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The Kővári–Sós–Turán theorem

Theorem (Kővári–Sós–Turán ’54)
Let G be an N-vertex graph with at least εN2 edges. Then G contains
a copy of Kk,k, where

k ⩾ c logNlog 1
ε

and c > 0 is an absolute constant.

This is tight up to the value of c: a random N-vertex graph with εN2

edges contains no copy of Kk,k with k = C logN
log 1

ε
, for some C > 0.

This holds for all ε and all N. For example, taking ε = N−c/k shows
that every graph with N2−c/k edges contains Kk,k.
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Blowups of graphs

The k-blowup H[k] of a graph H is obtained by replacing each vertex
of H by k vertices, and each edge of H by Kk,k.

H H[3]
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What about other graphs?
Theorem (Kővári–Sós–Turán ’54)
Let G be an N-vertex graph with at least εN2 copies of K2. Then G
contains a copy of K2[k], where

k ⩾ c logNlog 1
ε
.

What if G contains many copies of some other graph H?

Theorem (Erdős ’64)
Let H be an h-vertex graph. Let G be an N-vertex graph with at least
εNh copies of H. Then G contains a copy of H[k], where

k ⩾ cH
(logN) 1

h−1

log 1
ε

.
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Graphs vs. hypergraphs

Theorem (Erdős ’64)
Let H be an h-vertex graph. Let G be an N-vertex graph with at least
εNh copies of H. Then G contains a copy of H[k], where

k ⩾ cH
(logN) 1

h−1

log 1
ε

.

For H = K3, this says that if G has Ω(N3) triangles, it contains a copy
of K3[k] with k = Ω(

√
logN).

This is not tight for random graphs: a random graph with Θ(N3)
triangles contains K3[k] with k = Θ(logN).
Erdős’s theorem holds for arbitrary hypergraphs, and is tight for
random hypergraphs.
The triangles in a graph are not a “generic” 3-uniform hypergraph!



Graphs vs. hypergraphs

Theorem (Erdős ’64)
Let H be an h-vertex graph. Let G be an N-vertex graph with at least
εNh copies of H. Then G contains a copy of H[k], where

k ⩾ cH
(logN) 1

h−1

log 1
ε

.

For H = K3, this says that if G has Ω(N3) triangles, it contains a copy
of K3[k] with k = Ω(

√
logN).

This is not tight for random graphs: a random graph with Θ(N3)
triangles contains K3[k] with k = Θ(logN).
Erdős’s theorem holds for arbitrary hypergraphs, and is tight for
random hypergraphs.
The triangles in a graph are not a “generic” 3-uniform hypergraph!



Graphs vs. hypergraphs

Theorem (Erdős ’64)
Let H be an h-vertex graph. Let G be an N-vertex graph with at least
εNh copies of H. Then G contains a copy of H[k], where

k ⩾ cH
(logN) 1

h−1

log 1
ε

.

For H = K3, this says that if G has Ω(N3) triangles, it contains a copy
of K3[k] with k = Ω(

√
logN).

This is not tight for random graphs: a random graph with Θ(N3)
triangles contains K3[k] with k = Θ(logN).

Erdős’s theorem holds for arbitrary hypergraphs, and is tight for
random hypergraphs.
The triangles in a graph are not a “generic” 3-uniform hypergraph!



Graphs vs. hypergraphs

Theorem (Erdős ’64)
Let H be an h-vertex graph. Let G be an N-vertex graph with at least
εNh copies of H. Then G contains a copy of H[k], where

k ⩾ cH
(logN) 1

h−1

log 1
ε

.

For H = K3, this says that if G has Ω(N3) triangles, it contains a copy
of K3[k] with k = Ω(

√
logN).

This is not tight for random graphs: a random graph with Θ(N3)
triangles contains K3[k] with k = Θ(logN).
Erdős’s theorem holds for arbitrary hypergraphs, and is tight for
random hypergraphs.

The triangles in a graph are not a “generic” 3-uniform hypergraph!



