
Mathcamp 2021 Euclidean geometry beyond Euclid Homework #1

1. Find an infinite set of points in the plane (not all collinear) such that every line passing
through two of them also passes through a third.

This shows that the Sylvester–Gallai theorem is false without the requirement that we
only use finitely many points.

2. An incidence structure consists of a set P (which we call points), and a set L (which
we call lines), such that each line is a subset of P . An incidence structure is called an
abstract geometry if for every pair of distinct points p1, p2 ∈ P , there exists a unique
line ` ∈ L such that p1 ∈ ` and p2 ∈ `.

(a) Persuade yourself that our usual Euclidean notions of points and lines fit into this
abstract framework of geometry.

(b) However, abstract geometries can be pretty wacky! Verify that the following
picture defines an abstract geometry, called the Fano plane.

Here, each dot represents a point, and each segment (as well as the circle) repre-
sents a line.

(c) Is the Sylvester–Gallai theorem true in the Fano plane? What about the de
Bruijn–Erdős theorem?

(d) Play around with abstract geometries! Try to construct some weird ones, and see
which facts from Euclidean geometry remain true and which ones do not.

3. In this problem, we’ll explore things that aren’t lines.

(a) Find a set of points and unit circles in the plane such that every unit circle passes
through at least three of the points, but the points do not all lie on a single unit
circle. This shows that in some sense, the “circular Sylvester–Gallai” theorem is
not true.

(b) Let’s define a standard parabola to be the graph of y = (x − a)2 + b, for some
a, b ∈ R; in other words, a standard parabola is a translated copy of the parabola
y = x2, translated so its vertex is at the point (a, b).

Prove that every pair of points in the plane lie on a unique standard parabola,
unless they have the same x coordinate.

(c) Prove that any set of n points in the plane with distinct x coordinates, not all
lying on a single standard parabola, define at least n standard parabolas.

Hint: Recall the notion of abstract geometry from Exercise 2!

? (d) Does the “parabolic Sylvester–Gallai” theorem hold? That is, are there n points in
the plane with distinct x coordinates, not all lying on a single standard parabola,
such that no standard parabola passes through exactly two of them?
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? 4. In this problem, you’ll reproduce the original proof of de Bruijn and Erdős of the de
Bruijn–Erdős theorem.

(a) Let the points be p1, . . . , pn and the lines `1, . . . , `m. Let ai denote the number of
lines containing pi, and let bj denote the number of points on the line `j. Prove
that

n∑
i=1

ai =
m∑
j=1

bj.

Hint: Both of these expressions are counting the same thing; what is it?

(b) Prove that if pi does not lie on the line `j, then ai ≥ bj.

(c) Assume (without loss of generality) that an is the minimum of a1, . . . , an, and let
x = an. Prove that x ≥ 2.

(d) By relabeling the lines, assume that the lines through pn are `1, . . . , `x. For every
such line `j, there is some other point on it, say pj. Prove that p1, . . . , px are all
distinct points.

(e) Conclude from (b) and (d) that

a1 ≥ b2, a2 ≥ b3, . . . ax−1 ≥ bx, ax ≥ b1.

(f) Prove that ai ≥ an for every i > x, and that an ≥ bj for every j > x.

(g) Add up parts (e) and (f) to conclude that if m < n, we have

n∑
i=1

ai >
m∑
j=1

bj.

Conclude that m ≥ n, proving the de Bruijn–Erdős theorem.

(h) Check that you never used any properties of the Euclidean plane, and thus that
this proof works for any abstract geometry, in the sense of Exercise 2.
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1. Recall that the de Bruijn–Erdős theorem says that every set of n ≥ 3 non-collinear
points in the plane defines at least n lines.

(a) For every n ≥ 3, find a set of n non-collinear points in the plane that defines
exactly n lines. This shows that the bound in the de Bruijn–Erdős theorem is
best possible.

? (b) Prove that the construction you found in part (a) is unique, i.e. that any other
non-isomorphic set of n points in the plane defines strictly more than n lines.

2. Prove the Sylvester–Gallai theorem in higher dimensions, namely that any n non-
collinear points in Rd define a line passing through exactly two of them, for any d ≥ 2.
Try to prove this in two ways—first by following the proof of the Sylvester–Gallai
theorem we saw in class, and second by using the random projection argument we
used to prove the higher-dimensional de Bruijn–Erdős theorem.

3. Recall that for a set of points P in Rd, we define Fi(P ) to be the number of i-dimensional
hyperplanes defined by P .

(a) Pick your favorite polyhedron in R3, and let P be its set of vertices. Compute
F0(P ), F1(P ), and F2(P ).

