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Abstract

We show that over the binary field F2, the Bar-Natan perturbation of Khovanov homology splits as the
direct sum of its two reduced theories, which we also prove are isomorphic. This extends Shumakovitch’s
analogous result for ordinary Khovanov homology, without the perturbation.

1 Introduction

In [5], Khovanov introduced what he called the “categorification of the Jones polynomial”, and which has
since become known as Khovanov homology. Khovanov’s idea was to construct a link invariant as the
homology of a certain chain complex associated to the link, in such a way that the graded Euler characteristic
of this homology theory is the link’s Jones polynomial. In [1], Bar-Natan calculated the Khovanov homology
of many knots, and found that it is a strictly stronger invariant than the Jones polynomial—there are pairs
of knots whose Jones polynomials are equal but whose Khovanov homologies are non-isomorphic.

However, it is misleading to think of Khovanov homology as a simple extension of the Jones polynomial,
as its theory turns out to be very rich. It has been developed and extended in many ways, including the
anti-commutative “odd” version defined by Osváth, Rasmussen, and Szábo in [10], the higher-dimensional
analogue introduced by Szábo in [12], the sl(n)-homology defined by Khovanov and Rozansky in [4, 8], the
functoriality properties developed by Jacobsson and others in [3] and further papers, and its extensions
to tangle invariants defined by Khovanov in [6] and by Bar-Natan in [2]. This latter paper, [2], is also
important because it is where Bar-Natan introduced a “perturbation” to Khovanov homology (similar to
Lee’s perturbation [9]) which has become a major area of study.

In this paper, we begin by introducing Khovanov homology and the Bar-Natan perturbation. Following
Khovanov’s [7], the two reduced Bar-Natan theories are introduced, and we finish by extending a result of
Shumakovitch in [11] to show that over the binary field F2, the Bar-Natan theory splits as the direct sum of
the two reduced theories.

The proof technique used in this paper and in [11] cannot be obviously extended to work over other
rings, as many of the simplifications used rely very heavily on the fact that we work in characteristic 2. In
fact, it is known that Khovanov homology does not split over Z, as the example of the trefoil knot shows,
which means that Shumakovitch’s result cannot immediately be extended to characteristic zero. Moreover,
since the Bar-Natan theory reduces to ordinary Khovanov homology, the same is true of this paper’s results.
However, it was shown in [10] that the analogue of Shumakovitch’s result is true in odd Khovanov homology;
i.e. odd Khovanov homolgoy splits as the direct sum of two isomorphic reduced theories even over Z. Since F2

Khovanov homology is a reduction both of ordinary and of odd Khovanov homologies, it seems possible that
our results could be extended to the odd regime, assuming a suitable analogue of the Bar-Natan perturbation
could be defined there.

Acknowledgements: I would like to thank Sucharit Sarkar for his great help throughout the writing
process, and an anonymous referee for helpful comments on an earlier version of this paper. This study was
conducted while the author was supported for summer research from NSF Grant DMS-1350037.
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2 Khovanov Homology

Let L be a link, and F2 be the field with two elements1. In this section, we summarize the definition of the
Khovanov homology of L, as defined in [5]. For this, we begin by fixing an oriented link diagram L of L: this
is a collection of oriented arcs in the plane, with n double points. We write n = n+ + n−, where n+ (resp.
n−) is the number of positive (resp. negative) crossings in L. We order these double points arbitrarily, thus
identifying them with the set {1, 2, . . . , n}. Each double point is of the form

We define two “resolutions” of such a crossing:

