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1 Introduction

One of the most important results in extremal graph theory is the Kővári–Sós–Turán theo-
rem. There are a number of different ways of stating it; the following way will be the most
useful for us in the future.

Theorem 1 (Kővári–Sós–Turán). Let G be an N-vertex graph with at least γN2 edges. Then
G contains a copy of Kk,k, where

k ⩾ c
logN

log 1
γ

and c > 0 is an absolute constant.
Moreover, this is tight up to the value of c: a random N-vertex graph with γN2 edges

contains, with high probability, no copy of Kk,k for k = C logN

log 1
γ

, for some absolute constant

C > 0.

One of the remarkable things about the Kővári–Sós–Turán theorem is that holds for all γ
and N . In particular, it is meaningful even when γ is a negative power of N , or equivalently
when k is fixed. For example, if we plug in γ = N−c/k, we find that Kk,k ⊆ G whenever G is
an N -vertex graph with at least N2−c/k edges. In this formulation, we see that it is of great
interest to close the constant-factor gap in Theorem 1, since doing so would determine the
correct exponent for the extremal number of Kk,k.

Another natural way of viewing the Kővári–Sós–Turán theorem is through the lens of
graph blowups. Given a graph H and an integer k, the k-blowup H[k] is obtained from H by
replacing every vertex by an independent set of order k, and every edge by a copy of Kk,k. In
particular, Kk,k is simply the k-blowup of K2. Thus, the Kővári–Sós–Turán theorem states
that if G contains at least γN2 copies of K2, then it contains a copy of K2[k] for a “large”
value of k, namely k = Ω( logN

log 1
γ

).

Therefore, it is natural to ask what happens if we assume that G contains many copies
of H; in particular, can we guarantee a large blowup of H? The first result in this direction
was due to Erdős, who proved a hypergraph analogue of the Kővári–Sós–Turán theorem,
which, in particular, implies the following.

Theorem 2 (Erdős). Let H be an h-vertex graph. Let G be an N-vertex graph with at least
γNh copies of H. Then G contains a copy of H[k], where

k ⩾ cH
(logN)

1
h−1

log 1
γ

.

For example, for H = K3, this states that a graph with γN3 triangles contains a complete
tripartite graph Kk,k,k = K3[k] for k = Ωγ(

√
logN). While the underlying result about

hypergraphs is again tight up to a constant factor (as witnessed by a random hypergraph),
Theorem 2 is not tight. Indeed, a random graph with edge density γ1/e(H) has ≍ γNh copies
of H, but still has a blowup H[k] with k = Θγ(logN).
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Since the random construction was tight for Theorem 1, it is natural to expect that
Theorem 2 can be strengthened to yield a logarithmic bound. And indeed, this was proved
in groundbreaking work of Nikiforov.

Theorem 3 (Nikiforov). Fix γ > 0 and an h-vertex graph H. If N is sufficiently large, and
G is an N-vertex graph with at least γNh copies of H, then G contains a copy of H[k], where

k ⩾ cHγ
h logN,

and cH is a constant depending only on H.

Thus, Nikiforov’s theorem states that if G contains Ω(Nh) copies of H, then it contains
an H-blowup of size k = Θ(logN). This dependence on N is tight, as witnessed by a random
graph. In the case H = K3, we find a complete tripartite graph of size Θ(logN), rather than
the Ω(

√
logN) size guaranteed by Theorem 2. This result is one of a number of fundamental

theorems—also including the Ruzsa–Szemerédi (6, 3) theorem—which demonstrate that the
structure of triangles in a graph is rather different from the structure of a generic 3-uniform
hypergraph.

Nonetheless, there are two major downsides to Theorem 3. The first is that the quanti-
tative dependence on γ is not necessarily optimal. A random graph with γNh copies of H
has a copy of H[k] only for k = CH

logN

log 1
γ

, which, as a function of γ, is much larger than the

cHγ
h logN guaranteed by Theorem 3. The second downside of Theorem 3 is the assumption

that N is sufficiently large with respect to γ. As discussed above, Theorem 1 holds for all
γ and N , and thus yields informative results even when we are looking for a constant-sized
blowup. Thus, for example, Theorem 1 yields information on how many edges in a graph
guarantee a copy of C4 = K2[2], but Theorem 3 gives no information on how many triangles
in a graph guarantee a copy of the octahedron graph, K3[2].

