
Mathcamp 2021 Euclidean geometry beyond Euclid Yuval

1 Points and lines

The most basic objects in Euclidean geometry are points and lines. The very first of Euclid’s
five axioms for plane geometry is about the fundamental relationship between points and
lines: any two points define a (unique) line.

In 1893—about 2200 years after Euclid—Sylvester asked the following question, which
could easily have appeared in the first book of Euclid’s Elements.

Question. Is it possible to place finitely many non-collinear points in the plane so that
whenever a line passes through two of them, it also passes through a third?

Note that the non-collinearity is important, since n ≥ 3 points on a line certainly satisfy
this property. Additionally, the requirement that we use finitely many points is necessary,
as you’ll show on the homework.

We can just try to place points in the plane so that every line through two of them goes
through a third. Since we want them to not all be collinear, we can start with just a triangle
of three points:

Of course, this doesn’t yet satisfy our desired property, since all three lines only contain two
points. We can fix this by adding a point on each of these lines, which I’ll now draw as solid
to indicate that they now have three points on them.

We fixed three lines, but created six new bad lines, which seems like negative progress. But
we can actually fix three of them by placing another point in the center of the triangle!

Though we still have three bad lines. . . We could of course fix them by placing three more
points, but that would create some further bad lines.
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If you keep experimenting in this way, you might come to be convinced that the answer
to Sylvester’s question is no, and that any finite set of non-collinear points in the plane
has a line passing through exactly two of them. This is indeed true, and is known as the
“Sylvester–Gallai” theorem, even though it was first proved by Melchior in 1941.

Theorem 1.1 (“The Sylvester–Gallai Theorem”). Any finite set of non-collinear points in
the plane define a line containing exactly two of them.

Proof (due to Kelly). Suppose for contradiction that this is false, and let P be the set of
points, and let L be the set of lines they define. For a line ` and a point p not on `, we let
d(p, `) denote the distance from p to `, i.e. the length of the segment passing through p and
orthogonal to `.

We begin by picking a pair (p, `) of a point and a line not through p whose distance is
minimal. Formally, we consider the set of pairs

{(p, `) : p ∈ P, ` ∈ L, p is not on `}.

By the assumption of non-collinearity, this set is non-empty. Moreover, since both P and L
are finite, this set is finite. So we can pick p, ` with p not on ` so that d(p, `) is minimized.
By assumption, ` contains at least three points of P , say a, b, c, and say they appear in this
order. Drop a perpendicular from p to `, and say it meets ` at the point m.

By the pigeonhole principle, at least two of the points a, b, c must be on the same side
of the perpendicular from p. Say that these are b, c. Then the pair of points p, c ∈ P define
another line `′ ∈ L.

`

m
a

b
c

p

`′

m′

We claim that d(b, `′) < d(p, `), which contradicts the fact that we chose (p, `) to have
minimal distance. So to finish the proof, it suffices to prove this claim, which is hopefully
pretty intuitive from the picture above.

To prove it rigorously, note that pmc and bm′c are both right triangles. Moreover, these
two right triangles are similar, since they have the same angle at c. Finally, note that the
length of the segment bc is at most the length of mc, and the length of mc is less than the
length of pc since mc is a leg of the right triangle pmc with hypotenuse pc. So the length
of bc is less than the length of pc, which shows that the triangle bm′c is smaller than the
triangle pmc, where by smaller I mean that the constant of similarity is less than 1. But this
implies that the length of bm′ is strictly less than the length of pm, as claimed.
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One important consequence of the Sylvester–Gallai theorem is the following theorem,
due to de Bruijn and Erdős from 1948.

Theorem 1.2. Any n ≥ 3 non-collinear points in the plane define at least n lines.

Proof. We proceed by induction on n. The base case is n = 3; in this case, three non-collinear
points define a triangle, and thus three lines.

For the inductive case, suppose we have a set P of n points in the plane. By the Sylvester–
Gallai theorem, there are two points, say a, b ∈ P , whose line contains no other point of P .
We delete a from the configuration to obtain a new set of n− 1 points, which we call P ′.

If P ′ is non-collinear, then by the inductive hypothesis it defines at least n − 1 lines.
Moreover, the line through a, b is not among these, since that line passes through b and no
other point of P ′. Therefore, P defines at least one more line than P ′ does, and therefore P
defines at least (n− 1) + 1 = n lines.

On the other hand, if P ′ is collinear, then there is some line ` containing all the points
of P ′. The point a must not lie on `, by our assumption that P was non-collinear. For every
point p in P ′, there is a distinct line passing through a and p, which yields |P ′| = n−1 lines.
Together with the line `, we get n lines in total.

`

One extremely interesting topic, which you can explore on the homework, is the fact
that there are other notions of geometry where statements like the Sylvester–Gallai and
de Bruijn–Erdős theorem make sense. In some of these more abstract “geometries”, the
Sylvester–Gallai theorem is simply false. However, the de Bruijn–Erdős theorem is always
true; it captures a really fundamental property of geometry. In fact, one can prove the de
Bruijn–Erdős theorem simply from the axiom that every two points define a unique line, but
the Sylvester–Gallai theorem cannot be proven in this way.

