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The graph removal lemma

Theorem (triangle removal lemma)

Let G have n vertices.
If G is e-far from triangle-free, then G contains > &n? triangles,
where & = 6(g) > 0 depends only on e.
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Theorem (triangle removal lemma)

Let G have n vertices.
If G is e-far from triangle-free, then G contains > &n? triangles,
where & = 6(g) > 0 depends only on e.

Despite the simple statement, all known proofs are hard.
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One cannot take 6(g) = poly(e).

Introduction



The graph removal lemma
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Despite the simple statement, all known proofs are hard. Why?
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The graph removal lemma

G is e-far from & if one must add/delete > en? edges to satisfy Z2.

Theorem (graph removal lemma)

Let G have n vertices and H have h vertices.
If G is e-far from H-free, then G contains > &n" copies of H,
where & = 6(g, H) > 0 depends only on € and H.

Despite the simple statement, all known proofs are hard. Why?

® Many hard applications in graph theory, number theory,
discrete geometry, theoretical computer science, ...

e A “simple” proof would presumably give polynomial bounds.

Theorem (Ruzsa-Szemerédi 1978)
One cannot take 6(g) = poly(e).

In the other direction, only tower-type bounds are known.
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The graph removal lemma

G is e-far from & if one must add/delete > en? edges to satisfy Z2.

Theorem (graph removal lemma)

Let G have n vertices and H have h vertices.
If G is e-far from H-free, then G contains > &n" copies of H,
where & = 6(g, H) > 0 depends only on € and H.

Despite the simple statement, all known proofs are hard. Why?

® Many hard applications in graph theory, number theory,
discrete geometry, theoretical computer science, ...

e A “simple” proof would presumably give polynomial bounds.

Theorem (Ruzsa-Szemerédi 1978, Alon 2002)
One cannot take (g, H) = poly(e). (unless H is bipartite)

In the other direction, only tower-type bounds are known.
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The asymmetric removal lemma

Theorem (graph removal lemma)

Let G have n vertices and H have h vertices.
If G is e-far from H-free, then G contains > &n" copies of H,
where & = 6(g, H) > 0 depends only on € and H.
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Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose x(H) = 3.
If G is e-far from triangle-free, then G contains > &"n" copies of H,
where 6" = &"(g, H) > 0 depends only on € and H.
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Can we expect better bounds on 6™ (g, H)?
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Not in general: If K3 C H, then & (g, H) =~ 6(g, K3).
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We can take 5" (g, Cs) to be 2= Polv(1/2),

This is much better than the tower-type bounds known for the
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The asymmetric removal lemma

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose x(H) = 3.
If G is e-far from triangle-free, then G contains > &"n" copies of H,
where 6" = &"(g, H) > 0 depends only on € and H.

Can we expect better bounds on 6™ (g, H)?
Not in general: If K3 C H, then & (g, H) =~ 6(g, K3).

Theorem (Csaba 2021)
We can take 5" (g, Cs) to be 2= Polv(1/2),

This is much better than the tower-type bounds known for the
symmetric removal lemma. The proof uses a weak regularity lemma.

Theorem (Gishboliner-Shapira-W. 2022)
5%(g, Cs) = poly(e).
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Odd cycles
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5" (g, Cs) = poly(e). In fact, Q('%) < 8™ (g, Cs) < O(&°).

If G is e-far from triangle-free, then G contains Q(£'°n°) copies of Cs.

The upper bound comes from the Erd&s-Rényi random graph G, ..

ntroauction ew results root sketch _onclusion
Introduct N It Proof sketcl C |



Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
5" (g, Cs) = poly(e). In fact, Q('%) < 8™ (g, Cs) < O(&°).

If G is e-far from triangle-free, then G contains Q(£'°n°) copies of Cs.
The upper bound comes from the Erd&s-Rényi random graph G, ..

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers 3 < k < /.
If G is e-far from Cy-free, then G contains Q(£?/n?) copies of Cy.
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Theorem (Gishboliner-Shapira-W. 2022)
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The asymmetry is key! If k = £, no polynomial bound can hold.
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Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
5" (g, Cs) = poly(e). In fact, Q('%) < 8™ (g, Cs) < O(&°).

If G is e-far from triangle-free, then G contains Q(£'°n°) copies of Cs.
The upper bound comes from the Erd&s-Rényi random graph G, ..

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers 3 < k < /.

If G is e-far from Cy-free, then G contains Q(g?/n?)

copies of Cy.
The asymmetry is key! If k = £, no polynomial bound can hold.
The bound &2/ is tight up to the factor of 2 in the exponent.
The proof uses elementary (but subtle!) averaging arguments.
This result has applications in property testing.

