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The graph removal lemma

G is ε-far fromP if one must add/delete ≥ εn2 edges to satisfyP .

Theorem (triangle removal lemma)
Let G have n vertices.
If G is ε-far from triangle-free, then G contains ≥ δn3 triangles,
where δ = δ(ε) > 0 depends only on ε.

Despite the simple statement, all known proofs are hard. Why?

• Many hard applications in graph theory, number theory,
discrete geometry, theoretical computer science, …

• A “simple” proof would presumably give polynomial bounds.

Theorem (Ruzsa–Szemerédi 1978)
One cannot take δ(ε) = poly(ε).

In the other direction, only tower-type bounds are known.
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Let G have n vertices and H have h vertices.
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The asymmetric removal lemma
Theorem (graph removal lemma)
Let G have n vertices and H have h vertices.
If G is ε-far from H-free, then G contains ≥ δnh copies of H,
where δ = δ(ε,H) > 0 depends only on ε and H.

Can we expect better bounds on δ∗(ε,H)?
Not in general: If K3 ⊆ H, then δ∗(ε,H) ≈ δ(ε,K3).

Theorem (Csaba 2021)
We can take δ∗(ε,C5) to be 2− poly(1/ε).

This ismuch better than the tower-type bounds known for the
symmetric removal lemma. The proof uses a weak regularity lemma.

Theorem (Gishboliner–Shapira–W. 2022)
δ∗(ε,C5) = poly(ε).
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Odd cycles

Theorem (Gishboliner–Shapira–W. 2022)
δ∗(ε,C5) = poly(ε).

In fact, Ω(ε10) ≤ δ∗(ε,C5) ≤ O(ε5).

IfG is ε-far from triangle-free, thenG contains Ω(ε10n5) copies of C5.
The upper bound comes from the Erdős–Rényi random graph Gn,ε.

Theorem (Gishboliner–Shapira–W. 2022)
Fix odd integers 3 ≤ k < l .
If G is ε-far from Ck-free, then G contains Ω(ε2l nl ) copies of Cl .

The asymmetry is key! If k = l , no polynomial bound can hold.
The bound ε2l is tight up to the factor of 2 in the exponent.
The proof uses elementary (but subtle!) averaging arguments.
This result has applications in property testing.
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K3-abundant graphs

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose χ(H) = 3.
If G is ε-far from triangle-free, then G contains ≥ δ∗nh copies of H,
where δ∗ = δ∗(ε,H) > 0 depends only on ε and H.

If K3 ⊆ H, then δ∗(ε,H) ̸= poly(ε).
If H is

homomorphic to

Cl , l ≥ 5 odd, then δ∗(ε,H) = poly(ε).

Definition
A tripartite graph H is K3-abundant if δ∗(ε,H) = poly(ε).

Question: Is every triangle-free tripartite graph K3-abundant? No!

Theorem (Gishboliner–Shapira–W. 2022)
There exist triangle-free tripartite H which are not* K3-abundant
(*assuming Ruzsa’s genus conjecture in additive number theory).
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Suppose x, y, z form a triangle.

Let

a = y− x; b = z− y; c =
z− x
2 .

Then a+ b = 2c.
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Triangles←→ solutions in R to
a+b = 2c (plus choice of basepoint).

Each r ∈ R yields a trivial solution
=⇒m vertex-disjoint triangles.
For r ̸= r′, they are edge-disjoint
=⇒m|R| edge-disjoint triangles
=⇒ G is Θ(ε)-far from triangle-free.
If R has no non-trivial solutions,
#{K3 in G} = m|R| ≤ m2 = Θ

( 1
m

)
·n3.
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Ruzsa’s genus conjecture

Ruzsa (1993): For which E is there such R ⊆ [m] withm ≥ (1/ε)ω(1)?

(i.e. |R| ≥ εm and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.

Genus one = a simple linear-algebraic condition on the coefficients.
It remains to construct H such that its E has genus one.
Let H be a

(pseudo)

random triangle-free tripartite graph.

Lemma (Gishboliner–Shapira–W. 2022)
For such H, its set E of equations has genus one w.h.p.

The proof uses global, Ramsey-esque arguments, plus some
structural information arising from the pseudorandomness.
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Conclusion and open problems
Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose χ(H) = 3.
If G is ε-far from triangle-free, then G contains ≥ δ∗nh copies of H,
where δ∗ = δ∗(ε,H) > 0 depends only on ε and H.

Theorem (Gishboliner–Shapira–W. 2022)
If H = Cl for odd l ≥ 5, we have δ∗(ε,H) = poly(ε).
There exist* triangle-free H such that δ∗(ε,H) ̸= poly(ε).

Open problems:

1. Delete the *.

▶ Prove Ruzsa’s genus conjecture, at least in some special cases.
▶ Find another construction, beyond RS(m,R), for such problems.

2. Is the Petersen graph K3-abundant? Which graphs are?
3. Are there any K4-abundant graphs? The first open case is the

Brinkmann graph.
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If G is ε-far from triangle-free, then G contains ≥ δ∗nh copies of H,
where δ∗ = δ∗(ε,H) > 0 depends only on ε and H.

Theorem (Gishboliner–Shapira–W. 2022)
If H = Cl for odd l ≥ 5, we have δ∗(ε,H) = poly(ε).
There exist* triangle-free H such that δ∗(ε,H) ̸= poly(ε).

Open problems:
1. Delete the *.

▶ Prove Ruzsa’s genus conjecture, at least in some special cases.
▶ Find another construction, beyond RS(m,R), for such problems.

2. Is the Petersen graph K3-abundant? Which graphs are?
3. Are there any K4-abundant graphs? The first open case is the

Brinkmann graph.
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The Brinkmann graph
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The Brinkmann graph
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Genus-one systems of equations

Write E in matrix form.

E1 =
{

a− b+ c− d = 0
a+ 2b− 2c− d = 0 −→ M1 =

( 1 −1 1 −1
1 2 −2 −1

)

E2 =
{

a− b+ c− d = 0
2a+ b− 2c− d = 0 −→ M2 =

( 1 −1 1 −1
2 1 −2 −1

)
Definition (Ruzsa 1993)
E has genus one if no proper subset of the columns sums to zero.

Let R ⊆ [m] with |R| ≥ εm have no non-trivial solutions to E.

Theorem (Ruzsa 1993)
If E does not have genus one,
then m ≤ O((1/ε)2).

Conjecture (Ruzsa 1993)
If E does have genus one, there
is such R with m ≥ (1/ε)ω(1).
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