Here is an alternative proof of the de Bruijn–Erdős theorem, which does not use Sylvester–
Gallai, or any other special properties of Euclidean geometry. This proof uses some linear
algebra. On the homework, you can go through the de Bruijn and Erdős’s original proof,
which does not use linear algebra.

Alternative proof of Theorem 1.2. Let p1, . . . , pn be a set of n points in the plane, and let
the lines they define be `1, . . . , `m. We wish to prove that m ≥ n. For every 1 ≤ i ≤ n, we
define a vector v(i) ∈ Rm as follows. For every 1 ≤ k ≤ m, the kth coordinate of the vector
v(i) is 1 if pi lies on the line `k, and is 0 otherwise.

For example, consider the following configuration of n = 4 and m = 6 lines.
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p1

p2 p3

p4

`1 `2

`3

`4

`5`6

Then the four vectors v(1), v(2), v(3), v(4) are

v(1) =
(
1 1 0 1 0 0

)
v(2) =

(
1 0 1 0 1 0

)
v(3) =

(
0 1 1 0 0 1

)
v(4) =

(
0 0 0 1 1 1

)
For instance, the first coordinate in v(1) is 1 since p1 lies on `1, but the first coordinate of
v(3) is 0 since p3 does not lie on `1.

To prove that m ≥ n, we will show that the vectors v(1), . . . , v(n) are linearly independent.
Since they are vectors in Rm, this immediately implies that n ≤ m, since any collection of
linearly independent vectors in Rm can have at most m elements. If you’ve never seen linear
algebra, the rest of the proof (as well as the previous two sentences) will likely not make a
lot of sense, which is OK!

We first claim that every vector v(i) has at least two 1s in it. Indeed, the number of 1s in
v(i) is simply the number of lines containing the point pi. There is at least one 1 in v(i) since
pi lies on at least one line. Moreover, if there is only one 1 in v(i), then pi lies on a unique
line. But this means that there is a single line containing pi and pj for every j 6= i, meaning
that all the points are collinear, a contradiction. So each v(i) has at least two 1s. This, in
turn, implies that v(i) · v(i) ≥ 2 for every i. Indeed, the dot product v(i) · v(i) is simply the
sum of the squares of all the coordinates of v(i); since the coordinates of v(i) are just 0 and
1, and there are at least two 1s, this dot product is at least 2.

On the other hand, for every i 6= j, we claim that v(i) · v(j) = 1. Indeed, when computing
v(i) · v(j), we add up the product of the kth coordinate of v(i) and the kth coordinate of v(j),
for all 1 ≤ k ≤ m. The only way the product of the kth coordinates will be non-zero is if the
kth coordinate of both v(i) and v(j) is 1. Therefore, v(i) · v(j) computes the number of lines
`k containing both pi and pj. Since every pair of points lies on a unique line, this is exactly
1, so v(i) · v(j) = 1 as claimed.

To prove that v(1), . . . , v(n) are linearly independent, suppose that there are real numbers
c1, . . . , cn such that c1v

(1) + · · · + cnv
(n) = ~0, where ~0 is the zero vector in Rm, and assume

for contradiction that not all the ci equal 0. Taking the dot product of this equation with
v(1), we find that

0 = c1(v
(1) · v(1)) + c2(v

(2) · v(1)) + · · ·+ cn(v(n) · v(1)) = c1(v
(1) · v(1) − 1) + (c1 + · · ·+ cn),
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using the fact that v(1) · v(j) = 1 for all j ≥ 2. Similarly, by taking the dot product with v(i),
we find that

0 = ci(v
(i) · v(i) − 1) + (c1 + · · ·+ cn)

for all i. Recall that v(i) · v(i) ≥ 2, so v(i) · v(i) − 1 is positive. If c1 + · · · + cn = 0, then
this shows that ci = 0 for all i, which is a contradiction. If c1 + · · · + cn > 0, then we
find that ci < 0 for all i, which contradicts the fact that their sum is positive. Similarly, if
c1 + · · ·+ cn < 0, then we find that ci > 0 for all i, again a contradiction.

2 Higher dimensions

While the most well-known geometry in Euclid’s Elements is planar, Euclid nonetheless
devotes a few books to three-dimensional geometry. Are there analogues of the Sylvester–
Gallai theorem and the de Bruijn–Erdős theorem in higher dimensions?

There are actually several ways of interpreting this question (depending on what you
mean by “analogues”). For the Sylvester–Gallai theorem, the most natural high-dimensional
analogue is the following statement, which is indeed true.

Theorem 2.1 (High-dimensional Sylvester–Gallai). For every d ≥ 2 and n ≥ 3, there is
no set of n non-collinear points in Rd such that every line passing through two of them also
passes through a third.

You’ll be asked to prove this on the homework. Once we have Theorem 2.1, we can prove
the following high-dimensional de Bruijn–Erdős theorem, using the exact same inductive
argument as in our proof of Theorem 1.2.