0-resolution 1-resolution

So for each vertex α of the hypercube {0, 1}n, we can resolve each crossing of L in the obvious way: if the
jth coordinate of α is 0, then we use the 0-resolution for crossing j, and we use the 1-resolution otherwise.
Note that any such “full resolution” can have no crossing points, so it must be a collection of disjoint circles
embedded in the plane. We call this collection of circles Dα(L). We further associate to each vertex α a
vector space Vα(L) of dimension 2k, where k is the number of circles in Dα. We pick a basis of Vα(L) and
identify it with the collection of labellings of the circles in Dα(L) by two symbols, which we call 1 and x. We
can do this formally by letting W be the 2-dimensional vector space spanned by 1 and x, and then declaring
Vα(L) := W⊗k. Moreover, we introduce a grading to elements of Vα(L) by declaring gr(1) = 1, gr(x) = −1
and by extending grading additively to the tensor product Vα(L). Thus, in this particular basis, a basis
element of Vα(L) is a labelling of the k circles in Dα(L), and its grading is the number of 1’s in this labelling
minus the number of x’s.

2.1 Chain Groups

The chain groups in the chain complex defining Khovanov homology are direct sums of these Vα’s:

Definition 1 (Khovanov, [5]). The Khovanov chain complex of L has, as its ith chain group,

Ci :=
⊕

α∈{0,1}n:w(α)=i+n−

Vα(L)

where w(α) is the Hamming weight of α, namely the number of 1’s in α. Each vector space Ci is endowed
with a quantum grading defined by

q(v) = gr(v) + i+ n+ − n−
Since there are no hypercube vertices α with w(α) < 0 or w(α) > n, we see that all chain groups Ci with
i < −n− or i > n+ will be the 0 group.

The Khovanov homology of L will be defined as the homology2 of this chain complex, so we need to
define a differential on this complex.

1Everything below also works over any field, and indeed over Z. However, since our main result deals with the F2 version of
Khovanov homology, we won’t bother with the other versions.

2Under the above definition, the differential will be a map Ci → Ci+1, so Khovanov homology will, strictly speaking, be a
cohomology theory.
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2.2 The Differential

Defining a differential di : Ci → Ci+1 will be done in several steps, beginning by defining a map for each edge
of the hypercube. Note that an edge of the hypercube connects two vertices α and β which necessarily differ
in exactly one coordinate, say the jth. Without loss of generality, α has a 0 in the jth coordinate, while β
will have a 1 there. This means that the only difference between Dα(L) and Dβ(L) is in the resolution of
the jth crossing, where Dα uses a 0-resolution, while Dβ uses a 1-resolution. In order to mark how changing
a 0-resolution to a 1-resolution will affect the diagram, we place a little arc in each 0-resolution, as follows:

As shown, we place this arc so that it overlaps with the original crossing point. Then, going from a
0-resolution to a 1-resolution simply involves performing surgery along this arc: we translate the arc a bit
to the left and a bit to the right and treat these new segments as part of the 1-resolution.

We now consider the two possible cases:

Case 1: The two arcs in the 0-resolution of the jth crossing belong to two distinct circles of Dα(L). In
this case, moving from a 0-resolution to a 1-resolution turns these two circles into one, while all other circles
remain unchanged. This situation is called a merge.

Case 2: The two arcs in the 0-resolution of the jth crossing belong to the same circle. In this case, going
from a 0-resolution to a 1-resolution will turn this single circle into two distinct circles, while keeping all
other circles unchanged. This situation is called a split.

Using the above notation, we see that the following are a merge and a split, respectively:

Given such an edge between α and β, the goal is to define a map dα,β : Vα(L) → Vβ(L). Of course,
it suffices to define dα,β on a basis of Vα(L). Recall that in the chosen basis, a basis vector for Vα(L) is
simply a labelling of the circles in Dα(L), and similarly for Vβ(L). Given such a basis vector, one needs to
define its image under dα,β . By the above, we know that most of the circles in Dα(L) are unchanged by the
re-resolution of the jth crossing, so for these circles, one can simply define the labelling of the corresponding
circle in Dβ(L) to be its original labelling in the given basis vector.

