Asymmetric graph removal

Yuval Wigderson

Tel Aviv University RS&A 2023

Joint with Lior Gishboliner and Asaf Shapira

Introduction

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε -far from triangle-free, then G contains $\geq \delta n^3$ triangles, where $\delta = \delta(\varepsilon) > 0$ depends only on ε .

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε -far from triangle-free, then G contains $\geq \delta n^3$ triangles, where $\delta = \delta(\varepsilon) > 0$ depends only on ε .

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε -far from triangle-free, then G contains $\geq \delta n^3$ triangles, where $\delta = \delta(\varepsilon) > 0$ depends only on ε .

Despite the simple statement, all known proofs are hard.

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε -far from triangle-free, then G contains $\geq \delta n^3$ triangles, where $\delta = \delta(\varepsilon) > 0$ depends only on ε .

Despite the simple statement, all known proofs are hard. Why?

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε -far from triangle-free, then G contains $\geq \delta n^3$ triangles, where $\delta = \delta(\varepsilon) > 0$ depends only on ε .

Despite the simple statement, all known proofs are hard. Why?

• Many **hard** applications in graph theory, number theory, discrete geometry, theoretical computer science, ...

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε -far from triangle-free, then G contains $\geq \delta n^3$ triangles, where $\delta = \delta(\varepsilon) > 0$ depends only on ε .

Despite the simple statement, all known proofs are hard. Why?

- Many **hard** applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε -far from triangle-free, then G contains $\geq \delta n^3$ triangles, where $\delta = \delta(\varepsilon) > 0$ depends only on ε .

Despite the simple statement, all known proofs are hard. Why?

- Many **hard** applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

```
Theorem (Ruzsa-Szemerédi 1978)
One cannot take \delta(\varepsilon) = \text{poly}(\varepsilon).
```

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε -far from triangle-free, then G contains $\geq \delta n^3$ triangles, where $\delta = \delta(\varepsilon) > 0$ depends only on ε .

Despite the simple statement, all known proofs are hard. Why?

- Many **hard** applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

```
Theorem (Ruzsa-Szemerédi 1978)
One cannot take \delta(\varepsilon) = \text{poly}(\varepsilon).
```

In the other direction, only tower-type bounds are known.

Introduction

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (graph removal lemma)

Let G have n vertices and H have h vertices. If G is ε -far from H-free, then G contains $\geq \delta n^h$ copies of H, where $\delta = \delta(\varepsilon, H) > 0$ depends only on ε and H.

Despite the simple statement, all known proofs are hard. Why?

- Many **hard** applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

```
Theorem (Ruzsa-Szemerédi 1978)
One cannot take \delta(\varepsilon) = \text{poly}(\varepsilon).
```

In the other direction, only tower-type bounds are known.

Introduction

G is ε -far from \mathscr{P} if one must add/delete $\geq \varepsilon n^2$ edges to satisfy \mathscr{P} .

Theorem (graph removal lemma)

Let G have n vertices and H have h vertices. If G is ε -far from H-free, then G contains $\geq \delta n^h$ copies of H, where $\delta = \delta(\varepsilon, H) > 0$ depends only on ε and H.

Despite the simple statement, all known proofs are hard. Why?

- Many **hard** applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

Theorem (Ruzsa-Szemerédi 1978, Alon 2002) One cannot take $\delta(\varepsilon, H) = \text{poly}(\varepsilon)$. (unless H is bipartite)

In the other direction, only tower-type bounds are known.

Introduction

Theorem (graph removal lemma)

Let G have n vertices and H have h vertices. If G is ε -far from H-free, then G contains $\geq \delta n^h$ copies of H, where $\delta = \delta(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Can we expect better bounds on $\delta^*(\varepsilon, H)$?

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Can we expect better bounds on $\delta^*(\varepsilon, H)$? Not in general: If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \approx \delta(\varepsilon, K_3)$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Can we expect better bounds on $\delta^*(\varepsilon, H)$? Not in general: If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \approx \delta(\varepsilon, K_3)$.