Theorem 2.2 (High-dimensional de Bruijn–Erdős). For every d ≥ 2 and n ≥ 3, any set of
n non-collinear points in Rd defines at least n lines.

Although this can be proved from Theorem 2.1 by induction on n, there’s actually a
totally different proof that deduces the case for general d from the case d = 2.

Proof of Theorem 2.2. Consider a set P of n non-collinear points in Rd, and let X denote the
two-dimensional xy plane in Rd. Let π : Rd → R2 denote the projection onto X. Formally,
recall that every point of Rd is a vector with d coordinates; then π is just the function that
takes in a vector and throws away every coordinate except for the first two. Let π(P ) be the
subset of R2 gotten by applying π to every point in P .
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X

x

y

z

p1

π(p1)

p2

π(p2)

Let’s imagine for a moment that we got extremely lucky. Specifically, let’s assume that
no pair of points in P are mapped to the same point under π. Additionally, let’s assume that
every triple of non-collinear points in P is also mapped to a triple of non-collinear points by
π. If we really got this lucky, then π(P ) is a set of n non-collinear points in R2. Additionally,
there is a bijection between the lines defined by P and the lines defined by π(P ). By the
two-dimensional de Bruijn–Erdős theorem, Theorem 1.2, π(P ) defines at least n lines, which
implies that P defines at least n lines as well.

However, we obviously might not get so lucky. The trick to get around this is to pick X
to be a random two-dimensional plane in Rd, rather than the specific xy plane. If we do this,
then we will get lucky (in the sense above) with 100% probability. Proving this probabilistic
statement is actually not so easy, and requires some background in measure theory, but I
hope it’s intuitively reasonable. Indeed, there are only finitely many “problems” that can
arise: there are

(
n
2

)
pairs of points that might collide under π, and at most

(
n
3

)
non-collinear

triples that can be made collinear by π. But we have (uncountably) infinitely many choices
for the random plane X, so there’s a 0% probability that we’ll run into one of the finitely
many problems.

By making this argument rigorous, we can in particular find some plane X where we get
lucky (indeed, there will be infinitely many such planes). If we project onto this plane X,
then the argument above works: π(P ) consists of n non-collinear points in R2, which define
at least n lines by Theorem 1.2, which then implies that P defines at least n lines since there
is a bijection between the lines made by P and those made by π(P ).

This proof shows that the high-dimensional statement Theorem 2.2 is true, but it actually
tells us something more: this is a fundamentally two-dimensional statement. Even though
we are dealing with points and lines in Rd, all the real mathematical structure comes from
what happens when d = 2.

Can we come up with some “genuinely d-dimensional” version of the de Bruijn–Erdős the-
orem? One natural thing to try is to use the new structure that exists in higher dimensions,
namely planes, hyperplanes, and so on.
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Recall that in Rd, we have hyperplanes of every dimension 0 ≤ i ≤ d−1. Zero-dimensonal
hyperplanes are just points, one-dimensional hyperplanes are just lines, two-dimensional hy-
perplanes are our usual notion of planes. We don’t have special words for higher-dimensional
hyperplanes, simply because our brains can’t really visualize what an 11-dimensional hy-
perplane of R24 looks like. But these are perfectly natural and well-defined mathematical
notions.

The main fact that we will need to know about hyperplanes is that for every 1 ≤ i ≤ d−1,
every set of i + 1 points in Rd defines a unique i-dimensional hyperplane, unless this set of
i+1 points lies in some (i−1)-dimensional hyperplane. This generalizes the well-known fact
(i = 2) that any three points define a unique plane, unless they are collinear (i.e. contained in
some 1-dimensional hyperplane). This also generalizes the fact that any two distinct points
define a unique line, which is just the case i = 1.

It is natural to expect that there is a higher-dimensional de Bruijn–Erdős theorem, which
tells us something about the number of i-dimensional hyperplanes defined by a set of n points
in Rd. Let’s try to come up with what such a statement might be.

First, we must assume that our set of n points is “genuinely d-dimensional”. For in-
stance, if we take n points in R100 that all lie on a two-dimensional plane, then they will
not define any three-dimensional hyperplanes, nor any four-dimensional hyperplanes, nor
any 99-dimensional hyperplanes. Of course, we already encountered essentially this same
issue: in the de Bruijn–Erdős theorem, we assumed that our n points were non-collinear, i.e.
“genuinely 2-dimensional”.

Definition 2.3. A set P of n points in Rd is called genuinely d-dimensional if P is not
contained in any (d− 1)-dimensional hyperplane.

So from now on, let’s assume that we have a set P of n points in Rd, which is genuinely
d-dimensional. This assumption automatically implies that P defines at least one line, at
least one plane, at least one three-dimensional hyperplane, and so on. Again, this is the
natural higher-dimensional analogue of our non-collinearity assumption in Theorem 1.2.

Let Fi(P ) denote the number of i-dimensional hyperplanes1 defined by P . To get intuition
for what type of results to expect, let’s do some examples.

1. Let P consist of the four vertices of a tetrahedron in R3. They define 6 lines and four
planes (the edges and faces of the tetrahedron, respectively), so

F0(P ) = 4 F1(P ) = 6 F2(P ) = 4.

