Asymmetric graph removal

Yuval Wigderson

Tel Aviv University RS\&A 2023

Joint with Lior Gishboliner and Asaf Shapira

The graph removal lemma

The graph removal lemma

Theorem (triangle removal lemma)

Let G have n vertices. If G is ε-far from triangle-free, then G contains $\geq \delta n^{3}$ triangles, where $\delta=\delta(\varepsilon)>0$ depends only on ε.

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.
Theorem (triangle removal lemma)
Let G have n vertices.
If G is ε-far from triangle-free, then G contains $\geq \delta n^{3}$ triangles, where $\delta=\delta(\varepsilon)>0$ depends only on ε.

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.
Theorem (triangle removal lemma)
Let G have n vertices.
If G is ε-far from triangle-free, then G contains $\geq \delta n^{3}$ triangles, where $\delta=\delta(\varepsilon)>0$ depends only on ε.

Despite the simple statement, all known proofs are hard.

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.
Theorem (triangle removal lemma)
Let G have n vertices.
If G is ε-far from triangle-free, then G contains $\geq \delta n^{3}$ triangles, where $\delta=\delta(\varepsilon)>0$ depends only on ε.

Despite the simple statement, all known proofs are hard. Why?

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.

Theorem (triangle removal lemma)

Let G have n vertices.
If G is ε-far from triangle-free, then G contains $\geq \delta n^{3}$ triangles, where $\delta=\delta(\varepsilon)>0$ depends only on ε.

Despite the simple statement, all known proofs are hard. Why?

- Many hard applications in graph theory, number theory, discrete geometry, theoretical computer science, ...

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.

Theorem (triangle removal lemma)

Let G have n vertices.
If G is ε-far from triangle-free, then G contains $\geq \delta n^{3}$ triangles, where $\delta=\delta(\varepsilon)>0$ depends only on ε.

Despite the simple statement, all known proofs are hard. Why?

- Many hard applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.

Theorem (triangle removal lemma)

Let G have n vertices.
If G is ε-far from triangle-free, then G contains $\geq \delta n^{3}$ triangles, where $\delta=\delta(\varepsilon)>0$ depends only on ε.

Despite the simple statement, all known proofs are hard. Why?

- Many hard applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

Theorem (Ruzsa-Szemerédi 1978)
One cannot take $\delta(\varepsilon)=\operatorname{poly}(\varepsilon)$.

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.

Theorem (triangle removal lemma)

Let G have n vertices.
If G is ε-far from triangle-free, then G contains $\geq \delta n^{3}$ triangles, where $\delta=\delta(\varepsilon)>0$ depends only on ε.

Despite the simple statement, all known proofs are hard. Why?

- Many hard applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

Theorem (Ruzsa-Szemerédi 1978)

One cannot take $\delta(\varepsilon)=\operatorname{poly}(\varepsilon)$.
In the other direction, only tower-type bounds are known.

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.

Theorem (graph removal lemma)

Let G have n vertices and H have h vertices.
If G is ε-far from H-free, then G contains $\geq \delta n^{h}$ copies of H, where $\delta=\delta(\varepsilon, H)>0$ depends only on ε and H.

Despite the simple statement, all known proofs are hard. Why?

- Many hard applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

Theorem (Ruzsa-Szemerédi 1978)

One cannot take $\delta(\varepsilon)=\operatorname{poly}(\varepsilon)$.
In the other direction, only tower-type bounds are known.

The graph removal lemma

G is ε-far from \mathscr{P} if one must add/delete $\geq \varepsilon n^{2}$ edges to satisfy \mathscr{P}.

Theorem (graph removal lemma)

Let G have n vertices and H have h vertices.
If G is ε-far from H-free, then G contains $\geq \delta n^{h}$ copies of H, where $\delta=\delta(\varepsilon, H)>0$ depends only on ε and H.

Despite the simple statement, all known proofs are hard. Why?

- Many hard applications in graph theory, number theory, discrete geometry, theoretical computer science, ...
- A "simple" proof would presumably give polynomial bounds.