Theorem (Csaba 2021)

We can take $\delta^*(\varepsilon, C_5)$ to be $2^{-\operatorname{poly}(1/\varepsilon)}$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Can we expect better bounds on $\delta^*(\varepsilon, H)$? Not in general: If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \approx \delta(\varepsilon, K_3)$.

```
Theorem (Csaba 2021)
```

We can take $\delta^*(\varepsilon, C_5)$ to be $2^{-\operatorname{poly}(1/\varepsilon)}$.

This is **much** better than the tower-type bounds known for the symmetric removal lemma.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Can we expect better bounds on $\delta^*(\varepsilon, H)$? Not in general: If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \approx \delta(\varepsilon, K_3)$.

```
Theorem (Csaba 2021)
```

We can take $\delta^*(\varepsilon, C_5)$ to be $2^{-\operatorname{poly}(1/\varepsilon)}$.

This is **much** better than the tower-type bounds known for the symmetric removal lemma. The proof uses a weak regularity lemma.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Can we expect better bounds on $\delta^*(\varepsilon, H)$? Not in general: If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \approx \delta(\varepsilon, K_3)$.

```
Theorem (Csaba 2021)
```

We can take $\delta^*(\varepsilon, C_5)$ to be $2^{-\operatorname{poly}(1/\varepsilon)}$.

This is **much** better than the tower-type bounds known for the symmetric removal lemma. The proof uses a weak regularity lemma.

```
Theorem (Gishboliner-Shapira-W. 2022)
```

 $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon).$

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon).$

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon)$. In fact, $\Omega(\varepsilon^{10}) \leq \delta^*(\varepsilon, C_5) \leq O(\varepsilon^5)$.

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon)$. In fact, $\Omega(\varepsilon^{10}) \le \delta^*(\varepsilon, C_5) \le O(\varepsilon^5)$.

If G is ε -far from triangle-free, then G contains $\Omega(\varepsilon^{10}n^5)$ copies of C₅.

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon)$. In fact, $\Omega(\varepsilon^{10}) \le \delta^*(\varepsilon, C_5) \le O(\varepsilon^5)$.

If G is ε -far from triangle-free, then G contains $\Omega(\varepsilon^{10}n^5)$ copies of C_5 . The upper bound comes from the Erdős-Rényi random graph $G_{n,\varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon)$. In fact, $\Omega(\varepsilon^{10}) \le \delta^*(\varepsilon, C_5) \le O(\varepsilon^5)$.

If G is ε -far from triangle-free, then G contains $\Omega(\varepsilon^{10}n^5)$ copies of C_5 . The upper bound comes from the Erdős-Rényi random graph $G_{n,\varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \le k < \ell$. If G is ε -far from C_k -free, then G contains $\Omega(\varepsilon^{2\ell}n^{\ell})$ copies of C_{ℓ} .

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon)$. In fact, $\Omega(\varepsilon^{10}) \leq \delta^*(\varepsilon, C_5) \leq O(\varepsilon^5)$.

If G is ε -far from triangle-free, then G contains $\Omega(\varepsilon^{10}n^5)$ copies of C_5 . The upper bound comes from the Erdős-Rényi random graph $G_{n,\varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \le k < \ell$. If G is ε -far from C_k -free, then G contains $\Omega(\varepsilon^{2\ell} n^{\ell})$ copies of C_{ℓ} .

The asymmetry is key! If $k = \ell$, no polynomial bound can hold.

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon).$ In fact, $\Omega(\varepsilon^{10}) \leq \delta^*(\varepsilon, C_5) \leq O(\varepsilon^5).$

If G is ε -far from triangle-free, then G contains $\Omega(\varepsilon^{10}n^5)$ copies of C_5 . The upper bound comes from the Erdős-Rényi random graph $G_{n,\varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \le k < \ell$. If G is ε -far from C_k -free, then G contains $\Omega(\varepsilon^{2\ell} n^{\ell})$ copies of C_{ℓ} .