Now, if the re-resolution is a split, we have taken into account the original labelling of all but one circle
(namely the splitting circle), and we have defined the labellings of all but two target circles (namely the two
daughter circles). So all that remains is defining a map ∆ : W →W ⊗W . This is done by declaring

∆(1) = 1⊗ x + x⊗ 1 ∆(x) = x⊗ x

Similarly, in the case of a merge, one must define a map m : W ⊗W →W , which is done by declaring

m(1⊗ 1) = 1 m(x⊗ x) = 0
m(1⊗ x) = x m(x⊗ 1) = x
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Then, in addition to the above identity actions on the circles not involved in the re-resolution, we have
defined a map dα,β : Vα(L) → Vβ(L). For convenience, we also define dα,β to be the 0 map in case there is
no edge between α and β. These maps satisfy a commutativity relation, namely

Lemma 1 (Khovanov, [5]). For each 2-dimensional face in the hypercube, the maps on the edges commute.
More formally, a 2-dimensional face has vertices {α, β1, β2, γ}, where β1 and β2 are gotten from α by changing
one 0 coordinate to 1, and γ is similarly gotten from both β1 and β2. Then for all such faces,

dβ1,γ ◦ dα,β1
= dβ2,γ ◦ dα,β2

The differential is then defined as follows.

Definition 2 (Khovanov, [5]). A map di : Ci → Ci+1 is defined by

di :=
⊕

α,β : w(α)=i+n− , w(β)=i+1−n−

dα,β

By Lemma 1, the maps dα,β commute on each 2-dimensional face, which is the same as anticommuting since
we are working over F2. Therefore, di+1 ◦ di = 0 for all i, which means that d is a differential3.

Definition 3 (Khovanov, [5]). The Khovanov chain complex C(L) is the chain complex (C∗, d∗), with chain
groups Ci and differential di for all i. By Lemma 1 and the above remarks, C(L) is indeed a chain complex.

The Khovanov homology Khi(L) is defined as the ith homology group of C(L). Since the maps ∆ and
m both decrease the grading gr by 1, we can see that they will act homogeneously on the quantum grading,
which means that q will descend to a grading on the homology Khi(L). Thus, Khi(L) is a graded vector
space.

It is clear that the Khovanov chain complex itself is highly dependent on which link diagram L of the
link L we pick; for instance, the number of chain groups in C(L) is precisely the number of crossings in L,
and there are link diagrams of the same link with arbitrarily many crossings. Nonetheless:

Theorem 1 (Khovanov, [5]). Khovanov homology is a link invariant. More formally, if L and L′ are two
link diagrams of the same link L, then Khi(L) ∼= Khi(L

′) for all i, where ∼= denotes isomorphism of graded
vector spaces.

2.3 The Bar-Natan Perturbation

Now, we define the Bar-Natan perturbation to Khovanov homology. We begin with a purely algebraic
formality:

Definition 4. Let H be a formal variable, and let V be an F2-vector space. We extend V to V [H], which is
a module over the polynomial ring F2[H], as follows. The elements of V [H] are formal linear combinations∑

i≥0

Hivi

where vi ∈ V , and only finitely many summands are nonzero. Addition is defined componentwise, and the
action of F2[H] is given, naturally, by

λ

∑
i≥0

Hivi

 =
∑
i≥0

Hiλvi H

∑
i≥0

Hivi

 =
∑
i≥0

Hi+1vi

for λ ∈ F2.

3For the general Khovanov homology (not over F2), it is necessary to add some minus signs to this definition.
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In [2], Bar-Natan introduced the map ∆′ : W →W ⊗W defined by