Theorem (Ruzsa-Szemerédi 1978, Alon 2002)
 One cannot take $\delta(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
 (unless H is bipartite)

In the other direction, only tower-type bounds are known.

The asymmetric removal lemma

Theorem (graph removal lemma)
Let G have n vertices and H have h vertices. If G is ε-far from H-free, then G contains $\geq \delta n^{h}$ copies of H, where $\delta=\delta(\varepsilon, H)>0$ depends only on ε and H.

The asymmetric removal lemma

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

The asymmetric removal lemma

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Can we expect better bounds on $\delta^{*}(\varepsilon, H)$?

The asymmetric removal lemma

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Can we expect better bounds on $\delta^{*}(\varepsilon, H)$?
Not in general: If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \approx \delta\left(\varepsilon, K_{3}\right)$.

The asymmetric removal lemma

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Can we expect better bounds on $\delta^{*}(\varepsilon, H)$?
Not in general: If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \approx \delta\left(\varepsilon, K_{3}\right)$.
Theorem (Csaba 2021)
We can take $\delta^{*}\left(\varepsilon, C_{5}\right)$ to be $2^{-\operatorname{poly}(1 / \varepsilon)}$.

The asymmetric removal lemma

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Can we expect better bounds on $\delta^{*}(\varepsilon, H)$?
Not in general: If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \approx \delta\left(\varepsilon, K_{3}\right)$.
Theorem (Csaba 2021)
We can take $\delta^{*}\left(\varepsilon, C_{5}\right)$ to be $2^{-\operatorname{poly}(1 / \varepsilon)}$.
This is much better than the tower-type bounds known for the symmetric removal lemma.

The asymmetric removal lemma

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Can we expect better bounds on $\delta^{*}(\varepsilon, H)$?
Not in general: If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \approx \delta\left(\varepsilon, K_{3}\right)$.
Theorem (Csaba 2021)
We can take $\delta^{*}\left(\varepsilon, C_{5}\right)$ to be $2^{-\operatorname{poly}(1 / \varepsilon)}$.
This is much better than the tower-type bounds known for the symmetric removal lemma. The proof uses a weak regularity lemma.

The asymmetric removal lemma

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Can we expect better bounds on $\delta^{*}(\varepsilon, H)$?
Not in general: If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \approx \delta\left(\varepsilon, K_{3}\right)$.
Theorem (Csaba 2021)
We can take $\delta^{*}\left(\varepsilon, C_{5}\right)$ to be $2^{-\operatorname{poly}(1 / \varepsilon)}$.
This is much better than the tower-type bounds known for the symmetric removal lemma. The proof uses a weak regularity lemma.
Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon)$.

Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon)$.

Odd cycles

> Theorem (Gishboliner-Shapira-W. 2022)
> $\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon)$. In fact, $\Omega\left(\varepsilon^{10}\right) \leq \delta^{*}\left(\varepsilon, C_{5}\right) \leq O\left(\varepsilon^{5}\right)$.

Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon)$. In fact, $\Omega\left(\varepsilon^{10}\right) \leq \delta^{*}\left(\varepsilon, C_{5}\right) \leq O\left(\varepsilon^{5}\right)$.
If G is ε-far from triangle-free, then G contains $\Omega\left(\varepsilon^{10} n^{5}\right)$ copies of C_{5}.

Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon)$. In fact, $\Omega\left(\varepsilon^{10}\right) \leq \delta^{*}\left(\varepsilon, C_{5}\right) \leq O\left(\varepsilon^{5}\right)$.
If G is ε-far from triangle-free, then G contains $\Omega\left(\varepsilon^{10} n^{5}\right)$ copies of C_{5}. The upper bound comes from the Erdős-Rényi random graph $G_{n, \varepsilon}$.

Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon)$. In fact, $\Omega\left(\varepsilon^{10}\right) \leq \delta^{*}\left(\varepsilon, C_{5}\right) \leq O\left(\varepsilon^{5}\right)$.
If G is ε-far from triangle-free, then G contains $\Omega\left(\varepsilon^{10} n^{5}\right)$ copies of C_{5}.
The upper bound comes from the Erdős-Rényi random graph $G_{n, \varepsilon}$.
Theorem (Gishboliner-Shapira-W. 2022)
Fix odd integers $3 \leq k<\ell$.
If G is ε-far from C_{k}-free, then G contains $\Omega\left(\varepsilon^{2 \ell} n^{\ell}\right)$ copies of C_{ℓ}.

Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon) . \operatorname{In}$ fact, $\Omega\left(\varepsilon^{10}\right) \leq \delta^{*}\left(\varepsilon, C_{5}\right) \leq O\left(\varepsilon^{5}\right)$.
If G is ε-far from triangle-free, then G contains $\Omega\left(\varepsilon^{10} n^{5}\right)$ copies of C_{5}.
The upper bound comes from the Erdős-Rényi random graph $G_{n, \varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \leq k<\ell$.
If G is ε-far from C_{k}-free, then G contains $\Omega\left(\varepsilon^{2 \ell} n^{\ell}\right)$ copies of C_{ℓ}.
The asymmetry is key! If $k=\ell$, no polynomial bound can hold.

Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon) . \operatorname{In}$ fact, $\Omega\left(\varepsilon^{10}\right) \leq \delta^{*}\left(\varepsilon, C_{5}\right) \leq O\left(\varepsilon^{5}\right)$.
If G is ε-far from triangle-free, then G contains $\Omega\left(\varepsilon^{10} n^{5}\right)$ copies of C_{5}.
The upper bound comes from the Erdős-Rényi random graph $G_{n, \varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \leq k<\ell$. If G is ε-far from C_{k}-free, then G contains $\Omega\left(\varepsilon^{2 \ell} n^{\ell}\right)$ copies of C_{ℓ}.

The asymmetry is key! If $k=\ell$, no polynomial bound can hold. The bound $\varepsilon^{2 \ell}$ is tight up to the factor of 2 in the exponent.

Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon) . \operatorname{In}$ fact, $\Omega\left(\varepsilon^{10}\right) \leq \delta^{*}\left(\varepsilon, C_{5}\right) \leq O\left(\varepsilon^{5}\right)$.
If G is ε-far from triangle-free, then G contains $\Omega\left(\varepsilon^{10} n^{5}\right)$ copies of C_{5}.
The upper bound comes from the Erdős-Rényi random graph $G_{n, \varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \leq k<\ell$.
If G is ε-far from C_{k}-free, then G contains $\Omega\left(\varepsilon^{2 \ell} n^{\ell}\right)$ copies of C_{ℓ}.
The asymmetry is key! If $k=\ell$, no polynomial bound can hold. The bound $\varepsilon^{2 \ell}$ is tight up to the factor of 2 in the exponent. The proof uses elementary (but subtle!) averaging arguments.

Odd cycles

Theorem (Gishboliner-Shapira-W. 2022)
$\delta^{*}\left(\varepsilon, C_{5}\right)=\operatorname{poly}(\varepsilon) . \operatorname{In}$ fact, $\Omega\left(\varepsilon^{10}\right) \leq \delta^{*}\left(\varepsilon, C_{5}\right) \leq O\left(\varepsilon^{5}\right)$.
If G is ε-far from triangle-free, then G contains $\Omega\left(\varepsilon^{10} n^{5}\right)$ copies of C_{5}.
The upper bound comes from the Erdős-Rényi random graph $G_{n, \varepsilon}$.

Theorem (Gishboliner-Shapira-W. 2022)

Fix odd integers $3 \leq k<\ell$.
If G is ε-far from C_{k}-free, then G contains $\Omega\left(\varepsilon^{2 \ell} n^{\ell}\right)$ copies of C_{ℓ}.
The asymmetry is key! If $k=\ell$, no polynomial bound can hold. The bound $\varepsilon^{2 \ell}$ is tight up to the factor of 2 in the exponent.
The proof uses elementary (but subtle!) averaging arguments.
This result has applications in property testing.