The asymmetry is key! If $k = \ell$, no polynomial bound can hold. The bound $\varepsilon^{2\ell}$ is tight up to the factor of 2 in the exponent.

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon)$. In fact, $\Omega(\varepsilon^{10}) \leq \delta^*(\varepsilon, C_5) \leq O(\varepsilon^5)$.

If G is ε -far from triangle-free, then G contains $\Omega(\varepsilon^{10}n^5)$ copies of C₅. The upper bound comes from the Erdős-Rényi random graph $G_{n,\varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \le k < \ell$. If G is ε -far from C_k -free, then G contains $\Omega(\varepsilon^{2\ell} n^{\ell})$ copies of C_{ℓ} .

The asymmetry is key! If $k = \ell$, no polynomial bound can hold. The bound $\varepsilon^{2\ell}$ is tight up to the factor of 2 in the exponent. The proof uses elementary (but subtle!) averaging arguments.

Theorem (Gishboliner-Shapira-W. 2022) $\delta^*(\varepsilon, C_5) = \text{poly}(\varepsilon)$. In fact, $\Omega(\varepsilon^{10}) \leq \delta^*(\varepsilon, C_5) \leq O(\varepsilon^5)$.

If G is ε -far from triangle-free, then G contains $\Omega(\varepsilon^{10}n^5)$ copies of C_5 . The upper bound comes from the Erdős-Rényi random graph $G_{n,\varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \le k < \ell$. If G is ε -far from C_k -free, then G contains $\Omega(\varepsilon^{2\ell} n^{\ell})$ copies of C_{ℓ} .

The asymmetry is key! If $k = \ell$, no polynomial bound can hold. The bound $\varepsilon^{2\ell}$ is tight up to the factor of 2 in the exponent. The proof uses elementary (but subtle!) averaging arguments. This result has applications in property testing.

Introduction

New results

Proof sketch

Conclusion

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$. If H is $C_{\ell}, \ell \geq 5 \text{ odd}$, then $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

If *H* is homomorphic to C_{ℓ} , $\ell \geq 5$ odd, then $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

If *H* is homomorphic to C_{ℓ} , $\ell \geq 5$ odd, then $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Definition

A tripartite graph *H* is K_3 -abundant if $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

If *H* is homomorphic to C_{ℓ} , $\ell \geq 5$ odd, then $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Definition

A tripartite graph *H* is K_3 -abundant if $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Question: Is every triangle-free tripartite graph K_3 -abundant?
K₃-abundant graphs

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

If *H* is homomorphic to C_{ℓ} , $\ell \geq 5$ odd, then $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Definition

A tripartite graph *H* is K_3 -abundant if $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Question: Is every triangle-free tripartite graph K₃-abundant? No!

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K₃-abundant

K₃-abundant graphs

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

If $K_3 \subseteq H$, then $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

If *H* is homomorphic to C_{ℓ} , $\ell \geq 5$ odd, then $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Definition

A tripartite graph *H* is K_3 -abundant if $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Question: Is every triangle-free tripartite graph K₃-abundant? No!

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant (*assuming Ruzsa's genus conjecture in additive number theory).

Introduction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: G which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 .

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

Theorem (Ruzsa-Szemerédi 1978)

 K_3 is not K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)}n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

Theorem (Ruzsa-Szemerédi 1978)

 K_3 is not K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)}n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

Z = [3m]

G has $n = \Theta(m)$ vertices.

Theorem (Ruzsa-Szemerédi 1978)

 K_3 is not K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)}n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G has $n = \Theta(m)$ vertices.

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices. Suppose x, y, z form a triangle.

Theorem (Ruzsa-Szemerédi 1978)

 K_3 is not K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices. Suppose x, y, z form a triangle. Let

$$a = y - x; \quad b = z - y; \quad c = \frac{z - x}{2}.$$

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices. Suppose x, y, z form a triangle. Let

$$a = y - x; \quad b = z - y; \quad c = \frac{z - x}{2}.$$

Then a + b = 2c.

