, k). Then
by our argument above, we know that

?”(k, k) < T(Bnt)) < 2t+17"(/€ —t, ]f) < gt+1 <2kk_ t 1_ 2) < ok/C ((2 - ;/C>k) < (4 _ 6)]6’

for some 0 > 0 depending on C. We applied the Erdés—Szekeres bound to r(k — ¢, k), and
then a standard bound on binomial coefficients in the last step; it says that any Hamming
sphere of radius bounded away from 1/2 contains an exponentially small fraction of the
hypercube. The upshot is that if we could apply this bound for n roughly exponential in ¢
(so that k is linear in t), we could obtain some exponential improvement to the upper bound
for r(k, k), which would be a major breakthrough.

So how good is the error term in Conlon’s theorem? Unfortunately, it’s very bad; his
argument gives an upper bound of the form

otet
Bt) < 9t ol—
r(B) < Zn <<1og*n>cz)”

for some ¢y, ¢co > 0, where log™ is the inverse of the tower function, and thus grows extremely
slowly. Put another way, rather than obtaining the bound we need when n is exponential

in ¢, Conlon’s argument only kicks in when n > 22" , where the height of the tower is
polynomial in ¢. This is because his proof uses the regularity lemma, which always yields
such bounds. This is not nearly strong enough to obtain an exponential improvement on
the upper bound for r(k, k), but Conlon conjectured that this tower-type dependence is not
necessary.

In recent work with Jacob Fox, we’ve tried to improve on Conlon’s theorem. Our first
result gives (somewhat) more reasonable control on the error term.

Theorem 5.

2t
BWY < 2tn 4+ 0O
r(By’) <2n + ((logloglogn)”) "

for some constants c1,co > 0.

Of course, this is also not nearly strong enough to give the desired exponential improve-

ment; it kicks in “only” when n > 92" Though our proof uses a weaker result than the
regularity lemma in order to avoid the tower-type bounds, it is still closely related to Con-
lon’s proof, and it seems unlikely that such techniques could be used to obtain strong enough
bounds to improve the bound on r(k, k).

Our second main result deals with the structure of large colorings with no monochromatic
book. Recall that Sés conjectured that an extremal coloring with no monochromatic Kj must
be quasirandom; we can prove an analogous result for books, in some sense explaining why
the random bound is asymptotically correct for this problem.

10
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Theorem 6. For everyt € N and € > 0, there exists some 6 > 0 and Ny € N so that the
following holds. For any N > Ny, any red/blue coloring of Ky is either (%, e)-quasirandom

or else contains a monochromatic B((;)_tH)N. In other words, any maximal coloring that

. . t .
contains no monochromatic Bfl) must be quasirandom.

The t = 2 case was previously proven by Nikiforov, Rousseau, and Schelp, using different
techniques. Our proof again utilizes the connection between regularity and quasirandomness,
and a “nibbling” technique; rather than proving the coloring is quasirandom directly, we
repeatedly find small parts that are regular to remainder, and by iteratively pulling them
out, we obtain the global quasirandomness. Unlike S6s’s conjecture for the classical Ramsey
numbers, we are also able to prove a sort of converse to this theorem, which in particular
shows that the “correct” size of a monochromatic book is another equivalent property to
quasirandomness.

The general picture emerging from these results is that book Ramsey numbers share
some similarities to classical Ramsey numbers, and there are concrete connections between
them (e.g. the fact that classical Ramsey numbers can be upper-bounded by book Ramsey
numbers), but it is possible to prove some results about book Ramsey numbers that are
currently out of reach in the classical case.
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