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1 Background

Given a graph property P , we say that an n-vertex graph G is ε-far from P if one must add
or delete at least εn2 edges to G to create a graph satisfying property P .

A central result in extremal graph theory is the triangle removal lemma of Ruzsa and
Szemerédi, which states the following.

Theorem 1 (Ruzsa–Szemerédi 1978). If an n-vertex graph G is ε-far from triangle-free,
then G contains at least δn3 triangles, where δ = δ(ε) > 0 depends only on ε.

Despite its innocent appearance, this is an extremely deep result, with applications in
theoretical computer science, number theory, and many other fields. Additionally, all known
proofs of the triangle removal lemma are quite involved, and use Szemerédi’s regularity
lemma or ideas related to it.

It is natural to wonder whether there is a simpler proof of the triangle removal lemma,
which uses only elementary counting arguments. No one has found such a proof yet, and it
is likely that one does not exist. One reason to believe that any proof of the triangle removal
lemma must be “complicated” is that the triangle removal lemma implies deep results in
other fields, such as Roth’s theorem and the Ajtai–Szemerédi corners theorem in additive
combinatorics. These theorems have no known “simple” proof, so it would be surprising to
find an elementary proof of the triangle removal lemma.

However, in my opinion, there is a better reason to be skeptical of the existence of
a counting-based proof. This relates to the quantitative aspects of the removal lemma. In
general, proofs in combinatorics which use counting arguments give polynomial dependencies
between the parameters. So if there were such a proof of the triangle removal lemma, we
would expect to be able to take δ = poly(ε) in Theorem 1.

Theorem 2 (Ruzsa–Szemerédi 1978). One cannot take δ = poly(ε) in Theorem 1.
More precisely, for every ε > 0 and every sufficiently large n, there exists an n-vertex

graph G which is ε-far from triangle-free, but contains fewer than εc log(1/ε)n3 triangles, for
an absolute constant c > 0.

It’s worth remarking that in the other direction, the original proof of Ruzsa and Szemerédi

showed that in Theorem 1, one can take 1/δ to be at most 22.
. .
2

, where the height of the
tower is poly(1/ε). In a major breakthrough, Fox proved that one can instead take 1/δ to be
“merely” a tower of twos of height O(log(1/ε)). Although this is a much better bound, there
remains a massive gap between it and the barely superpolynomial bound of Theorem 2, and
it is a major open problem to shrink this gap.

In many applications of the triangle removal lemma, these abysmal bounds are a serious
issue. So many people have asked if one can impose additional assumptions on G in order
to improve the bounds on δ, and in particular to take δ = poly(ε). As it turns out, one
can. For example, if one imposes certain “low-complexity” assumptions on G (e.g. that
G has bounded VC-dimension, or that G is a semi-algebraic graph of bounded description
complexity), then one obtains polynomial bounds in the triangle removal lemma applied to
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G. In a recent paper, Fox and I obtained linear bounds under a different sort of assumption
on G: we showed that if G has minimum degree at least αn where α > 1

3
, then one can

take δ = O(ε). Moreover, the bound α > 1
3

is tight: for any α < 1
3
, there exist graphs with

minimum degree at least αn such that superpolynomial bounds are again necessary in the
triangle removal lemma.

2 Asymmetric removal

In this talk, we will not be focusing on these quantitative questions for the triangle removal
itself. Instead, we will be interested in the following asymmetric removal lemma.

Theorem 3. Let H be an h-vertex graph with χ(H) = 3. If an n-vertex graph G is ε-far
from triangle-free, then G contains at least δnh copies of H, where δ = δ(ε,H) > 0 depends
only on ε and H.

We call this an asymmetric removal lemma because we have broken the symmetry in the
roles of K3 in Theorem 1: we still assume that we are ε-far from triangle-free, but now learn
something about the counts of a different graph H. Note that the assumption χ(H) = 3 is
necessary, as a balanced complete tripartite graph is 1

9
-far from triangle-free, yet contains no

copy of any H with χ(H) > 3.1

Theorem 3 follows from the usual proof of the triangle removal lemma, with only a little
bit more work. Alternately, one can prove Theorem 3 as a direct consequence of Theorem 1,
via a supersaturation argument in an auxiliary hypergraph. But both of these proofs carry
with them the same terrible quantitative aspects as in the usual triangle removal lemma. So
it is natural to ask: are there graphs H where one can obtain better bounds in Theorem 3?