New results
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K3-abundant graphs

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose x(H) = 3.
If G is e-far from triangle-free, then G contains > &*nh copies of H,
where 8" = & (g, H) > 0 depends only on € and H.

If K3 C H, then &7 (g, H) # poly(e).

If His homomorphicto Cy, ¢ > 5 odd, then 8" (g, H) = poly(e).
Definition

A tripartite graph H is K3-abundant if 8" (g, H) = poly(e).
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K3-abundant graphs

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose x(H) = 3.
If G is e-far from triangle-free, then G contains > &*nh copies of H,
where 8" = & (g, H) > 0 depends only on € and H.

If K3 C H, then &7 (g, H) # poly(e).
If His homomorphicto Cy, ¢ > 5 odd, then 8" (g, H) = poly(e).

Definition
A tripartite graph H is K3-abundant if 8" (g, H) = poly(e).

Question: Is every triangle-free tripartite graph K3-abundant? No!

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K3-abundant

New results



K3-abundant graphs

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose x(H) = 3.
If G is e-far from triangle-free, then G contains > &*nh copies of H,
where 8" = & (g, H) > 0 depends only on € and H.

If K3 C H, then &7 (g, H) # poly(e).
If His homomorphicto Cy, ¢ > 5 odd, then 8" (g, H) = poly(e).

Definition
A tripartite graph H is K3-abundant if 8" (g, H) = poly(e).

Question: Is every triangle-free tripartite graph K3-abundant? No!

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K3-abundant
(*assuming Ruzsa'’s genus conjecture in additive number theory).

New results
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Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K3 is not K3-abundant.
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Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K3 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
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Proof sketch: The Ruzsa-Szemerédi construction
Theorem (Ruzsa-Szemerédi 1978)
K3 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):
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Proof sketch: The Ruzsa-Szemerédi construction
Theorem (Ruzsa-Szemerédi 1978)
K5 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

e

Introduction New results Proof sketch Conclusion



Proof sketch: The Ruzsa-Szemerédi construction
Theorem (Ruzsa-Szemerédi 1978)
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Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G has n = ©(m) vertices.
Z=1[3m]
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Proof sketch: The Ruzsa-Szemerédi construction
Theorem (Ruzsa-Szemerédi 1978)
K5 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G has n = ©(m) vertices.

Z = [3m] Suppose x, y, z form a triangle.
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Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K5 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G has n = ©(m) vertices.

Suppose x, y, z form a triangle. Let

zZ—X

a y—X zZ—Y (o 2
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Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K5 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G has n = ©(m) vertices.

Suppose x, y, z form a triangle. Let

zZ—X

a y—X zZ—Y (o 2

Thena+b = 2c.
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Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K5 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G has n = ©(m) vertices.

Triangles <+— solutions in R to
a+b = 2c(plus choice of basepoint).
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Each r € R yields a trivial solution
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Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K5 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G has n = ©(m) vertices.

Triangles <+— solutions in R to

a+b = 2c(plus choice of basepoint).

Each r € R yields a trivial solution

= m vertex-disjoint triangles.

For r # 1/, they are edge-disjoint

= m|R| edge-disjoint triangles

= G is O(¢g)-far from triangle-free.
y—x=Tr If R has no non-trivial solutions,

X =[3m] Y= [3m] #{K3inG} =m|R| <m? =0 (1)-n3

Introduction New results Proof sketch Conclusion



Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K5 is not K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G has n = ©(m) vertices.

Triangles <+— solutions in R to
a+b = 2c(plus choice of basepoint).
Each r € R yields a trivial solution
= m vertex-disjoint triangles.
For r # 1/, they are edge-disjoint
= m|R| edge-disjoint triangles
= G is O(¢g)-far from triangle-free.
y — If R has no non-trivial solutions,
X =[3m] Y= [3m] #{K3inG} =m|R| <m? =0 (1)-n3

Behrend (1946): There exists such R C [m] with m > (1/g)*(1).

Introduction New results Proof sketch Conclusion



Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)
There exist triangle-free tripartite H which are not* K3-abundant.

Want: G which is e-far from K3-free, but has < e2(n3 copies of K.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):
G has n = ©(m) vertices.

Triangles <+— solutions in R to

a+b = 2c(plus choice of basepoint).
Each r € R yields a trivial solution

= m vertex-disjoint triangles.