2. Let P consist of the eight vertices of a cube in R3, so F0(P ) = 8. We again have that
every pair of points defines a unique line, so F1(P ) =

(
8
2

)
= 28. Counting the planes is a

bit trickier: there are six faces of the cube, six additional planes containing four points
(namely two opposite edges of the cube), and finally eight more planes containing only
three points (there are two such planes orthogonal to any “long diagonal” of the cube).
So in total,

F0(P ) = 8 F1(P ) = 28 F2(P ) = 20.
1The notation Fi is standard, since some people prefer the word “flats” to “hyperplanes”.
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3. Suppose we add the center of the cube to the previous set of points. Then we actually
generate no new lines, since every line containing the center of the cube and one of its
vertices passes through another vertex, and so was already counted. Similarly, one can
check that we generate no new planes in this way. So for this example,

F0(P ) = 9 F1(P ) = 28 F2(P ) = 20.

4. The simplest genuinely d-dimensional set of points we can place in Rd is the vertices
of the simplex, which is the d-dimensional analogue of a triangle, tetrahedron, etc. It
consists of d + 1 points such that no triple is collinear, no quadruple is coplanar, and
in general, no set of i+ 1 points lies on an (i− 1)-dimensional hyperplane. Concretely,
we can take our points to be

(0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, 1, . . . , 0), (0, 0, 0, . . . , 1).

Then F0(P ) = d+ 1, since we have d+ 1 points. Every pair of points defines a unique
line, so F1(P ) =

(
d+1
2

)
= d2+d

2
. Similarly, every triple of points defines a unique plane,

so F2(P ) =
(
d+1
3

)
. More generally,

Fi(P ) =

(
d+ 1

i+ 1

)
for every 0 ≤ i ≤ d− 1.

Thus, the sequence Fi is simply the (d + 1)th row of Pascal’s triangle, without the 1
at the beginning and the end.

So far, all the examples we’ve seen do have some common behavior. As guaranteed by the
de Bruijn–Erdős theorem, for instance, we always have F0(P ) ≤ F1(P ). Additionally, in
all the three-dimensional examples, we had F1(P ) ≥ F2(P ). Additionally, we know that
the binomial coefficients

(
d+1
i+1

)
are increasing until i + 1 =

⌊
d+1
2

⌋
, and then are decreasing

starting from i+ 1 =
⌈
d+1
2

⌉
. This is consistent with our three-dimensional examples, which

are increasing from F0 to F1, and then decreasing from F1 to F2. It is natural to conjecture
that this pattern continues, namely that for odd d,

F0(P ) ≤ F1(P ) ≤ · · · ≤ F d−1
2

(P ) ≥ F d+1
2

(P ) ≥ · · · ≥ Fd−2(P ) ≥ Fd−1(P ), ( )

and a similar thing for even d. However, the next example shows that this conjecture is too
ambitious.

5. Let P be a set of n points in general position in Rd. General position means that no
triple of points in P is collinear, no quadruple in P is coplanar, and so on: no set of
i+ 1 points in P lie on an (i− 1)-dimensional hyperplane. It turns out that for every
n ≥ d + 1, there is a genuinely d-dimensional set in general position. We explicitly
constructed such a set—the simplex—for n = d + 1, but it turns out that it’s not so
easy to explicitly construct such sets for arbitrary n ≥ d + 1. Nonetheless, we can
again do it randomly! For example, we can let P consist of n randomly chosen points
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in the unit ball in Rd. Just as in our proof of Theorem 2.2, there are only finitely many
“bad events” (e.g. there are only

(
n
3

)
triples that might be collinear,

(
n
4

)
quadruples

that might be coplanar, etc.). Because of this, with 100% probability, we will get lucky
and obtain a set in general position in this way.

If we have a set P in general position, then Fi(P ) =
(
n
i+1

)
for every 0 ≤ i ≤ d − 1.

Indeed, every set of i+1 points will define an i-dimensional hyperplane, and the general
position assumption implies that this hyperplane will not contain any other point in
P . Because of this, we will get

(
n
i+1

)
distinct hyperplanes.

In particular, if n ≥ 2d, then the sequence
(
n
i+1

)
will simply be increasing for all i, i.e.

we’ll have
F0(P ) < F1(P ) < F2(P ) < · · · < Fd−1(P ).

This demonstrates that the earlier conjecture can’t be true in general. Similarly, if
d+1 < n < 2d, then the sequence will eventually start decreasing, but it won’t happen
at the midpoint.

Nonetheless, there is a reasonable conjecture we can salvage out of this data. Namely, it
seems that our (false) conjecture ( ) can only fail “upwards”: if ( ) is false, then it’s
because the sequence Fi(P ) doesn’t start decreasing “when it’s supposed to”, at the halfway
mark. This behavior is sometimes called top-heavy behavior, since there’s “more stuff at the
top than at the bottom” of the sequence.

Many people over the years observed that the naive conjecture is false, but that it seems
to only be false in one way, which caused them to formulate a number of more refined con-
jectures. Maybe the most natural is the following, known as Rota’s unimodality conjecture.