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices. Triangles \leftrightarrow solutions in R to a + b = 2c (plus choice of basepoint).

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices. Triangles \leftrightarrow solutions in R to a + b = 2c (plus choice of basepoint). Each $r \in R$ yields a trivial solution

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices. Triangles \longleftrightarrow solutions in R to a + b = 2c (plus choice of basepoint). Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices. Triangles \longleftrightarrow solutions in R to a + b = 2c (plus choice of basepoint). Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles. For $r \neq r'$, they are edge-disjoint

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices.

Triangles \leftrightarrow solutions in *R* to a + b = 2c (plus choice of basepoint). Each $r \in R$ yields a trivial solution $\Rightarrow m$ vertex-disjoint triangles. For $r \neq r'$, they are edge-disjoint

 \implies m|R| edge-disjoint triangles

Theorem (Ruzsa-Szemerédi 1978)

K₃ is not K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

G has $n = \Theta(m)$ vertices.

Triangles \leftrightarrow solutions in *R* to a + b = 2c (plus choice of basepoint). Each $r \in R$ yields a trivial solution $\Rightarrow m$ vertex-disjoint triangles. For $r \neq r'$ they are added disjoint

For $r \neq r'$, they are edge-disjoint $\implies m|R|$ edge-disjoint triangles $\implies G$ is $\Theta(\varepsilon)$ -far from triangle-free.

Theorem (Ruzsa-Szemerédi 1978)

 K_3 is not K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)}n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G has $n = \Theta(m)$ vertices.

Triangles \leftrightarrow solutions in *R* to a + b = 2c (plus choice of basepoint). Each $r \in R$ yields a trivial solution $\Rightarrow m$ vertex-disjoint triangles. For $r \neq r'$, they are edge-disjoint $\Rightarrow m|R|$ edge-disjoint triangles $\Rightarrow G$ is $\Theta(\varepsilon)$ -far from triangle-free. If *R* has no non-trivial solutions, $\#\{K_3 \text{ in } G\} = m|R| \le m^2 = \Theta\left(\frac{1}{m}\right) \cdot n^3$.

Theorem (Ruzsa-Szemerédi 1978)

 K_3 is not K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)}n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G has $n = \Theta(m)$ vertices. Triangles \longleftrightarrow solutions in R to

a + b = 2c (plus choice of basepoint).

Each $r \in R$ yields a trivial solution $\implies m$ vertex-disjoint triangles.

For $r \neq r'$, they are edge-disjoint $\implies m|R|$ edge-disjoint triangles $\implies G$ is $\Theta(\varepsilon)$ -far from triangle-free.

If R has no non-trivial solutions,

$$[Bm]$$
 #{K₃ in G} = m|R| $\leq m^2 = \Theta\left(\frac{1}{m}\right) \cdot n^3$.

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)}n^3$ copies of K_3 . Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G has $n = \Theta(m)$ vertices.

Triangles \leftrightarrow solutions in *R* to a + b = 2c (plus choice of basepoint). Each $r \in R$ yields a trivial solution $\Rightarrow m$ vertex-disjoint triangles. For $r \neq r'$, they are edge-disjoint $\Rightarrow m|R|$ edge-disjoint triangles

 \Longrightarrow G is $\Theta(\varepsilon)$ -far from triangle-free.

If R has no non-trivial solutions,

$$[Bm]$$
 #{K₃ in G} = m|R| $\leq m^2 = \Theta\left(\frac{1}{m}\right) \cdot n^3$.

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K₃-abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G has $n = \Theta(m)$ vertices. Triangles \longleftrightarrow solutions in R to a + b = 2c (plus choice of basepoint). Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles. For $r \neq r'$, they are edge-disjoint $\Longrightarrow m|R|$ edge-disjoint triangles $\Longrightarrow G$ is $\Theta(\varepsilon)$ -far from triangle-free. If R has no non-trivial solutions, $\#\{K_3 \text{ in } G\} = m|R| \le m^2 = \Theta(\frac{1}{m}) \cdot n^3.$

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K₃-abundant.