K_{3}-abundant graphs

K_{3}-abundant graphs

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

K_{3}-abundant graphs

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.

K_{3}-abundant graphs

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.
If H is
$C_{\ell,} \ell \geq 5$ odd, then $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.

K_{3}-abundant graphs

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.
If H is homomorphic to $C_{\ell}, \ell \geq 5$ odd, then $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.

K_{3}-abundant graphs

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.
If H is homomorphic to $C_{\ell}, \ell \geq 5$ odd, then $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
Definition
A tripartite graph H is K_{3}-abundant if $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.

K_{3}-abundant graphs

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.
If H is homomorphic to $C_{\ell}, \ell \geq 5$ odd, then $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
Definition
A tripartite graph H is K_{3}-abundant if $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
Question: Is every triangle-free tripartite graph K_{3}-abundant?

K_{3}-abundant graphs

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.
If H is homomorphic to $C_{\ell}, \ell \geq 5$ odd, then $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
Definition
A tripartite graph H is K_{3}-abundant if $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
Question: Is every triangle-free tripartite graph K_{3}-abundant? No!
Theorem (Gishboliner-Shapira-W. 2022)
There exist triangle-free tripartite H which are not* K_{3}-abundant

K_{3}-abundant graphs

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

If $K_{3} \subseteq H$, then $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.
If H is homomorphic to $C_{\ell}, \ell \geq 5$ odd, then $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
Definition
A tripartite graph H is K_{3}-abundant if $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
Question: Is every triangle-free tripartite graph K_{3}-abundant? No!
Theorem (Gishboliner-Shapira-W. 2022)
There exist triangle-free tripartite H which are not* K_{3}-abundant (*assuming Ruzsa's genus conjecture in additive number theory).

Proof sketch: The Ruzsa-Szemerédi construction

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)
There exist triangle-free tripartite H which are not* K_{3}-abundant.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

$X=[3 m]$

$Y=[3 m]$

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.

$X=[3 m]$

$Y=[3 m]$

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Suppose x, y, z form a triangle.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Suppose x, y, z form a triangle. Let

$$
a=y-x ; \quad b=z-y ; \quad c=\frac{z-x}{2}
$$

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Suppose x, y, z form a triangle. Let

$$
a=y-x ; \quad b=z-y ; \quad c=\frac{z-x}{2} .
$$

Then $a+b=2 c$.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)
K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.
For $r \neq r^{\prime}$, they are edge-disjoint

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.
For $r \neq r^{\prime}$, they are edge-disjoint
$\Longrightarrow m|R|$ edge-disjoint triangles

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.
For $r \neq r^{\prime}$, they are edge-disjoint
$\Longrightarrow m|R|$ edge-disjoint triangles
$\Longrightarrow G$ is $\Theta(\varepsilon)$-far from triangle-free.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.
For $r \neq r^{\prime}$, they are edge-disjoint
$\Longrightarrow m|R|$ edge-disjoint triangles
$\Longrightarrow G$ is $\Theta(\varepsilon)$-far from triangle-free.
If R has no non-trivial solutions,

$$
X=[3 m] \quad Y=[3 m] \#\left\{K_{3} \text { in } G\right\}=m|R| \leq m^{2}=\Theta\left(\frac{1}{m}\right) \cdot n^{3} .
$$

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Ruzsa-Szemerédi 1978)

K_{3} is not K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.
For $r \neq r^{\prime}$, they are edge-disjoint
$\Longrightarrow m|R|$ edge-disjoint triangles
$\Longrightarrow G$ is $\Theta(\varepsilon)$-far from triangle-free.
If R has no non-trivial solutions,

$$
X=[3 m] \quad Y=[3 m] \quad \#\left\{K_{3} \text { in } G\right\}=m|R| \leq m^{2}=\Theta\left(\frac{1}{m}\right) \cdot n^{3} .
$$