∆′(1) = 1⊗ 1

and m′ : W ⊗W →W defined by
m′(x⊗ x) = x

with all other basis vectors sent to 0 in either case4. From these, he formed edge maps hα,β , which are
defined as ∆′ if the edge α, β is a split, and m′ if this edge is a merge. Finally, in analogy with Definition 2,
he defined a homomorphism hi : Ci → Ci+1 by

hi :=
⊕

α,β:w(α)=i+n− , w(β)=i+1−n−

hα,β

Definition 5 (Bar-Natan, [2]). Let H be a formal parameter of degree −2. The Bar-Natan perturbation
to the Khovanov chain complex is the chain complex CBN (L) = (C∗[H], d∗ + Hh∗), though for notational
convenience we will often write d+Hh rather than d∗+Hh∗. In analogy with Lemma 1, it is straightforward
to check that the edge maps commute on all 2-dimensional faces of {0, 1}n, so CBN (L) is indeed a chain
complex. Its ith homology group, which is an F2[H]-module, is denoted by BNi(L). Moreover, since H
has degree −2, the differential d + Hh preserves quantum grading, meaning that this grading descends to
homology and BNi(L) can be viewed as a graded F2[H]-module.

He also proved the following theorem:

Theorem 2 (Bar-Natan, [2]). The Bar-Natan homology is a link invariant. More formally, if L and L′ are
two link diagrams of the same link L, then BNi(L) ∼= BNi(L

′) for all i, where ∼= denotes isomorphism of
graded F2[H]-modules.

3 The Bar-Natan Theory Splits

We pick a basepoint on L and maintain its position in each complete resolution. Let Cx and C1 denote the
subgroups of CBN in which the circle with the basepoint is labelled x and 1, respectively. Since both d and
h map Cx into itself, we see that Cx is actually a subcomplex of CBN , while the quotient CBN/Cx is naturally
isomorphic (as a group) to C1. Therefore, we can consider C1 to be a complex as well, and its differential is
given by composing d+Hh with the projection CBN � CBN/Cx ∼= C1.

Thus, we have a short exact sequence of chain complexes:

0 // Cx // CBN // C1 // 0

This induces a long exact sequence on homology:

· · · ∂ // H(Cx) // H(CBN ) // H(C1)
∂ // H(Cx) // · · ·

The homologies H(Cx) and H(C1) are called the reduced Bar-Natan theories. The connecting map ∂ is
surprisingly easy to understand in this context, since it happens to be induced from a chain map f : C1 → Cx.
f acts by applying the differential and then discarding all terms in which the basepoint circle is not labelled
x; i.e. f = πx ◦ (d + Hh), where πx is a projection onto Cx. This definition shows that f commutes with
the differentials on C1 and Cx, so it is indeed a chain map. Since the Bar-Natan perturbation h never turns
a circle labelled 1 into a circle labelled x, it is clear that this connecting map is actually the same as the
connecting map gotten in the standard Khovanov case. In particular, f preserves quantum grading. f
increases homological grading by 1, but it will be more convenient to have it preserve both homological
and quantum grading, so we formally make its codomain be Cx[−1], a homologically shifted copy of Cx; for

4Over fields of characteristic 6= 2, it is necessary to add a minus sign to the definition of ∆′.
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notational simplicity, we usually omit this formal distinction. With this caveat in mind, f preserves both
gradings.

In [11], Shumakovitch proved that Khovanov homology spits as the direct sum of these two reduced
theories, and we wish to extend this result to the case of the Bar-Natan perturbation. More precisely, we
prove the following theorem:

Theorem 3. H(CBN ) = H(Cx)⊕H(C1) when considered as modules over F2[H].

The rest of this section is devoted to proving this theorem. We will do this by proving that the map
f is nullhomotopic; this suffices since CBN is the mapping cone of f : C1 → Cx, so if f is nullhomotpic
we can conclude that CBN is chain homotopy equivalent to Cx ⊕ C1 over F2[H]. Thus, we will get that
H(CBN ) = H(Cx) ⊕H(C1) over F2[H]. A nullhomotopy for f is simply a map K so that f = [K, d + Hh],
where [ϕ,ψ] denotes the commutator ϕ ◦ ψ + ψ ◦ ϕ.5 K need not be homogeneous, but we can write
K = K0 +HK1 +H2K2 + · · · , where each Ki is a map that fixes homological grading but raises quantum
grading by 2i. Thus, our goal is now to construct this family of functions.