Want: G which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of H. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

X = [3m]

G has $n = \Theta(m)$ vertices. Triangles \leftrightarrow solutions in R to a + b = 2c (plus choice of basepoint Each $r \in R$ yields a trivial solution $\Rightarrow m$ vertex-disjoint triangles.

For $r \neq r'$, they are edge-disjoint $\Rightarrow m|R|$ edge-disjoint triangles $\Rightarrow G$ is $\Theta(\varepsilon)$ -far from triangle-free

f *R* has no non-trivial solutions,

 $Y = [3m] \# \{K_3 \text{ in } G\} = m|R| \le m^2 = \Theta\left(\frac{1}{m}\right) \cdot n^3.$

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: G which is ε -far from K_3 -free, but has $< \varepsilon^{\omega(1)} n^h$ copies of H. Let $R \subseteq [m]$ with $|R| \ge \varepsilon m$. We define the graph $G = \mathsf{RS}(m, R)$:

Y = [3m]

X = [3m]

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G is $\Theta(\varepsilon)$ -far from triangle-free.

 $X = [3m] \qquad \qquad Y = [3m]$

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G is $\Theta(\varepsilon)$ -far from triangle-free. Suppose we have a C_5 in G.

 $X = [3m] \qquad \qquad Y = [3m]$

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G is $\Theta(\varepsilon)$ -far from triangle-free. Suppose we have a C_5 in G.

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G is $\Theta(\varepsilon)$ -far from triangle-free. Suppose we have a C_5 in G.

a-b+c+d-2e=0

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G is $\Theta(\varepsilon)$ -far from triangle-free. Suppose we have a C_5 in G.

a-b+c+d-2e=0

For any *H*, copies of *H* in $G \leftrightarrow$ solutions in *R* of *E*.

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

$$X = [3m] \qquad \qquad Y = [3m]$$

G is $\Theta(\varepsilon)$ -far from triangle-free. Suppose we have a C_5 in G.

a-b+c+d-2e=0

For any *H*, copies of *H* in $G \leftrightarrow$ solutions in *R* of *E*.

E = system of linear equations: variables = edges of H, equations = cycles of H.

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G is $\Theta(\varepsilon)$ -far from triangle-free. Suppose we have a C_5 in G.

a-b+c+d-2e=0

For any *H*, copies of *H* in $G \leftrightarrow$ solutions in *R* of *E*.

E = system of linear equations: variables = edges of H, equations = cycles of H.

Want: *R* has no non-trivial solutions.

Behrend (1946): There exists such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$.

Introduction

New results

Proof sketch

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_3 -abundant.

Want: *G* which is ε -far from K_3 -free, but has $\leq \varepsilon^{\omega(1)} n^h$ copies of *H*. Let $R \subseteq [m]$ with $|R| \geq \varepsilon m$. We define the graph G = RS(m, R):

G is $\Theta(\varepsilon)$ -far from triangle-free. Suppose we have a C_5 in G.

a-b+c+d-2e=0

For any *H*, copies of *H* in $G \leftrightarrow$ solutions in *R* of *E*.

E = system of linear equations: variables = edges of H, equations = cycles of H.

Want: *R* has no non-trivial solutions.

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$?

Ruzsa's genus conjecture

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$?

Ruzsa's genus conjecture

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$? (i.e. $|R| \ge \varepsilon m$ and *R* has no non-trivial solutions to *E*)

Ruzsa's genus conjecture

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$? (i.e. $|R| \ge \varepsilon m$ and *R* has no non-trivial solutions to *E*)

Theorem/Conjecture (Ruzsa 1993)

There exists such *R* if and only if *E* has genus one.
Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$? (i.e. $|R| \ge \varepsilon m$ and *R* has no non-trivial solutions to *E*)

Theorem/Conjecture (Ruzsa 1993)

There exists such *R* if and only if *E* has genus one.

Genus one = a simple linear-algebraic condition on the coefficients.