Conjecture 2.4 (Rota, 1971). Let P be a genuinely d-dimensional set of n points in Rd.
Then there exists some 0 ≤ m ≤ d− 1 such that

F0(P ) ≤ F1(P ) ≤ · · · ≤ Fm−1(P ) ≤ Fm(P ) ≥ Fm+1(P ) ≥ · · · ≥ Fd−1(P ).

In other words, Rota’s conjecture says that the sequence Fi(P ) goes up for a while, and
then starts coming down. Note that if m = d − 1, then it will actually never start coming
down, which is the behavior we saw in our last example.

Despite 50 years of effort, and despite it being such a simple and basic problem, Rota’s
conjecture remains open. Nonetheless, the past decade has seen a flurry of activity on a
number of related problems; essentially, results of the same form have been proved in a
number of closely related contexts, though we still don’t know how to prove such a result
for point sets in Rd.

Note that Rota’s conjecture doesn’t say anything about the “upward failure” of ( ) that
I alluded to above. That behavior was observed by Dowling and Wilson, who formulated
the following top-heavy conjecture.
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Conjecture 2.5 (Dowling–Wilson, 1974). Let P be a genuinely d-dimensional set of n points
in Rd. Then for every i < j with i+ j ≤ d− 1, we have that Fi(P ) ≤ Fj(P ). In particular,
we have that

F0(P ) ≤ F1(P ) ≤ · · · ≤ Fb d−1
2 c(P )

and
Fi(P ) ≤ Fd−1−i(P )

for every 0 ≤ i ≤
⌊
d−1
2

⌋
.

Note that for d = 2, the de Bruijn–Erdős theorem proves both Rota’s conjecture and
the Dowling–Wilson conjecture. Thus, both conjectures are natural generalizations of the
de Bruijn–Erdős theorem to higher dimensions.

Unlike Rota’s conjecture, which is still open, the Dowling–Wilson conjecture was proved
very recently, by Huh and Wang. Even more recently, Braden, Huh, Matherne, Proudfoot,
and Wang gave a new proof of a more general theorem, which I won’t state; but roughly
speaking, it proves the Dowling–Wilson conjecture in the most general possible setting (of
so-called matroids), which form a vast generalization of point sets in Rd.

Theorem 2.6 (Huh–Wang 2017, Braden–Huh–Matherne–Proudfoot–Wang 2020). Conjec-
ture 2.5 is true (as are many generalizations of it).

One astonishing thing about these proofs is their complexity. The conjecture is about
the most basic objects in Euclidean geometry: points, lines, planes, etc. Moreover, the d = 2
case of this conjecture, namely the de Bruijn–Erdős theorem, is pretty straightforward to
prove. However, the original proof of Huh and Wang used some extraordinarily complicated
mathematics, namely the theory of intersection cohomology for `-adic perverse sheaves.
These are algebraic structures that don’t obviously have much to do with point sets in Rd,
so it’s already remarkable that Huh and Wang were able to find a connection between these
disparate areas of math.

The more recent and more general proof, of Braden, Huh, Matherne, Proudfoot, and
Wang, is in a certain sense simpler. Namely, they don’t need to use any of this intersection
cohomology as a black box, and their paper is basically self-contained. However, it’s almost
100 pages long, and for good reason: they construct a “combinatorial Hodge theory”, which
is some analogue to this intersection cohomology, and which is well-suited to deal with their
problem directly. However, to use it, they need to prove that it satisfies certain complicated
algebraic relations (the so-called Kähler package), and these proofs are in some sense inspired
by the corresponding proofs for `-adic perverse sheaves.

I don’t really understand either of the proofs of the Dowling–Wilson conjecture, and even
if I did, it’d be impossible to cover a complicated 100-page paper in a three-day course. But
at an immensely high level, one can view their proof(s) as a generalization of the linear-
algebraic proof above of the de Bruijn–Erdős theorem. Recall that there, we wished to prove
that n ≤ m, where n is the number of poitns in the plane and m is the number of lines they
define. To do so, we defined vectors v(1), . . . , v(n) ∈ Rm, and showed that these vectors were
linearly independent, which implied that n ≤ m. The vectors were defined in a very natural
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way, namely the kth coordinate of v(j) was 1 if the jth point was on the kth line, and 0
otherwise.

Let’s say we wish to prove that Fi(P ) ≤ Fd−1−i(P ) for some genuinely d-dimensional
point set P in Rd. Let N = Fi(P ) and M = Fd−1−i(P ). Braden–Huh–Matherne–Proudfoot–
Wang do effectively define vectors v(1), . . . , v(N) ∈ RM , and then prove that these vectors are
linearly independent, implying that N ≤M as claimed. Moreover, the kth coordinate of the
vector v(j) is non-zero if the jth i-dimensional hyperplane is a subset of the kth (d− 1− i)-
dimensional hyperplane, and zero otherwise. However, it turns out that if we let the vectors
v(j) have only 0 and 1 as their coordinates, then they will not be linearly independent in
general. Instead, in order to prove the Dowling–Wilson conjecture, it is necessary to put
some other non-zero numbers in the vectors v(1), . . . , v(N). And it really seems that the only
way to come up with which numbers to put in the vectors is to build up some complicated
algebraic machinery, as these authors do.