The Khovanov Case: Constructing K0

The following construction is due to Shumakovitch in [11, Theorem 3.2.A].
For a complete resolution D in which the basepoint circle is labelled 1, we define

K0(D) :=
∑
a
x

a
1 x

•

The sum runs over all circles a labelled x in D. For each such circle, it adds a copy of D in which a has been
relabelled to 1 and the basepoint circle has been relabelled to x. If this sum is empty or if the basepoint
circle is labelled x, then K0 is identically 0.6 This map clearly preserves homological and quantum grading.
We can also check directly that f = [K0, d], which is the statement that the ordinary Khovanov theory splits
over F2. To see this, we simply check that this equation holds for each 1-dimensional configuration.

We begin with those 1-dimensional configurations involving the basepoint circle. Starting with split
maps, we first recall that

d

(
•

1
)

=


•

1

x+


•
x

1


from which we immediately see that

f

(
•

1
)

=

•
x

1

We can also immediately calculate from this and from the definition of K0 that

K0

(
d

(
•

1
))

= K0


•

1

x =


•
x

1
+

∑
a
x

a
1

•
x

x

d

(
K0

(
•

1
))

= d

∑
a
x

a
1

•

x
 =

∑
a
x

a
1

•
x

x

5Since we are working over F2, the commutator and anticommutator are the same.
6This last condition is another way of saying that K0 is a map C1 → Cx. For if the basepoint circle is labelled x, then the

configuration does not lie in the domain of K0, so we declare that K0 evaluates to 0. This formal extension is necessary because
we must consider expressions of the form K0 ◦ d, and d may make the basepoint circle be labelled x.
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We see that the
∑

a
x terms will precisely cancel each other out, giving us

f

(
•

1
)

=

•
x

1

= K0

(
d

(
•

1
))

+ d

(
K0

(
•

1
))

Next, we consider the other split map,

d

(
•

x)
=

•
x

x

Since the basepoint circle is labelled x, both f and K0 evaluate to 0 on this configuration. Moreover, since

d
(
•
x)

has the basepoint labelled x, we see that K0

(
d
(
•
x))

= 0 as well. Thus, f = [K0, d] on this

configuration too. In fact, as this example indicates, we can immediately dispense with all diagrams where
the basepoint circle is labelled x, as both f and and K0 will evaluate to 0 on such diagrams.

Now we turn to merge maps, which are as straightforward. By the previous comment, the •
x x

and •
x 1

merges need not be considered, since the basepoint circle is labelled x. Next, we recall that

d
(
•

1 1)
= •

1

and therefore

f
(
•

1 1)
= 0

We then calculate that

K0

(
d
(
•

1 1))
= K0

(
•

1)
=
∑
a
x

a
1

•
x

d
(
K0

(
•

1 1))
= d

∑
a
x

a
1

•
x 1

 =
∑
a
x

a
1

•
x

which shows that f = [K0, d] for this configuration.

Finally, we check the •
1 x

merge. We have

d
(
•

1 x)
= •

x

and therefore

f
(
•

1 x)
= •

x

as well. We also see that

K0

(
d
(
•

1 x))
= K0

(
•
x)

= 0

d
(
K0

(
•

1 x))
= d

[
•
x 1]

+
∑
a
x

a
1

•
x x

 = •
x

Here, we can again see that f = [K0, d] for this configuration.
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Now, we must check that f = [K0, d] also for 1-dimensional configurations that don’t involve the basepoint
circle. Note that on all of these configurations, f will be 0, since surgery along any edge not connected
to the basepoint circle cannot turn the basepoint circle from a 1 to an x. Therefore, we wish to prove
that [K0, d] = 0. Moreover, we can assume that the basepoint circle is labelled 1, for otherwise K0 will
automatically evaluate to 0. Starting from the splits, we have

K0

(
d

(
1
))

= K0

 1

x+

 x

1
 =

∑
a
x

a
1

1

x
x

•

+

∑
a
x

a
1

x

1
x

•



d

(
K0

(
1
))

= d

∑
a
x

a
1

1 x

•

 =

∑
a
x

a
1

1

x
x

•

+

∑
a
x

a
1

x

1
x

•


Note that in calculating K0 ◦ d, we also get two terms in which both daughter circles are labelled 1, but
these two terms cancel each other out since we are working over F2.