For r # 1/, they are edge-disjoint

= m|R| edge-disjoint triangles

= G is O(¢g)-far from triangle-free.
If R has no non-trivial solutions,
Y=0Bm] 4iinGy=mRl<m?=0 (L)-nd.

X =[3m]

Behrend (1946): There exists such R C [m] with m > (1/&)*(),
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S0 G is ©(g)-far from triangle-free.
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X =[3m] Y = [3m]
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There exist triangle-free tripartite H which are not* K3-abundant.

Want: G which is e-far from K3z-free, but has < e2(n" copies of H.
Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G is ©(g)-far from triangle-free.
Suppose we have a Cs in G.

a—-b+c+d—-2e=0
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There exist triangle-free tripartite H which are not* K3-abundant.

Want: G which is e-far from K3z-free, but has < e2(n" copies of H.

Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G is ©(g)-far from triangle-free.
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For any H, copies of Hin G +—
solutions in R of E.
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Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K3-abundant.

Want: G which is e-far from K3z-free, but has < e2(n" copies of H.

Let R C [m] with |[R| > em. We define the graph G = RS(m, R):

G is ©(g)-far from triangle-free.

Suppose we have a Cs in G.
a—-b+c+d-2e=0

For any H, copies of Hin G +—

solutions in R of E.

E = system of linear equations:
variables = edges of H,
equations = cycles of H.

X = [3m] Y = [3m] Want: R has no non-trivial solutions.

Ruzsa (1993): For which E is there such R C [m] with m > (1/g)©(1)?
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Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.
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It remains to construct H such that its E has genus one.
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Lemma (Gishboliner-Shapira-W. 2022)

For such H, its set E of equations has genus one w.h.p.
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Theorem/Conjecture (Ruzsa 1993)
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Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such R C [m] with m > (1/g)©(1)?
(i.e. |R| > em and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)

There exists such R if and only if E has genus one.

Genus one = a simple linear-algebraic condition on the coefficients.
It remains to construct H such that its E has genus one.

Let H be a (pseudo)random triangle-free tripartite graph.

Lemma (Gishboliner-Shapira-W. 2022)

For such H, its set E of equations has genus one w.h.p.

The proof uses global, Ramsey-esque arguments, plus some
structural information arising from the pseudorandomness.
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Conclusion and open problems

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose x(H) = 3.
If G is e-far from triangle-free, then G contains > &*nh copies of H,
where 6" = &%(¢, H) > 0 depends only on € and H.
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Conclusion and open problems

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose x(H) = 3.
If G is e-far from triangle-free, then G contains > &*nh copies of H,
where 6" = &%(¢, H) > 0 depends only on € and H.

Theorem (Gishboliner-Shapira-W. 2022)

IfH = C,forodd ¢ > 5, we have & (e, H) = poly(e).
There exist* triangle-free H such that 6" (g, H) # poly(e).

Open problems:

1. Delete the *.

» Prove Ruzsa's genus conjecture, at least in some special cases.
» Find another construction, beyond RS(m, R), for such problems.

2. s the Petersen graph K3-abundant? Which graphs are?
3. Are there any Ky-abundant graphs? The first open case is the
Brinkmann graph.

Conclusion
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Genus-one systems of equations
Write E in matrix form.

_ a—-b+c—d=0 1 -1 1 —1)
" a+2b—2c—d=0 1 2 -2 -1

£ a—-b+c—-d=0 . M(1 —1 1 —1)
27 Y2a4+b-2c—d=0 2= 2 1 -2 -1

Introduction New results Proof sketch Conclusion



Genus-one systems of equations

Write E in matrix form.

_ a—-b+c—d=0 (1 =1 —1)
" a+2b—2c—d=0 1 2 -2 -1

a-b+c—-d=0 1T -1 1 -1
E, = M, —
2 {2a+b—2c—d:0 Ve ( )

Definition (Ruzsa 1993)

E has genus one if no proper subset of the columns sums to zero.
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Genus-one systems of equations

Write E in matrix form.

B a—-b+c—d=0 (1 =1 —1)
" a+2b—2c—d=0 1 2 -2 -1

a—-b+c—-—d=0 1 -1 1 -1
E, = M, =
2 {2a+b—2c—d:0 M ( )

Definition (Ruzsa 1993)

E has genus one if no proper subset of the columns sums to zero.

Let R C [m] with |R| > em have no non-trivial solutions to E.

Theorem (Ruzsa 1993) Conjecture (Ruzsa 1993)
If E does not have genus one, If E does have genus one, there
then m < O((1/¢)?). is such Rwith m > (1/g)*™,
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