I mentioned earlier that many results related to Rota’s conjecture have been proved,
although Rota’s conjecture itself remains open. Most of these related results have come in
the past decade, by several of the same authors I mentioned above, and also using techniques
related to this sort of combinatorial Hodge theory. I personally wouldn’t be too surprised if
Rota’s conjecture were proved in the next few years, using many of these same techniques.

3 Almost orthogonal lines

Let us say that a collection of lines passing through a common point is pairwise orthogonal
if every pair of them is orthogonal. It’s easy to show that three lines in the plane cannot all
be pairwise orthogonal; moreover, this is basically an immediate consequence of the fourth
of Euclid’s five axioms for plane geometry.

In three dimensions, of course, we can have three pairwise orthogonal lines, but four lines
cannot be pairwise orthogonal. The generalization of this, unsurprisingly, is the following.

Theorem 3.1. The maximum number of pairwise orthogonal lines in Rn is n.

Proof. One can prove this using linear algebra, but let’s prove it by induction on n. The
base case n = 1 is simple: R1 consists of a single line, so the maximum number of distinct
lines in R1 (let alone pairwise orthogonal) is 1.

For the inductive step, suppose the statement is true for n − 1. Say we are given any
collection L of pairwise orthogonal lines in Rn. Fix any line ` in the collection, and let H
be the (n − 1)-dimensional hyperplane orthogonal to `. Let L′ = L \ {`} be the collection
of lines gotten by deleting `. Since every line in L′ is orthogonal to `, we see that L′ must
lie in the hyperplane H. But since H is identical to Rn−1, we have that |L′| ≤ n− 1 by the
inductive hypothesis. Therefore, |L| = |L′|+ 1 ≤ (n− 1) + 1 = n.

Although Euclid didn’t know about dimensions higher than 3, this proof was basically
known to him, and is essentially given in Propositions XI.4 and XI.5 in the Elements.

So far, we haven’t done anything too interesting. But we can get a new notion by slightly
weakening our notion of pairwise orthogonality.

11
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Definition 3.2. Let us say that a collection of lines through a common point is almost
orthogonal if for every pair, the angle between them is between 89◦ and 91◦.

Let f(n) denote the maximum number of almost orthogonal lines in Rn. Note that
since a pairwise orthogonal collection is, in particular, almost orthogonal, we definitely have
f(n) ≥ n. In other words, a collection of n pairwise orthogonal lines in Rn is certainly almost
orthogonal.

Can f(n) be larger than n? We can try some small examples for intuition; for instance, I
claim that f(2) = 2. Indeed, consider any line `1 in R2. Any line which is almost orthogonal
to `1 must lie in the tiny shaded region in the following picture.

`1

We can put any line `2 we want inside the shaded region, but once we pick such a line, we
can’t find another line `3 that is nearly orthogonal to both `1 and `2.

Similarly, one can prove that f(3) = 3, in much the same way. However, it’s pretty easy
to believe that as the number of dimensions increases, the amount of wiggle room we have
increases. My intuition suggests that once n is large enough, we can actually use this wiggle
room and squeeze in one more line, so that f(n1) = n1 +1 for some sufficiently large n1. It is
then reasonable to imagine that for many more dimensions, n+ 1 is the best we can do, but
eventually we accumulate enough wiggle room so that f(n2) = n2 + 2 for some much larger
n2. I would expect the pattern to continue in this fashion, so that as n tends to infinity,
we have that f(n) equals n plus some very slowly growing function of n. In particular, I’d
expect that f(n) < 2n for all n.

As it turns out, this intuition is wildly wrong, and high dimensions behave totally differ-
ently. For very large n, f(n) will be waaaaaay larger than n.

12
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Theorem 3.3. f(n) ≥ b1.0007nc.
In particular, in 100, 000-dimensional space, there are more than 1030 almost orthogonal

lines. In million-dimensional space, there are more than a googol cubed almost orthogonal
lines.

To prove Theorem 3.3, we need to set up some background first. Recall that for two
vectors v, w ∈ Rn, the dot product v ·w is defined v ·w =

∑n
i=1 viwi, where v1, . . . , vn are the

n coordinates of v, and similarly for w. The length of a vector v is defined by ‖v‖ =
√
v · v.

The main fact we will need is essentially the same as the law of cosines. It says that for
two vectors v, w, the angle θ between them satisfies

cos θ =
v · w
‖v‖‖w‖

.

One can check (e.g. on Wolfram Alpha) that an angle θ is between 89◦ and 91◦ if and only
if |cos θ| ≤ β, for some real number β ≈ 0.017452. So in order to prove Theorem 3.3, we will
actually find a set of M ≥ b1.0007nc vectors v(1), . . . , v(M) in Rn such that

|v(i) · v(j)| ≤ β‖v(i)‖‖v(j)‖ for all distinct 1 ≤ i, j ≤M. (1)

It is actually not so easy to explicitly construct such a set of vectors. To get around this,
we will use an immensely powerful technique called the probabilistic method. Basically, it
turns out that if we pick these vectors at random, then property (1) holds with positive
probability. In particular, since the probability that (1) holds is positive when the vectors
are chosen randomly, there must exist some set of vectors for which it holds!