Addressing the first downside, there have been a number of quantitative improvements
to Theorem 3. Rödl and Schacht proved that, in Theorem 3, we can take k ⩾ γ1+o(1) logN ,
where the o(1) tends to 0 as γ → 0, thus improving the exponent from h to a constant
independent of H. Later, Fox, Luo, and I improved this result and showed that we can take
k ⩾ γ1−1/e(H)+o(1) logN , thus obtaining an exponent strictly better than 1 for any fixed H.
However, all of these results still yield a lower bound that is polynomial in γ, whereas the
best known upper bound, coming from random graphs, is logarithmic in γ. Additionally,
all of these results share the second downside of Theorem 3, namely the require N to be
sufficiently large in terms of γ.

However, given our experience with Theorem 1, it is natural to expect that the random
graph is essentially optimal, and thus that one can overcome both downsides. Formally, the
following conjecture seems natural.

Conjecture 4. Let H be an h-vertex graph. If G is an N-vertex graph with at least γNh

copies of H, then G contains a copy of H[k], where

k ⩾ cH
logN

log 1
γ

,
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and cH > 0 is a constant depending only on H.

Again, Conjecture 4 would be tight up to the value of cH if it’s true, as witnessed by a
random graph. Additionally, as it makes no assumption on the relation between N and γ, it
would yield results in the constant k regime, as well as in intermediate regimes. This would
be very interesting, since, for example, Rödl and Schacht proved that knowing Conjecture 4
for H = K3 and γ on the order of e−

√
logN would have implications for such questions in

hypergraphs.
As far as I know, Conjecture 4 has never been formally written down, but its statement

has been floating around for a long time. I am also not sure whether experts really believe
it’s true: several people have told me that they expect that for H = K3, there should be a
construction doing much better than random.

Theorem 1 implies that Conjecture 4 is true for all bipartite H, which is a somewhat
degenerate case of the problem. The main theorem I want to discuss today confirms Con-
jecture 4 for a large family of H, and in particular is the first instance where Conjecture 4
is known for any non-bipartite H.

Theorem 5 (Girão–Hunter–W.). Let H be a triangle-free h-vertex graph. If G is an N-
vertex graph with at least γNh copies of H, then G contains a copy of H[k], where

k ⩾ cH
logN

log 1
γ

,

and cH > 0 is a constant depending only on H.

2 An application to Ramsey theory

Before discussing some ideas of the proof of Theorem 5, let me mention one cool applica-
tion it has in Ramsey theory. Recall that given a graph H and an integer q, the Ramsey
number r(H; q) is defined to be the least N such that every q-coloring of E(KN) contains a
monochromatic copy of H. A basic result of Chung and Graham states that

qck ⩽ r(Kk,k; q) ⩽ qCk (1)

where C > c > 0 are absolute constants. That is, r(Kk,k; q) grows polynomially in q, and
exponentially in k.

However, if H is not bipartite, then it is easy to see that such polynomial behavior in q
is impossible. Indeed, the standard “hypercube coloring” shows that r(H; q) > 2q for every
non-bipartite H. In fact, for complete graphs, it is known that

2cqk ⩽ r(Kk; q) ⩽ qqk,

i.e. the growth of r(Kk; q) is again exponential in k, and between exponential and (barely)
super-exponential in q.
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However, one way of viewing the Chung–Graham result (1) is as stating that r(H; q)
grows polynomially in q if H is a blowup of the fixed graph K2. Another result we proved
is that something similar happens for blowups of any fixed graph, so long as Conjecture 4
holds.

Proposition 6 (Girão–Hunter–W.). Let H be a graph, and suppose that Conjecture 4 holds
for H. If q is fixed and k is sufficiently large, then

qcHk ⩽ r(H[k]; q) ⩽ qCHk,

where CH > cH > 0 are constants depending only on H.

Since we proved that Conjecture 4 holds for any triangle-free H, this implies that Ramsey
numbers of large blowups of fixed triangle-free graphs exhibit polynomial dependence on q.
Again, we stress that the assumption that k is sufficiently large with respect to q is necessary,
since otherwise the bound r(H; q) > 2q, holding for non-bipartiteH, shows that a polynomial
dependence on q is impossible.

Let me remark that Proposition 6 is not very hard to prove, but that the first thing you
might try (or at least that I might try) does not work. Indeed, given that our goal is to use
Conjecture 4, it is natural to start with a q-coloring of E(KN), and then to identify a color
with many monochromatic copies of H. If we can do this, we can apply Conjecture 4 to the
graph of edges in this color, and find a large monochromatic blowup of H. Indeed, using
standard techniques of Ramsey multiplicity, one can find a color with many monochromatic
H. However, the bounds given by this approach are too weak, and even the best possible
bounds one could hope for are still too weak.