The first person to consider this question was Csaba, who proved that in case H = C5,
one can do significantly better than the tower-type bounds one generally has.

Theorem 4 (Csaba 2021). One can take δ(ε, C5) = 2− poly(1/ε) in Theorem 3.

Csaba’s proof also uses ideas related to the regularity method: he proves an appropriate
weak regularity lemma, which only invokes exponential losses between the parameters, and
which is nonetheless strong enough to count copies of C5 in graphs which are ε-far from
triangle-free.

Our first new result is an improvement of this to an essentially optimal result.

Theorem 5 (Gishboliner–Shapira–W. 2023). One can take δ(ε, C5) = poly(ε) in Theorem 3.
More generally, we have the following result for all pairs of odd cycles. Let 1 ≤ k < ` be

integers. If G is ε-far from C2k+1-free, then it contains Ω(ε4`+2n2`+1) copies of C2`+1.

1One might ask what happens if χ(H) = 2. In this case, then question is somewhat trivial: if G is ε-far
from triangle-free, then it in particular contains at least εn2 edges, and then a classical result of Kővári–
Sós–Turán implies that it contains poly(ε)nh copies of any bipartite H.
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So, for example, we find Ω(ε10n5) copies of C5 in any graph which is ε-far from triangle-
free. The key thing to stress about this result is that it only works because of the asymmetry
(i.e. the assumption that ` is strictly greater than k): the argument of Ruzsa and Szemerédi
shows that one cannot have polynomial bounds if one is counting copies of C2k+1 in graphs
which are far from C2k+1-free.

Note too that polynomial dependencies are the best that one could hope for, and in fact,
the exponent we get is best possible up to a factor of 2. Namely, it is not hard to check that a
random graph of edge density ε is Θ(ε)-far from triangle-free (or more generally C2k+1-free)
and has O(ε5n5) copies of C5 (or more generally O(ε2`+1n2`+1) copies of C2`+1).

Theorem 5 is proved via elementary counting and averaging arguments, as is hopefully
not too surprising given that it gives polynomial bounds. We will see the simple proof at
the end of the talk.

Let us return to the statement of Theorem 3: it tells us that if G is ε-far from triangle-
free, then it contains at least δnh copies of H, for some δ = δ(ε,H). In some cases, such
as H = K3, we know that δ must be superpolynomial in ε. However, in other cases, such
as H = C5, we find that δ can be taken to be poly(ε), by Theorem 5. What happens for
general H?

Definition 6. We say that a tripartite graph H is K3-abundant if we have δ(ε,H) = poly(ε).

To recap what we know, Ruzsa and Szemerédi proved that K3 itself is not K3-abundant,
and Theorem 5 implies that C2`+1 is K3-abundant for all ` ≥ 2. It is not too hard to show
the following two facts, which give us ways of producing more K3-abundant graphs.

• If H1 ⊆ H2 and H2 is K3-abundant, then so is H1.

• If H is K3-abundant, then so is any blowup of H.

In particular, we find that any tripartite graph containing a cycle is not K3-abundant,
whereas any graph homomorphic to C5 is K3-abundant.

The natural question, given all of this, is whether containing a triangle is the only ob-
struction to abundance: is every triangle-free tripartite graph K3-abundant?

Theorem 7 (Gishboliner–Shapira–W. 2023). There exist triangle-free tripartite graphs which
are not K3-abundant (assuming Ruzsa’s genus conjecture in additive combinatorics).

3 Additive combinatorics

To understand how number theory gets involved in this graph theory problem, let’s back up
and see the proof of Theorem 2. Recall that we wish to prove that there exists a graph G
which is ε-far from triangle-free, yet contains only εω(1)n3 triangles, where the ω(1) tends to
infinity as ε→ 0.
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Let m be an integer and let R ⊆ [m]. We define the Ruzsa–Szemerédi graph RS(m,R)
to be the following graph. It has three parts X, Y, Z, each of which we identify with [3m].
The edges are given by

(x, y) ∈ X × Y : y − x ∈ R (y, z) ∈ Y × Z : z − y ∈ R (z, x) ∈ Z ×X : z − x ∈ 2R.

Note that for every x ∈ [m] and r ∈ R, we have a triangle (x, x + r, x + 2r) ∈ X × Y × Z.
Note that these triangles are edge-disjoint, as given any two vertices in such a triangle, we
can recover x and r. Therefore, in order to make RS(m,R) triangle-free, we need to delete
at least m|R| edges. In particular, if |R| ≥ 100εm, then RS(m,R) is ε-far from triangle-free.