Behrend (1946): There exists such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{3}$ copies of K_{3}. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.
For $r \neq r^{\prime}$, they are edge-disjoint
$\Longrightarrow m|R|$ edge-disjoint triangles
$\Longrightarrow G$ is $\Theta(\varepsilon)$-far from triangle-free.
If R has no non-trivial solutions,

$$
X=[3 m] \quad Y=[3 m] \quad \#\left\{K_{3} \text { in } G\right\}=m|R| \leq m^{2}=\Theta\left(\frac{1}{m}\right) \cdot n^{3} .
$$

Behrend (1946): There exists such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G has $n=\Theta(m)$ vertices.
Triangles \longleftrightarrow solutions in R to $a+b=2 c$ (plus choice of basepoint).
Each $r \in R$ yields a trivial solution $\Longrightarrow m$ vertex-disjoint triangles.
For $r \neq r^{\prime}$, they are edge-disjoint
$\Longrightarrow m|R|$ edge-disjoint triangles
$\Longrightarrow G$ is $\Theta(\varepsilon)$-far from triangle-free.
If R has no non-trivial solutions,

$$
X=[3 m] \quad Y=[3 m] \quad \#\left\{K_{3} \text { in } G\right\}=m|R| \leq m^{2}=\Theta\left(\frac{1}{m}\right) \cdot n^{3} .
$$

Behrend (1946): There exists such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)
There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G is $\Theta(\varepsilon)$-far from triangle-free.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G is $\Theta(\varepsilon)$-far from triangle-free.
Suppose we have a C_{5} in G.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G is $\Theta(\varepsilon)$-far from triangle-free.
Suppose we have a C_{5} in G.
$X=[3 m] \quad Y=[3 m]$

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G is $\Theta(\varepsilon)$-far from triangle-free.
Suppose we have a C_{5} in G.

$$
a-b+c+d-2 e=0
$$

$$
X=[3 m] \quad Y=[3 m]
$$

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

$X=[3 m] \quad Y=[3 m]$
G is $\Theta(\varepsilon)$-far from triangle-free.
Suppose we have a C_{5} in G.

$$
a-b+c+d-2 e=0
$$

For any H, copies of H in $G \longleftrightarrow$ solutions in R of E.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G is $\Theta(\varepsilon)$-far from triangle-free.
Suppose we have a C_{5} in G.

$$
a-b+c+d-2 e=0
$$

For any H, copies of H in $G \longleftrightarrow$ solutions in R of E.
$E=$ system of linear equations: variables = edges of H, equations = cycles of H.

$$
X=[3 m] \quad Y=[3 m]
$$

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G is $\Theta(\varepsilon)$-far from triangle-free.
Suppose we have a C_{5} in G.

$$
a-b+c+d-2 e=0
$$

For any H, copies of H in $G \longleftrightarrow$ solutions in R of E.
$E=$ system of linear equations: variables = edges of H, equations = cycles of H.
$X=[3 m] \quad Y=[3 m]$
Want: R has no non-trivial solutions.

Proof sketch: The Ruzsa-Szemerédi construction

Theorem (Gishboliner-Shapira-W. 2022)

There exist triangle-free tripartite H which are not* K_{3}-abundant.
Want: G which is ε-far from K_{3}-free, but has $\leq \varepsilon^{\omega(1)} n^{h}$ copies of H. Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$. We define the graph $G=\operatorname{RS}(m, R)$:

G is $\Theta(\varepsilon)$-far from triangle-free.
Suppose we have a C_{5} in G.

$$
a-b+c+d-2 e=0
$$

For any H, copies of H in $G \longleftrightarrow$ solutions in R of E.
$E=$ system of linear equations: variables = edges of H, equations = cycles of H.
Want: R has no non-trivial solutions.

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$?

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$?

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$? (i.e. $|R| \geq \varepsilon m$ and R has no non-trivial solutions to E)

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$? (i.e. $|R| \geq \varepsilon m$ and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$? (i.e. $|R| \geq \varepsilon m$ and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.
Genus one = a simple linear-algebraic condition on the coefficients.