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$? (i.e. $|R| \ge \varepsilon m$ and *R* has no non-trivial solutions to *E*)

Theorem/Conjecture (Ruzsa 1993)

There exists such *R* if and only if *E* has genus one.

Genus one = a simple linear-algebraic condition on the coefficients. It remains to construct *H* such that its *E* has genus one.

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$? (i.e. $|R| \ge \varepsilon m$ and *R* has no non-trivial solutions to *E*)

Theorem/Conjecture (Ruzsa 1993)

There exists such *R* if and only if *E* has genus one.

Genus one = a simple linear-algebraic condition on the coefficients.It remains to construct H such that its E has genus one.Let H be arandom triangle-free tripartite graph.

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$? (i.e. $|R| \ge \varepsilon m$ and *R* has no non-trivial solutions to *E*)

Theorem/Conjecture (Ruzsa 1993)

There exists such *R* if and only if *E* has genus one.

Genus one = a simple linear-algebraic condition on the coefficients.It remains to construct H such that its E has genus one.Let H be arandom triangle-free tripartite graph.

Lemma (Gishboliner-Shapira-W. 2022)

For such H, its set E of equations has genus one w.h.p.

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$? (i.e. $|R| \ge \varepsilon m$ and *R* has no non-trivial solutions to *E*)

Theorem/Conjecture (Ruzsa 1993)

There exists such *R* if and only if *E* has genus one.

Genus one = a simple linear-algebraic condition on the coefficients. It remains to construct H such that its E has genus one. Let H be a (pseudo)random triangle-free tripartite graph.

Lemma (Gishboliner-Shapira-W. 2022)

For such H, its set E of equations has genus one w.h.p.

Ruzsa (1993): For which *E* is there such $R \subseteq [m]$ with $m \ge (1/\varepsilon)^{\omega(1)}$? (i.e. $|R| \ge \varepsilon m$ and *R* has no non-trivial solutions to *E*)

Theorem/Conjecture (Ruzsa 1993)

There exists such *R* if and only if *E* has genus one.

Genus one = a simple linear-algebraic condition on the coefficients. It remains to construct H such that its E has genus one. Let H be a (pseudo)random triangle-free tripartite graph.

Lemma (Gishboliner-Shapira-W. 2022)

For such H, its set E of equations has genus one w.h.p.

The proof uses global, Ramsey-esque arguments, plus some structural information arising from the pseudorandomness.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H = C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H = C_{\ell}$ for odd $\ell \ge 5$, we have $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$. There exist* triangle-free H such that $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H = C_{\ell}$ for odd $\ell \ge 5$, we have $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$. There exist* triangle-free H such that $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H = C_{\ell}$ for odd $\ell \ge 5$, we have $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$. There exist* triangle-free H such that $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

Open problems:

1. Delete the *.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H = C_{\ell}$ for odd $\ell \ge 5$, we have $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$. There exist* triangle-free H such that $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

- 1. Delete the *.
 - Prove Ruzsa's genus conjecture, at least in some special cases.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H = C_{\ell}$ for odd $\ell \ge 5$, we have $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$. There exist* triangle-free H such that $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

- 1. Delete the *.
 - Prove Ruzsa's genus conjecture, at least in some special cases.
 - Find another construction, beyond RS(m, R), for such problems.

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H = C_{\ell}$ for odd $\ell \ge 5$, we have $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$. There exist* triangle-free H such that $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

- 1. Delete the *.
 - Prove Ruzsa's genus conjecture, at least in some special cases.
 - Find another construction, beyond RS(m, R), for such problems.
- 2. Is the Petersen graph K₃-abundant? Which graphs are?

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $\chi(H) = 3$. If G is ε -far from triangle-free, then G contains $\geq \delta^* n^h$ copies of H, where $\delta^* = \delta^*(\varepsilon, H) > 0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H = C_{\ell}$ for odd $\ell \ge 5$, we have $\delta^*(\varepsilon, H) = \text{poly}(\varepsilon)$. There exist* triangle-free H such that $\delta^*(\varepsilon, H) \neq \text{poly}(\varepsilon)$.