In fact, with the same logic, we can exactly characterize the set of triangles in RS(m,R).
Namely, suppose (x, y, z) ∈ X × Y × Z forms a triangle in RS(m,R). Let a = y − x, b =
1
2
(z − x), c = z − y, and note that by definition, these are all numbers in R. Moreover, from

their definitions, we see that a+ c = 2b, i.e. that a, b, c form an arithmetic progression. Note
that if a = b = c (i.e. if this is a trivial arithmetic progression), then our triangle (x, y, z) is
precisely of the form (x, x+ r, x+ 2r) described above.

Since our goal is to produce a graph with few triangles, we should try to have few
arithmetic progressions in R. To this end, Ruzsa and Szemerédi used the following well-
known result.

Theorem 8 (Salem–Spencer 1942, Behrend 1946). There exists a set R ⊆ [m] with |R| ≥
m1−o(1) that contains no non-trivial arithmetic progression.

To conclude the proof, we pick m to be the largest integer so that there exists R ⊆ [m]
with no non-trivial arithmetic progression and with |R| ≥ 100εm. By Theorem 8, we have
that m ≥ (1/ε)ω(1). The graph RS(m,R) is then ε-far from triangle-free. Additionally, the
triangles in RS(m,R) are fully parameterized by pairs in [m] × R, as R has no non-trivial
arithmetic progressions. Since RS(m,R) has n = 9m vertices, the number of triangles in it
is

m|R| ≤ m2 ≤ 1

1000m
n3 = εω(1)n3,

which is what we wanted.
Let’s now turn to Theorem 7. Recall what we wish to prove: there exists triangle-free

tripartite graph H which is not K3-abundant. In other words, we need three ingredients: a
graph H, a graph G which is ε-far from triangle-free, and a proof that G contains few copies
of H, where “few” here means εω(1)nh.

To start with the second ingredient, we will simply use Ruzsa and Szemerédi’s construc-
tion, namely the graph RS(m,R) defined above. We know that as long as we pick R large
enough, namely |R| ≥ 100εm, we automatically have that this graph is ε-far from triangle-
free. All that remains is defining H so that, with an appropriate choice of R, RS(m,R)
contains few copies of H. It will be more convenient in what follows to count homomor-
phisms H → RS(m,R), i.e. “copies” where we don’t require the vertices of H to map into
distinct vertices of RS(m,R).

Let us stay agnostic for the moment about what H is, and remember only that H must
be tripartite and triangle-free. What do copies of H in RS(m,R) look like? To pick a copy
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of H in RS(m,R), we must first decide which of the three parts X, Y, Z each vertex of H
gets mapped to; this amounts to picking a proper 3-coloring of H. Having chosen this, we
now have various constraints on how we choose these vertices, since edges must correspond
to elements in R.

As an example, let’s think of H = C5, and let its vertices be v1, . . . , v5. Let’s suppose
that the three-coloring we’ve chosen is

v1 7→ X v2 7→ Y v3 7→ Z v4 7→ Y v5 7→ Z.

Denote by w1, . . . , w5 the vertices of RS(m,R) which we embed v1, . . . , v5 to, where we think
of w1, . . . , w5 as numbers in [3m]. Then the definition of the edges in RS(m,R) implies that
the following are all elements of R:

a = w2 − w1 b = w3 − w2 c = −(w4 − w3) d = w5 − w4 e =
1

2
(w5 − w1).

From the definitions of a, . . . , e we see that they satisfy the linear equation

a+ b− c+ d− 2e = 0.

So we’ve found that, just as in the Ruzsa–Szemerédi proof, a copy of H = C5 in RS(m,R)
corresponds to a solution of a certain linear equation in R.

Actually, it is pretty clear that this is a general phenomenon. Namely, let H be a
tripartite graph, and fix a proper 3-coloring χ of H. Then copies of H in RS(m,R) which
are “consistent” with χ correspond to solutions in R of a certain system of linear equations.
Namely, we first create a variable xe for every edge e ∈ E(H). Additionally, we assign every
edge of H a weight depending on the value of χ on its endpoints: an edge from color class
X to Y gets weight 1, an edge from Y to Z gets weight 1, and an edge from Z to X gets
weight −2. Then every cycle in H gives us an equation, where we add up the variables
corresponding to the edges on the cycle, weighted by the weights above, and where we think
of edges as oriented (so that if an edge in the cycle goes from Y to X, for example, it gets
coefficient −1). Call the set of equations that arise in this way Sχ.