Next, we consider the x split:

K0

(
d

( x))
= K0

 x

x =

∑
a
x

a
1

x

x
x

•

+

 1

x
x

•

+

 x

1
x

•



d

(
K0

( x))
= d

∑
a
x

a
1

x x

•

+

[
1 x

•

]
=

∑
a
x

a
1

x

x
x

•

+

 1

x
x

•

+

 x

1
x

•


and we see that these are indeed equal.

Next, we turn to the merges. We have

K0

(
d
( 1 1))

= K0

( 1)
=
∑
a
x

a
1 1 x

•

d
(
K0

( 1 1))
= d

∑
a
x

a
1 1 1 x

•

 =
∑
a
x

a
1 1 x

•

K0

(
d
( x 1))

= K0

( x)
=

∑
a
x

a
1 x x

•

+
[ 1 x

•
]
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d
(
K0

( x 1))
= d

∑
a
x

a
1 x 1 x

•

+
[ 1 1 x

•
]

=

∑
a
x

a
1 x x

•

+
[ 1 x

•
]

K0

(
d
( x x))

= K0(0) = 0

d
(
K0

( x x))
= d

∑
a
x

a
1 x x x

•

+
[ x 1 x

•
]

+
[ 1 x x

•
]

= 0

Thus, since each pair sums to 0, we see that f = [K0, d].

The Bar-Natan Case: The Higher Ki’s

In order to see that the Bar-Natan theory splits as well, we will construct the homotopies Ki for all i > 0.
Recall that Ki must preserve homological grading but raise quantum grading by 2i, so there is a natural
guess for a definition of Ki:

Ki(D) :=
∑

a1
x
· · · ai+1

x

a1
1
· · · ai+1

1 x

•

This sum runs over all (i+ 1)-tuples of circles labelled x. As usual, if the basepoint circle is labelled x in D
or if this sum is empty, then Ki(D) = 0. Note that when i = 0, this actually agrees with our above definition
of K0. Since we intend to define K = K0 +HK1 +H2K2 + · · · and we intend to have f = [d+Hh,K], we
can see that it is sufficient to have

[Ki, h] + [Ki+1, d] = 0

satisfied for all i > 0. We will begin by proving that this holds for all 1-dimensional configurations involving
the basepoint.

We can immediately see that [Ki, h] has only two nonzero terms involving the basepoint, namely:

h
(
Ki

(
•

1 x))
= h


 ∑

a1
x
· · · ai

x

a1
1
· · · ai

1

•
x 1

 +

+

 ∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1

•
x x




=
∑

a1
x
· · · ai+1

x

a1
1
· · · ai+1

1 x

• (1)
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Ki

(
h

(
1

•

))
= Ki


•

1

1
 =

∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1

•
x

1

(2)

We need to check that [Ki+1, d] has the same nonzero terms containing the basepoint, and we’ll do this by
first checking that [Ki+1, d] agrees with [Ki, h] on these configurations, and then that it has no other nonzero