Note that this amounts to more than just counting the edges and faces of the
polyhedron! Some of the lines and planes defined by P will not be edges or faces,
since they’ll go “through” the polyhedron.

(b) The set of vertices of the d-dimensional hypercube consists of the 2d points in Rd

whose coordinates are 0 or 1. Persuade yourself that the 2-dimensional hypercube
is just a square, and that the 3-dimensional hypercube is a cube.

? (c) Compute F0(P ), F1(P ), F2(P ), F3(P ), where P is the set of vertices of the 4-
dimensional hypercube.

? (d) Can you find a formula for Fi(P ), where P is the set of vertices d-dimensional
hypercube and 0 ≤ i ≤ d− 1?

(e) Check that for all the examples above, Rota’s conjecture and the Dowling–Wilson
conjecture hold.

4. If you don’t know what fields are, you may wish to skip this problem.

Given any field F, we may define the plane over F to consist of all ordered pairs of
elements of F. Then a line over F is the set of points (x, y) in the plane such that
ax+ by = c, for some fixed a, b, c ∈ F.

(a) Prove that for any field F, this notion of points and lines satisfies the property
that every two points define a unique line. Thus, this “plane” is an abstract
geometry in the sense of exercise 2 from Homework #1.

(b) Prove that if F is a finite field, then the Sylvester–Gallai theorem is false in the
plane over F.
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(c) Prove that the Sylvester–Gallai theorem is true over the rational numbers, i.e.
when F = Q.

?? (d) Prove that the Sylvester–Gallai theorem is false over the complex numbers, i.e.
when F = C.

Hint: There is a set of nine points in the plane over C spanning twelve lines,
each containing exactly three of the points. However, the only good way I know
to come up with these points involves the theory of elliptic curves, a fascinating
area of mathematics at the intersection of algebra, geometry, and number theory.
Please try to find such a set—I’d be very interested if you succeed! But if you
don’t succeed, one such set of points is given below in white text which you can
highlight to make visible; feel free to check that it works!

(0, 1) (1
2
, 0) (1,−1)

(0,−eπi/3) (eπi/3, 0) (1,−e2πi/3)
(0, e2πi/3) (−e2πi/3, 0) (1, eπi/3)

This is often called the Hesse configuration.
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1. Consider the coordinate axes in Rn, namely the n lies passing through the origin and the
points (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), respectively. Additionally, consider
the “diagonal” line passing through the origin and the point (1, 1, . . . , 1).

Prove that if n is sufficiently large, then these n+ 1 lines are almost orthogonal.

In some sense, this explains “why” there can be many almost orthogonal lines in high
dimensions—even our standard set of n orthogonal lines can be extended with at least
one more almost orthogonal line!

? 2. Find three random events A,B,C such that A and B are independent, B and C are
independent, A and C are independent, but the three events A,B,C are not mutually
independent.

This sort of thing is the reason why we have to be careful with the definition of mutual
independence: sometimes, the dependencies between events can be pretty tricky to
find!

Hint: The randomness can be two fair coin flips, and the events A,B,C can all have
probability 1

2
.

3. Prove that for every ε > 0, there exists some δ > 0 such that the following holds for
all n. There are b(1 + δ)nc lines in Rn, such that each pair forms an angle between
(90− ε)◦ and (90 + ε)◦. This shows that there was nothing special in our choice of 89◦

and 91◦ in the definition of almost orthogonal lines.

? 4. In this problem, you’ll prove the Chernoff bound.

(a) For a random variable X, let E[X] denote the expectation (or average) of X,
which is defined by

E[X] =
∑
x

xPr(X = x).

Prove that if X and Y are independent random variables, then

E[XY ] = E[X]E[Y ].

(b) Prove Markov’s inequality, which states that if Z is a non-negative random vari-
able (i.e. all the values that Z can take are non-negative), then

Pr(Z > a) <
E[Z]

a

for every a > 0.

? (c) Now let X take on values ±1 with probability 1
2
. Prove that for any λ ≥ 0,

E[eλX ] ≤ eλ
2/2.

Hint: First find an expression for E[eλX ] as a function of λ. Then compare the
Taylor series for this function and for the function ex

2/2.
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(d) Now let X1, . . . , Xn be independent, identically distributed random variables all
taking the values ±1 with probability 1

2
. Prove that

E[eλ(X1+···+Xn)] ≤ eλ
2n/2.

for any λ ≥ 0.

(e) Combine parts (b) and (d) to show that

Pr(X1 + · · ·+Xn > a) < eλ
2n/2−λa

for any a > 0 and any λ ≥ 0.

(f) Plug in λ = a/n to conclude the first part of the Chernoff bound.

(g) Prove the second part of the Chernoff bound.
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