Then the upshot of the above is that every homomorphism of H to RS(m,R) which is
consistent with χ is parameterized by a “starting vertex” w1 ∈ X, and by a solution in R
to the system of equations Sχ. In particular, if R contains no non-trivial solutions to Sχ,
then there are at most |X||R| such homomorphisms (as R contains |R| trivial solutions to
Sχ). If we can also ensure that |R| ≥ m1−o(1), then we conclude that RS(m,R) is ε-far from
triangle-free, and contains at most εω(1)nh copies of H consistent with χ. If we can pick R
so that this works simultaneously for all proper colorings χ, we have proved Theorem 7.

As it turns out, dealing with all proper colorings simultaneously is not a big deal, so
let’s continue focusing on a single coloring χ. How do we find R ⊆ [m] with |R| ≥ m1−o(1)

containing no non-trivial solution to the system of equations Sχ? Is this even possible?
Such questions are well-studied in additive combinatorics. Let E be a linear equation

with integer coefficients, say the equation
∑k

i=1 αixi = 0. We say that E is translation-

invariant if
∑k

i=1 αi = 0; note that all the equations in Sχ are translation-invariant, as they
arise from cycles in H. The following fundamental definition is due to Ruzsa.
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Definition 9. Let E be a translation-invariant linear equation with integer coefficients, say∑k
i=1 αixi = 0. One says that E has genus one if for every ∅ ( T ( [k], we have that∑
i∈T αi 6= 0.

The following theorem and conjecture, both due to Ruzsa, suggest that the property of
having genus one is the fundamental one to understand the size of sets avoiding solutions to
linear equations.

Theorem 10 (Ruzsa 1993). Let E be a translation-invariant linear equation that does not
have genus one. If R ⊆ [m] contains no non-trivial solution to E, then |R| = O(

√
m).

Conjecture 11 (Ruzsa’s genus conjecture [Ruzsa 1993]). Let E be a translation-invariant
linear equation that has genus one. Then for every integer m, there exists R ⊆ [m] containing
no non-trivial solution to E with |R| ≥ m1−o(1).

At first sight, this is bad news for us. Indeed, if H is triangle-free, then no equation
in Sχ has genus one. For example, in the H = C5 example we did above, the equation
a + b − c + d − 2e = 0 we found does not have genus one. It is not hard to check that the
only way a cycle in H can yield an equation of genus one is if the cycle has length 3. Since
we are interested in triangle-free graphs, no equation in Sχ can have genus one.

However, there is a sliver of hope. We can extend the notion of genus-one equations to
families of equations as follows.

Definition 12. Let S be a set of translation-invariant linear equations, where the jth equa-
tion in S is

∑k
i=1 α

(j)
i xi = 0. One says that S has genus one if for every ∅ ( T ( [k], there

is some j with
∑

i∈T α
(j)
i 6= 0.

Note that a set of equations can have genus one even if no particular equation in it has
genus one. This is because a set T witnessing that S does not have genus one must be such
a witnessing set for every equation in S simultaneously.

It is not hard to show that Conjecture 11 implies a corresponding statement for sets of
genus one. Namely, Conjecture 11 implies that if S is a genus-one set of equations, then
there is some R ⊆ [m] with |R| ≥ m1−o(1) such that R contains no non-trivial solutions to
S. Therefore, to complete the proof of Theorem 7, it suffices to prove the following result.

Theorem 13 (Gishboliner–Shapira–W. 2023). There exists a tripartite triangle-free graph
H such that for every proper coloring χ of H, the set of equations Sχ has genus one.

Again, it’s crucial to stress that any single equation in Sχ does not have genus one: the
point is that if H is sufficiently “complicated”, these equations interact with one another
and ensure that Sχ has genus one.

How does one prove Theorem 13? Recall that the equations in Sχ correspond to cycles
in H, and the variables in these equations correspond to edges of H. Thus, we can think
of a set ∅ ( T ( E(H) as a coloring of E(H) in black and white (where black edges are
the ones in T ), such that there is at least one edge of each color. To certify that Sχ has
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genus one, we need to show that for every such coloring, there is some cycle of H such that
the sum of the weights on the black edges (or, equivalently, the white edges) in the cycle is
non-zero. Of course, this cannot work for an arbitrary H, so the real question is how to find
an H with this property. The answer, perhaps unsurprisingly, is to use randomness.