- 1. Delete the *.
 - Prove Ruzsa's genus conjecture, at least in some special cases.
 - Find another construction, beyond RS(m, R), for such problems.
- 2. Is the Petersen graph K_3 -abundant? Which graphs are?
- 3. Are there any K₄-abundant graphs? The first open case is the Brinkmann graph.

The Brinkmann graph

hr.	<u>a</u>			
	u.	u.		

New results

Proof sketch

Conclusion

Thank you!

The Brinkmann graph

1.1.1		1	
Int		luct.	
IIIU	100	iuci	IUII

New results

Proof sketch

Conclusion

Introduction

Write E in matrix form.

Write E in matrix form.

$$E_{1} = \begin{cases} a - b + c - d = 0\\ a + 2b - 2c - d = 0 \end{cases} \longrightarrow M_{1} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 1 & 2 & -2 & -1 \end{pmatrix}$$
$$E_{2} = \begin{cases} a - b + c - d = 0\\ 2a + b - 2c - d = 0 \end{pmatrix} \longrightarrow M_{2} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 2 & 1 & -2 & -1 \end{pmatrix}$$

Conclusion

Write E in matrix form.

$$E_{1} = \begin{cases} a - b + c - d = 0\\ a + 2b - 2c - d = 0 \end{cases} \longrightarrow M_{1} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 1 & 2 & -2 & -1 \end{pmatrix}$$
$$E_{2} = \begin{cases} a - b + c - d = 0\\ 2a + b - 2c - d = 0 \end{pmatrix} \longrightarrow M_{2} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 2 & 1 & -2 & -1 \end{pmatrix}$$

Definition (Ruzsa 1993)

E has genus one if no proper subset of the columns sums to zero.

Write E in matrix form.

$$E_{1} = \begin{cases} a - b + c - d = 0\\ a + 2b - 2c - d = 0 \end{cases} \longrightarrow M_{1} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 1 & 2 & -2 & -1 \end{pmatrix}$$
$$E_{2} = \begin{cases} a - b + c - d = 0\\ 2a + b - 2c - d = 0 \end{pmatrix} \longrightarrow M_{2} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 2 & 1 & -2 & -1 \end{pmatrix}$$

Definition (Ruzsa 1993)

E has genus one if no proper subset of the columns sums to zero.

Write E in matrix form.

$$E_{1} = \begin{cases} a - b + c - d = 0\\ a + 2b - 2c - d = 0 \end{cases} \longrightarrow M_{1} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 1 & 2 & -2 & -1 \end{pmatrix}$$
$$E_{2} = \begin{cases} a - b + c - d = 0\\ 2a + b - 2c - d = 0 \end{pmatrix} \longrightarrow M_{2} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 2 & 1 & -2 & -1 \end{pmatrix}$$

Definition (Ruzsa 1993)

E has genus one if no proper subset of the columns sums to zero.

Let $R \subseteq [m]$ with $|R| \ge \varepsilon m$ have no non-trivial solutions to E.

Write E in matrix form.

$$E_{1} = \begin{cases} a - b + c - d = 0\\ a + 2b - 2c - d = 0 \end{cases} \longrightarrow M_{1} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 1 & 2 & -2 & -1 \end{pmatrix}$$
$$E_{2} = \begin{cases} a - b + c - d = 0\\ 2a + b - 2c - d = 0 \end{pmatrix} \longrightarrow M_{2} = \begin{pmatrix} 1 & -1 & 1 & -1\\ 2 & 1 & -2 & -1 \end{pmatrix}$$

Definition (Ruzsa 1993)

E has genus one if no proper subset of the columns sums to zero.

Let $R \subseteq [m]$ with $|R| \ge \varepsilon m$ have no non-trivial solutions to *E*.

Theorem (Ruzsa 1993)

If E does not have genus one, then $m \leq O((1/\varepsilon)^2)$. Conjecture (Ruzsa 1993)

If E does have genus one, there is such R with $m \ge (1/\varepsilon)^{\omega(1)}$.