basepoint terms. First, we note that Ki+1

(
d
(
•

1 x))
= 0, since d

(
•

1 x)
has the basepoint

circle labelled x. On the other hand,

d
(
Ki+1

(
•

1 x))
= d


 ∑

a1
x
· · · ai+1

x

a1
1
· · · ai+1

1

•
x 1

 +

+

 ∑
a1

x
· · · ai+2

x

a1
1
· · · ai+2

1

•
x x




=
∑

a1
x
· · · ai+1

x

a1
1
· · · ai+1

1 x

•

which agrees with (1).
For the split, we have

Ki+1

(
d

(
1

•

))
= Ki+1


•
x

1
+


•

1

x = Ki+1


•

1

x

=

 ∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1

•
x

1
+

 ∑
a1

x
· · · ai+2

x

a1
1
· · · ai+2

1

•
x

x


d

(
Ki+1

(
1

•

))
= d

 ∑
a1

x
· · · ai+2

x

a1
1
· · · ai+2

1
x

•

 =
∑

a1
x
· · · ai+2

x

a1
1
· · · ai+2

1

•
x

x

And indeed, their sum precisely equals (2).
Now, we check the other configurations involving the basepoint. As before, we need not consider diagrams

where the basepoint circle is labelled x, as both f and Ki+1 will vanish on such configurations. All that
remains, therefore, is the 1,1 merge. For this, we have

Ki+1

(
d
(
•

1 1))
= Ki+1

( 1

•
)

=
∑

a1
x
· · · ai+2

x

a1
1
· · · ai+2

1 x

•
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d
(
Ki+1

(
•

1 1))
= d

 ∑
a1

x
· · · ai+2

x

a1
1
· · · ai+2

1

•
x 1



=
∑

a1
x
· · · ai+2

x

a1
1
· · · ai+2

1 x

•

So we indeed see that [Ki+1, d] has no other nonzero terms involving the basepoint.
Next, we need to check that [Ki, h] = [Ki+1, d] on all 1-dimensional configurations not involving the

basepoint. We begin by calculating [Ki, h] on the splits:

Ki

(
h

(
1
))

= Ki

 1

1
 =

∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1
1

1
x

•

h

(
Ki

(
1
))

= h

 ∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1
1 x

•


=

∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1
1

1
x

•

Ki

(
h

( x))
= Ki(0) = 0

h

(
Ki

( x))
= h


 ∑

a1
x
· · · ai+1

x

a1
1
· · · ai+1

1
x x

•

 +

+

 ∑
a1

x
· · · ai

x

a1
1
· · · ai

1
1 x

•




=
∑

a1
x
· · · ai

x

a1
1
· · · ai

1
1

1
x

• (3)

Thus, the only nonzero term we need to worry about here is (3), which will be precisely cancelled soon.
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Next, we do the same for [Ki+1, d]:

Ki+1

(
d

(
1
))

= Ki+1

 x

1
+

 1

x
=


 ∑

a1
x
· · · ai+2

x

a1
1
· · · ai+2

1
x

1
x

•


+

 ∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1
1

1
x

•




+


 ∑

a1
x
· · · ai+2

x

a1
1
· · · ai+2

1
1

x
x

•


+

 ∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1
1

1
x

•




=
∑

a1
x
· · · ai+2

x

a1
1
· · · ai+2

1

 x

1
+

 1

x x

•

d

(
Ki+1

(
1
))

= d

 ∑
a1

x
· · · ai+2

x

a1
1
· · · ai+2

1
1 x

•


=

∑
a1

x
· · · ai+2

x

a1
1
· · · ai+2

1

 x

1
+

 1

x x

•

Ki+1

(
d

( x))
= Ki+1

 x

x
=

 ∑
a1

x
· · · ai+2

x

a1
1
· · · ai+2

1
x

x
x

•


+

 ∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1

 x

1
+

 1

x x

•


+

 ∑
a1

x
· · · ai

x

a1
1
· · · ai

1
1

1
x

•



12



d

(
Ki+1

( x))
= d


 ∑

a1
x
· · · ai+2

x

a1
1
· · · ai+2

1
x x

•


+

 ∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1
1 x

•




=

 ∑
a1

x
· · · ai+2

x

a1
1
· · · ai+2

1
x

x
x

•


+

 ∑
a1

x
· · · ai+1

x

a1
1
· · · ai+1

1

 x

1
+

 1

x x

•


Therefore, the only term that remains from the splits is

[Ki+1, d]

( x)
=

∑
a1

x
· · · ai

x

a1
1
· · · ai

1
1

1
x

•

which precisely equals (3).
The computations for the merges proceed analogously, so we omit the explicit calculations. However,

they work out as well, and we see that
[Ki, h] = [Ki+1, d]

on any configuration. This means that if we define K = K0 + HK1 + H2K2 + · · · , then we must have
f = [d+Hh,K], which means that the Bar-Natan theory splits as the direct sum of its two reduced versions.