Proposition 14 (Gishboliner–Shapira–W. 2023). Let A,B,C be disjoint sets of vertices,
each of size n. Let H0 be a random tripartite graph on A ∪ B ∪ C where every edge is
included independently with probability p = n−3/4. Delete one edge from every triangle to
form a triangle-free subgraph H. The following holds with high probability as n→∞.

Suppose we color E(H) in black and white, such that there is at least one edge of each
color. Then there is a cycle of H containing either a one or two black edges; if there are
two, they are consecutive and touch all three color classes (or this holds upon interchanging
white and black).

Note that if a cycle has a single black edge, then the sum of the weights on the black
edges is certainly non-zero. Similarly, if there are two consecutive black edges touching all
three color classes, then the sum of the black weights is again non-zero. Thus, Proposition 14
completes the proof of Theorem 7.

In fact, we prove something somewhat stronger than Proposition 14. There is a short
list of explicit pseudorandomness conditions on a tripartite triangle-free graph H that imply
the conclusion of Proposition 14. We then verify the (simple) fact that a random tripartite
graph with its triangles deleted satisfies these pseudorandomness conditions.

I will not present the proof of Proposition 14, nor state the precise pseudorandomness
conditions we need. But at a very high level, the proof proceeds via Ramsey-theoretic
arguments to show that if a given coloring does not have any “good” cycle, then it must
have more and more structure. Eventually, this structure is enough to conclude that in this
coloring, all edges must have the same color.

4 Back to triangles and pentagons

To finish this talk, I want to sketch a proof Theorem 5. I will only deal with the simplest
case, of k = 1, ` = 2. Namely, we assume that G is ε-far from triangle-free, and we wish to
prove that G has δn5 copies of C5, where δ = poly(ε).

So fix some n-vertex graph G which is ε-far from triangle-free. Consider a maximal
collection of edge-disjoint triangles in G. If we delete all the edges from these triangles, we
must destroy all triangles in G, by maximality. Therefore, there must be at least (εn2)/3 such
edge-disjoint triangles. For simplicity, let’s actually assume something stronger. Namely,
let’s assume that every vertex in G is incident to at least εn edge-disjoint triangles. There is
a simple argument that shows that this assumption is essentially without loss of generality.

So now we have G, where every vertex in G is incident to at least εn edge-disjoint
triangles. In particular, every vertex has degree at least εn. Fix some vertex v ∈ V (G), and
let A be the set of neighbors of v.
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Every vertex a ∈ A lies in at least εn edge-disjoint triangles, by assumption. This
means that there exist vertices b1(a), . . . , bεn(a), c1(a), . . . , cεn(a) such that for every i, the
vertices a, bi(a), ci(a) form a triangle. Since we assume these triangles are edge-disjoint, all
the vertices b1(a), . . . , bεn(a), c1(a), . . . , cεn(a) are distinct (for a fixed a).

Now, let B be the set of vertices in G that are of the form bi(a) for some index i and
some a ∈ A, and similarly let C be the set of all ci(a). Then every a ∈ A has at least εn
neighbors in B. Additionally, note that an average vertex in B is of the form bi(a) for at
least ε2n choices of a ∈ A: this is because there are at least ε2n2 choices for (i, a) ∈ [εn]×A,
and at most n vertices in B. Therefore, an average vertex of B has at least ε2n neighbors in
C; one for each way of representing it as bi(a). Let’s again assume, essentially without loss
of generality, that actually every vertex in B has at least ε2n neighbors in C. By the exact
same argument, we see that an average vertex in C has at least ε2n neighbors in A, and we
assume that in fact, every vertex in C has at least ε2n neighbors in A.

We now have many ways of constructing a path (a, b, c, a′) ∈ A × B × C × A. We first
fix some a ∈ A, then have εn choices for a neighbor b ∈ B, then at least ε2n choices for a
neighbor c ∈ C, then at least ε2n choices for a neighbor a′ ∈ A. In total, there are poly(ε)n4

such paths a, b, c, a′. To conlude, recall that as a, a′ ∈ A, they are both neighbors of v. So
v lies in poly(ε)n4 copies of C5. Repeating this argument for every v ∈ V , we find that G
contains at least poly(ε)n5 copies of C5, as claimed.
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