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$? (i.e. $|R| \geq \varepsilon m$ and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.
Genus one = a simple linear-algebraic condition on the coefficients. It remains to construct H such that its E has genus one.

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$? (i.e. $|R| \geq \varepsilon m$ and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.
Genus one = a simple linear-algebraic condition on the coefficients. It remains to construct H such that its E has genus one. Let H be a random triangle-free tripartite graph.

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$? (i.e. $|R| \geq \varepsilon m$ and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.
Genus one = a simple linear-algebraic condition on the coefficients. It remains to construct H such that its E has genus one. Let H be a random triangle-free tripartite graph.

Lemma (Gishboliner-Shapira-W. 2022)
For such H, its set E of equations has genus one w.h.p.

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$? (i.e. $|R| \geq \varepsilon m$ and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.
Genus one = a simple linear-algebraic condition on the coefficients. It remains to construct H such that its E has genus one.
Let H be a (pseudo)random triangle-free tripartite graph.
Lemma (Gishboliner-Shapira-W. 2022)
For such H, its set E of equations has genus one w.h.p.

Ruzsa's genus conjecture

Ruzsa (1993): For which E is there such $R \subseteq[m]$ with $m \geq(1 / \varepsilon)^{\omega(1)}$? (i.e. $|R| \geq \varepsilon m$ and R has no non-trivial solutions to E)

Theorem/Conjecture (Ruzsa 1993)
There exists such R if and only if E has genus one.
Genus one = a simple linear-algebraic condition on the coefficients. It remains to construct H such that its E has genus one.
Let H be a (pseudo)random triangle-free tripartite graph.

Lemma (Gishboliner-Shapira-W. 2022)

For such H, its set E of equations has genus one w.h.p.
The proof uses global, Ramsey-esque arguments, plus some structural information arising from the pseudorandomness.

Conclusion and open problems

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Conclusion and open problems

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)
If $H=C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.

Conclusion and open problems

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)
If $H=C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$. There exist* triangle-free H such that $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.

Conclusion and open problems

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)
If $H=C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
There exist* triangle-free H such that $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.

Open problems:

Conclusion and open problems

Theorem (asymmetric removal lemma)
Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H=C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
There exist* triangle-free H such that $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.

Open problems:

1. Delete the *.

Conclusion and open problems

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H=C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
There exist* triangle-free H such that $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.

Open problems:

1. Delete the *.

- Prove Ruzsa's genus conjecture, at least in some special cases.

Conclusion and open problems

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H=C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
There exist* triangle-free H such that $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.

Open problems:

1. Delete the *.

- Prove Ruzsa's genus conjecture, at least in some special cases.
- Find another construction, beyond $\mathrm{RS}(m, R)$, for such problems.

Conclusion and open problems

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H=C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
There exist* triangle-free H such that $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.

Open problems:

1. Delete the *.

- Prove Ruzsa's genus conjecture, at least in some special cases.
- Find another construction, beyond $\mathrm{RS}(m, R)$, for such problems.

2. Is the Petersen graph K_{3}-abundant? Which graphs are?

Conclusion and open problems

Theorem (asymmetric removal lemma)

Let G have n vertices and H have h vertices. Suppose $X(H)=3$. If G is ε-far from triangle-free, then G contains $\geq \delta^{*} n^{h}$ copies of H, where $\delta^{*}=\delta^{*}(\varepsilon, H)>0$ depends only on ε and H.

Theorem (Gishboliner-Shapira-W. 2022)

If $H=C_{\ell}$ for odd $\ell \geq 5$, we have $\delta^{*}(\varepsilon, H)=\operatorname{poly}(\varepsilon)$.
There exist* triangle-free H such that $\delta^{*}(\varepsilon, H) \neq \operatorname{poly}(\varepsilon)$.

Open problems:

1. Delete the *.

- Prove Ruzsa's genus conjecture, at least in some special cases.
- Find another construction, beyond $\mathrm{RS}(m, R)$, for such problems.