4 Isomorphism

So far, we have proved that the Bar-Natan homology splits as a direct sum H(C1)⊕H(Cx) of the two reduced
theories. Moreover, we can say something stronger:

Theorem 4. As graded chain complexes over F2[H], C1 ∼= Cx. Therefore, the Bar-Natan homology is the
direct sum of two copies of the same (that is, isomorphic) reduced theories.

Proof. We wish to construct a graded F2[H]-module isomorphism of chain complexes between C1 and Cx.
To do this, we first recall that in the ordinary Khovanov case of [11], this isomorphism is given by the map
I : C1 → Cx that simply relabels the basepoint circle from 1 to x. This is clearly an isomorphism (as it maps
the basis vectors of C1 to the basis vectors of Cx). Moreover, it is straightforward to check that I is a chain
map for the Khovanov differential, meaning that [I, d] = 0.

For the Bar-Natan case, we define ι : C1 → Cx by

ι := I +HK = I +HK0 +H2K1 +H3K2 + · · ·

First, we show that ι is a chain map, which means that it commutes with the differential. So we want to
show that [ι, d+Hh] = 0. However, we have that

[ι, d+Hh] = [I +HK, d+Hh]

= [I, d+Hh] + [HK, d+Hh]

= [I, d] + [I,Hh] +Hf
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where the last step uses what we proved above, namely that [K, d+Hh] = f . Since [I, d] = 0, it suffices to
prove that

f = [I, h]

We proceed as in Section 3, again leaving out all cases where the basepoint circle is labelled x, as both f
and I will vanish on these. For the split map, we have

f

(
•

1
)

=

•
x

1

and

I

(
h

(
•

1
))

= I


•

1

1
 =

•
x

1

h

(
I

(
•

1
))

= h

(
•

x)
= 0

so f = [I, h] for the splits. For the merges, we have

f
(
•

1 1)
= 0

f
(
•

1 x)
= •

x

For both of these, h will evaluate to 0. So it suffices to check that h ◦ I agrees with f on them. Indeed,

h
(
I
(
•

1 1))
= h

(
•
x 1)

= 0

h
(
I
(
•

1 x))
= h

(
•
x x)

= •
x

Thus, we see that f = [I, h]. Note that unlike in the previous sections, we don’t need to check that this
equality holds on all surgeries not involving the basepoint circle, since f , I, and h are all defined locally. So
we see that the identity f = [I, h] holds always, which means that ι is indeed a chain map.

Now, we must check that ι is an isomorphism of chain complexes. We first prove that ι is injective. For
suppose that we had some homogeneous α ∈ ker ι. That means that each homogeneous component of ι(α) is
0, so in particular I(α) = 0. But I is injective, so we must have that α = 0. Therefore, ι is injective as well.

Proving directly that ι is surjective is significantly more tedious, since ι is defined in terms of various
sums. Luckily, we don’t need to do this. For we note that since H has grading −2, we must have that ι is a
homogeneous map that always decreases quantum grading by 2. Moreover, at each fixed quantum grading,
C1 and Cx are finite-dimensional F2-vector spaces of the same dimension, since there is a bijection between
their bases. So at each fixed quantum grading, ι is an injective homomorphism between two vector spaces of
the same dimension, so it must be surjective as well. Since this is true for all quantum gradings, ι itself must
be surjective. So ι is bijective, and as it was an F2[H]-module chain map, its inverse will be an F2[H]-module
chain map as well. So ι is a graded F2[H]-module isomorphism of chain complexes, so C1 ∼= Cx.
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