To circumvent this issue, we first “zoom in” to a small portion of the coloring, say to a
specially chosen set of

√
N vertices. By choosing this set appropriately, we can ensure that

it contains very many monochromatic H—so many that we can plug into Conjecture 4. The
key point is that, since Conjecture 4 yields bounds that are logarithmic in N , dropping the
number of vertices from N to

√
N involves essentially no loss in the bounds. The difficulty

is finding which set of vertices to zoom into, and there are a few ways of doing this; it can
be done using Szemerédi’s regularity lemma, but we take an alternative density-increment
approach in order to optimize some quantitative aspects of the proof.

3 Proof sketch

To conclude, I want to discuss a few of the ideas that go into the proof of Theorem 5, and
in particular, why the assumption that H is triangle-free arises. For concreteness, let’s work
with the special case H = C5.

We are given an N -vertex graph G with γN5 copies of C5. We can actually assume (by
slightly changing the parameters) that G is a 5-partite graph with parts V1, . . . , V5, where
|Vi| = N for all i, and with at least γN5 canonical copies of C5, that is, copies of C5 with
one vertex in each Vi and with the vertices of the C5 going between the parts in cyclic order.

Our (first) goal is to find subsets X1 ⊆ V1, Y2 ⊆ V2, Y5 ⊆ V5 with the following properties:
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• We have |X1| ⩾ c logN
log 1

γ

, for some constant c;

• For i ∈ {2, 5}, we have that |Yi| ⩾
√
N ;

• Every vertex in X1 is adjacent to all vertices in Y2 and Y5;

• The number of canonical copies of P4 = C5 \ {v1} among Y2, V3, V4, Y5 is at least
γC |Y2||V3||V4||Y5|.

V1

V2

V3 V4

V5

|X1| ⩾ c logN
log 1

γ

|Y2| ⩾
√
N |Y5| ⩾

√
N

⩾ γC-fraction
of P4s

Note that if we can find this structure, we can apply induction, running the same argument
with H = P4 among the sets Y2, V3, V4, Y5. Continuing in this fashion, we will eventually find
a blowup of C5. The key point is that, although we are paying a lot at every step—shrinking
the size of some sets by a square root, and decreasing the number of copies from a γ-fraction
to a γC-fraction—all of these losses are irrelevant once we take logarithms, since

log
√
N

log 1
γC

=
1
2
logN

C log 1
γ

= Ω

(
logN

log 1
γ

)
.
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Thus, at the end of this process, we will still only pick up a constant-factor loss (depending
on H). Because of this, it suffices to do one step of the process, as described above.

In order to construct these sets, we apply a variant of the dependent random choice
method, as follows. Set s = c logN

log 1
γ

for an appropriate constant c. We pick random vertices

a1, . . . , as ∈ V1, and random edges b1c1, . . . , bscs ∈ E(V3 × V4). We define X1 = {a1, . . . , as},
and set Y ⊆ V2 ×V5 to be the set of pairs (y2, y5) ∈ V2 ×V5 with the property that aiy2biciy5
forms a copy of C5 for all 1 ⩽ i ⩽ s.

Note that by construction, we have that |X1| = s = c logN
log 1

γ

. Also, we have by construction

that every vertex in X1 is adjacent to all vertices appearing in Y, since these vertices were
chosen to form copies of C5 with the vertices in X1. Additionally, it is not hard to show that,
in expectation, we have many copies of P4 with starting and ending vertices in Y and central
vertices in V3 × V4, and that, in expectation, |Y| ⩾ |V2||V5|/

√
N . In fact, by appropriate

computations, one can ensure that both of these events happen simultaneously with positive
probability.

The final, and key, step is to observe that—deterministically—Y is not an arbitrary subset
of V2 × V5. Instead, Y is of the form Y2 × Y5 for some Y2 ⊆ V2, Y5 ⊆ V5. The reason for this
is as follows: for a pair (y2, y5) to form a C5 with all tripes ai, bi, ci, the condition we are
imposing is just that y2 is adjacent to all ai, bi, and that y5 is adjacent to all ai, ci. These
conditions have nothing to do with each other, so Y is just a product set. In particular, this
plus the lower bound on Y yields all the properties we needed on the sets X1, Y2, Y5.

This is the only place where we use thatH (in this case C5) is triangle-free. This argument
only works because in C5, we have no edge between vertices 2 and 5. In general, we are using
that in H, the neighborhood of any vertex is an independent set. Without this assumption,
the set Y would not necessarily be a product set, and we would lose all control. Because of
this, it seems very difficult to push our technique and obtain any results even for K3; making
progess on Conjecture 4 for H = K3 would be extremely interesting.
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