2. Is the Petersen graph K_{3}-abundant? Which graphs are?
3. Are there any K_{4}-abundant graphs? The first open case is the Brinkmann graph.

The Brinkmann graph

Thank you!

The Brinkmann graph

Genus-one systems of equations

Genus-one systems of equations

Write E in matrix form.

Genus-one systems of equations

Write E in matrix form.

$$
\begin{aligned}
& E_{1}=\left\{\begin{array}{r}
a-b+c-d=0 \\
a+2 b-2 c-d=0
\end{array} \rightarrow M_{1}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 2 & -2 & -1
\end{array}\right)\right. \\
& E_{2}=\left\{\begin{array}{r}
a-b+c-d=0 \\
2 a+b-2 c-d=0
\end{array} \rightarrow M_{2}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
2 & 1 & -2 & -1
\end{array}\right)\right.
\end{aligned}
$$

Genus-one systems of equations

Write E in matrix form.

$$
\begin{aligned}
& E_{1}=\left\{\begin{array}{r}
a-b+c-d=0 \\
a+2 b-2 c-d=0
\end{array} \rightarrow M_{1}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 2 & -2 & -1
\end{array}\right)\right. \\
& E_{2}=\left\{\begin{array}{r}
a-b+c-d=0 \\
2 a+b-2 c-d=0
\end{array} \rightarrow M_{2}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
2 & 1 & -2 & -1
\end{array}\right)\right.
\end{aligned}
$$

Definition (Ruzsa 1993)
E has genus one if no proper subset of the columns sums to zero.

Genus-one systems of equations

Write E in matrix form.

$$
\begin{aligned}
& E_{1}=\left\{\begin{array}{r}
a-b+c-d=0 \\
a+2 b-2 c-d=0
\end{array} \rightarrow M_{1}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 2 & -2 & -1
\end{array}\right)\right. \\
& E_{2}=\left\{\begin{array}{r}
a-b+c-d=0 \\
2 a+b-2 c-d=0
\end{array} \rightarrow M_{2}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
2 & 1 & -2 & -1
\end{array}\right)\right.
\end{aligned}
$$

Definition (Ruzsa 1993)
E has genus one if no proper subset of the columns sums to zero.

Genus-one systems of equations

Write E in matrix form.

$$
\begin{aligned}
& E_{1}=\left\{\begin{array}{r}
a-b+c-d=0 \\
a+2 b-2 c-d=0
\end{array} \rightarrow M_{1}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 2 & -2 & -1
\end{array}\right)\right. \\
& E_{2}=\left\{\begin{array}{r}
a-b+c-d=0 \\
2 a+b-2 c-d=0
\end{array} \rightarrow M_{2}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
2 & 1 & -2 & -1
\end{array}\right)\right.
\end{aligned}
$$

Definition (Ruzsa 1993)

E has genus one if no proper subset of the columns sums to zero.
Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$ have no non-trivial solutions to E.

Genus-one systems of equations

Write E in matrix form.

$$
\begin{aligned}
& E_{1}=\left\{\begin{array}{r}
a-b+c-d=0 \\
a+2 b-2 c-d=0
\end{array} \rightarrow M_{1}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
1 & 2 & -2 & -1
\end{array}\right)\right. \\
& E_{2}=\left\{\begin{array}{r}
a-b+c-d=0 \\
2 a+b-2 c-d=0
\end{array} \rightarrow M_{2}=\left(\begin{array}{cccc}
1 & -1 & 1 & -1 \\
2 & 1 & -2 & -1
\end{array}\right)\right.
\end{aligned}
$$

Definition (Ruzsa 1993)

E has genus one if no proper subset of the columns sums to zero.
Let $R \subseteq[m]$ with $|R| \geq \varepsilon m$ have no non-trivial solutions to E.

Theorem (Ruzsa 1993)
If E does not have genus one, then $m \leq O\left((1 / \varepsilon)^{2}\right)$.

Conjecture (Ruzsa 1993)
If E does have genus one, there is such R with $m \geq(1 / \varepsilon)^{\omega(1)}$.