Before we do the proof, we’ll collect a few probabilistic tools that we will need.

3.1 Probabilistic tools

Let’s say we make some random choices, and let A be an event, i.e. a thing that can happen
after the random choices. For instance, if our randomness is rolling a die, then the event A
might be that die comes up 1, or that it comes up a prime number, or that it comes out
even. If the randomness is that we deal a random card to everyone in this class, then the
event A could be that we all receive red cards, or that I get the ace of spades, or that exactly
two of us got queens. We denote by Pr(A) the probability of A, which is a number between
0 and 1.

The first basic result we’ll need about probability is the following, known as the union
bound.

Proposition 3.4 (Union bound). For any two events A,B,

Pr(A happens or B happens (or both)) ≤ Pr(A) + Pr(B).

More generally, for any events A1, . . . , At,

Pr(at least one of A1, . . . , At happens) ≤
t∑
i=1

Pr(Ai).

13
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Rigorously proving the union bound requires setting up the actual formal mathematical
theory of probability, which we won’t do. But hopefully it is intuitively clear. For instance,
if I pick a random card from a deck, the probability that it is either red or a king is at most
the probability that it is red, plus the probability that it is a king.

We say that two events A and B are independent if Pr(A and B) = Pr(A) Pr(B). Intu-
itively, what independence “means” is that whether or not A happens has no influence on
the probability that B happens. For example, if I flip a fair coin twice, then the event that
the first flip is heads is independent of the event that the second flip is tails. If we have events
A1, . . . , At, then we say that they are mutually independent if for every set I ⊆ {1, . . . , t},

Pr(Ai happens for all i ∈ I) =
∏
i∈I

Pr(Ai).

The technical condition is perhaps a bit tricky to wrap your head around, but again the
intuition is that the events are mutually independent if they all have no influence on each
other.

A random variable is just any number whose value is determined by the randomness. For
instance, if we roll a die, then the outcome of the die roll is a random variable. If we denote
this random variable by X, then we have

Pr(X = 1) = Pr(X = 2) = Pr(X = 3) = Pr(X = 4) = Pr(X = 5) = Pr(X = 6) =
1

6
.

This information is called the distribution of X: formally, the distribution is the list of
probabilities Pr(X = x) for every value x that X can take. We say that two random variables
X, Y are identically distributed if they have the same distribution: the probability that X
takes on the value 5 equals the probability that Y takes on the value 5, and this holds for
every possible choice of 5. Additionally, we say that random variables X, Y are independent
if the event X = x is independent of the event Y = y for all x, y. We can analogously define
what it means for a number of random variables X1, . . . , Xt to be mutually independent.

Perhaps the most important result in all of probability theory is the central limit theorem,
which was first observed by Gauss and Laplace. The central limit theorem explains the
shocking prevalence of the bell curve in a huge number of natural phenomena. The bell
curve (or Gaussian distribution) is the curve in the plane given by the equation y = e−x

2
.

x

y

I won’t state it rigorously or prove it, but the central limit theorem roughly says that if
X1, X2, . . . are independent random variables that are identically distributed, then X1+· · ·+
Xt converges to a Gaussian distribution as t→∞. In real life, you could imagine that we are
doing some scientific experiment, trying to find the value of some experimentally determined
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number (e.g. the speed of light, the mass of an electron, etc.). Since our equipment is not
perfect, we imagine that every experiment returns a random outcome, which is probably close
to the truth, but with some random noise. We can also assume that in different experiments,
the random noise is independent. This implies that when we add up (or average) the results
of the experiments, we are adding up independent, identically distributed random variables,
which should then yield a bell curve by the central limit theorem. This is the reason why
the bell curve shows up in many scientific experiments, as well as in many other contexts in
real life.

Instead of the central limit theorem, we will need the following result which can be seen
as an “approximate” version of the central limit theorem. Results of this type are variously
known as the Chernoff bound, Hoeffding’s inequality, and/or Azuma’s inequality. Rather
than stating it for arbitrary random variables, we’ll only state it for variables that are +1
or −1 with probability 1/2.

Proposition 3.5 (Chernoff bound). Let Z1, . . . , Zn be mutually independent random vari-
ables, with Pr(Zi = 1) = Pr(Zi = −1) = 1

2
for all 1 ≤ i ≤ n. For any a > 0, we have

Pr(Z1 + · · ·+ Zn > a) ≤ e−a
2/(2n)

and
Pr(Z1 + · · ·+ Zn < −a) ≤ e−a

2/(2n).

Therefore,
Pr(|Z1 + · · ·+ Zn| > a) ≤ 2e−a

2/(2n).

The reason that I say that this is an approximate form of the central limit theorem is
that we see that quadratic behavior in the exponent, matching what is given by the bell
curve y = e−x

2
.

You’ll prove the Chernoff bound in the homework.

3.2 Back to almost orthogonal lines

As we said earlier, in order to prove the existence of a set of vectors satisfying (1), we will
pick the vectors v(i) randomly. Specifically, each coordinate of each vector will be +1 or −1
with probability 1

2
, and all these choices will be made independently at random.

The following two lemmas will allow us to prove (1).

Lemma 3.6. Let X1, . . . , Xn be mutually independent, identically distributed random vari-
ables with Pr(Xi = 1) = Pr(Xi = −1) = 1

2
for all i. Let v = (X1, . . . , Xn) be the random

vector they define. Then ‖v‖ =
√
n.

Proof. By definition,

‖v‖2 = v · v =
n∑
i=1

X2
i =

n∑
i=1

1 = n.
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Lemma 3.7. Let X1, . . . , Xn, Y1, . . . , Yn be mutually independent, identically distributed ran-
dom variables, each equal to +1 or −1 with probability 1

2
. Let v = (X1, . . . , Xn) and

w = (Y1, . . . , Yn). Then

Pr(|v · w| > βn) ≤ 2e−β
2n/2.

Proof. Let Zi = XiYi for all 1 ≤ i ≤ n. Then by the definition of the dot product,

v · w = Z1 + · · ·+ Zn.

We first observe that Z1, . . . , Zn are mutually independent, since all the Xi, Yi were mutually
independent, and therefore the randomness in Zi has no effect on the randomness in Zj for
any j 6= i. Additionally, we claim that Pr(Zi = 1) = Pr(Zi = −1) = 1

2
. Indeed, Zi will be

1 if Xi and Yi are both either equal to 1 (which happens with probability 1
4
) or both equal

to −1 (which also happens with probability 1
4
), so Pr(Zi = 1) = 1

2
. By essentially the same

argument, we see that Pr(Zi = −1) = 1
2
.

Therefore, we are in a position to apply Proposition 3.5, which tells us that for any a > 0,

Pr(|v · w| > a) = Pr(|Z1 + · · ·+ Zn| > a) ≤ 2e−a
2/(2n).

Plugging in a = βn, we get the desired result.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. Let M = b1.0007nc, and let v(1), . . . , v(M) be random vectors in Rn,
each of which has all its coordinates equal to ±1 with probability 1

2
, with all these choices

made independently. By Lemma 3.6, we see that ‖v(i)‖ = n for all 1 ≤ i ≤M .
For all 1 ≤ i < j ≤ M , let Aij be the event that |v(i) · v(j)| > βn. By Lemma 3.7, we

know that
Pr(Aij) ≤ 2e−β

2n/2

for all i, j. Therefore, by the union bound,

Pr(Aij happens for at least one pair i, j) ≤
∑

1≤i<j≤M

Pr(Aij) ≤
(
M

2

)
·2e−β2n/2 < M2e−β

2n/2,

where the final inequality uses the fact that
(
M
2

)
= M2−M

2
< M2

2
.

To conclude, we note that by our choice of M , we have that M ≤ 1.0007n, and thus
M2 ≤ 1.0015n. Moreover, if we recall that β = cos(89◦) ≈ 0.017452, then we see that
e−β

2/2 < 0.99. Therefore,

Pr(Aij happens for at least one pair i, j) < (1.0015 · 0.99)n < 1,

since 1.0015 · 0.99 ≈ 0.9915 < 1.
Because of this, we find that with positive probability, none of the events Aij happen.

Since this probability is positive, there must exist some vectors v(1), . . . , v(M) in Rn such that
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|v(i) · v(j)| ≤ βn and ‖v(i)‖ = n for all distinct i, j. Consider the set of M lines going through
these vectors. By the law of cosines, the angle θij between any two of them satisfies

cos θij =
v(i) · v(j)

‖v(i)‖‖v(j)‖
≤ βn

n
= β.

Thus, these M lines all have angles between 89◦ and 91◦, and thus they are almost orthogonal,
as claimed.

The final thing to remark is that the result about almost orthogonal lines in Rn is one
instantiation of a very general phenomenon, often called the “curse of dimensionality”. Ba-
sically, a bunch of weird things happen once one moves to very high dimensions, even though
the basic rules of geometry are the same as in the dimensions we’re used to. Here are just a
few other examples.

• Volumes and distances get all weird in high dimensions. For instance, if you take
the unit ball in Rn and inscribe it in a hypercube, then the volume of the ball is
exponentially small in the volume of the cube. In other words, the vast majority of
points with coordinates in [−1, 1] are really far from the origin.

• It turns out that almost all the points on the unit sphere in Rn are extremely close
to the equator: if you pick a random point on the unit sphere, then the probability
that its latitude is greater than 1◦ or less than −1◦ is exponentially small. But this is
extremely weird, since the sphere is symmetric, so this holds for all equators! So the
sphere is somehow very squashed like a pancake, since almost all of it is very close to
the equator. But it’s squashed in every direction, so it’s kind of like a spiky ball with
spikes going out in every direction. It’s really hard to visualize!
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