Graphs vs. hypergraphs

Theorem (Erdős ’64)
Let H be an h-vertex graph. Let G be an N-vertex graph with at least
εNh copies of H. Then G contains a copy of H[k], where

k ⩾ cH
(logN) 1

h−1

log 1
ε

.

For H = K3, this says that if G has Ω(N3) triangles, it contains a copy
of K3[k] with k = Ω(

√
logN).

This is not tight for random graphs: a random graph with Θ(N3)
triangles contains K3[k] with k = Θ(logN).
Erdős’s theorem holds for arbitrary hypergraphs, and is tight for
random hypergraphs.
The triangles in a graph are not a “generic” 3-uniform hypergraph!



Nikiforov’s blowup theorem
Theorem (Erdős ’64)
Let H be an h-vertex graph. Let G be an N-vertex graph with at least
εNh copies of H. Then G contains a copy of H[k], where

k ⩾ cH
(logN) 1

h−1

log 1
ε

.

Theorem (Nikiforov ’08)
Fix ε > 0 and an h-vertex graph H. If N is sufficiently large, and G is an
N-vertex graph with at least εNh copies of H, then G contains a copy
of H[k], where

k ⩾ cH εh logN.

Pros: Right dependence on N! It’s about graphs, not hypergraphs.
Cons: Requires N sufficiently large; wrong dependence on ε.
A random graph has k = CH

logN
log 1

ε
.
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Nikiforov’s blowup theorem
Theorem (Erdős ’64)
Let H be an h-vertex graph. Let G be an N-vertex graph with at least
εNh copies of H. Then G contains a copy of H[k], where
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A bold conjecture

Conjecture (Folklore?)
Let H be an h-vertex graph. If G is an N-vertex graph with at least εNh

copies of H, then G contains a copy of H[k], where

k ⩾ cH
logN
log 1

ε
.

This would be tight for random graphs, and is for all ε and all N.
Partial progress:

• Kővári–Sós–Turán: the conjecture is true for H = K2.
• That’s it.

Theorem (Girão–Hunter–W ’24+)
The conjecture is true if H is triangle-free.
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Proof sketch I
Let H be an h-vertex triangle-free graph.

We’ll focus on H = C5.

Theorem (Girão–Hunter–W ’24+)
If G is an N-vertex graph with at least εNh copies of H, then G
contains a copy of H[k], where

k ⩾ c logNlog 1
ε
.

We may assume that G is 5-partite.

|Vi| = N, and εN5 canonical copies of C5.
Key lemma: There exist
X1 ⊆ V1,Y2 ⊆ V2,Y5 ⊆ V5 such that:

• |X1| ⩾ c logN
log 1

ε
and |Yi| ⩾

√
N

• X1 is complete to Y2,Y5
• There are εC|Y2||V3||V4||Y5| canonical P4

V1

V2

V3 V4

V5

X1

Y2 Y5
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We may assume that G is 5-partite.
|Vi| = N, and εN5 canonical copies of C5.
Key lemma: There exist
X1 ⊆ V1,Y2 ⊆ V2,Y5 ⊆ V5 such that:
• |X1| ⩾ c logN

log 1
ε
and |Yi| ⩾

√
N

• X1 is complete to Y2,Y5
• There are εC|Y2||V3||V4||Y5| canonical P4
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V3 V4

V5
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Proof sketch II: Using the key lemma

V1

V2 V5

V3 V4

|X1| ⩾ c logN
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|Y2| ⩾
√
N |Y5| ⩾

√
NεC-fraction of P4
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⩾ c log
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log 1
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Proof sketch III: Proof of the key lemma
Key lemma: There exist
X1 ⊆ V1,Y2 ⊆ V2,Y5 ⊆ V5 such that:
• |X1| ⩾ c logN

log 1
ε
and |Yi| ⩾

√
N

• X1 is complete to Y2,Y5
• There are εC|Y2||V3||V4||Y5|
canonical P4

Let s = c logN
log 1

ε
.

Pick random vertices a1,…, as ∈ V1
and random edges
b1c1,…,bscs ∈ V3 × V4.
Let X1 = {a1,…, as}.
Let Y2 be the common
neighborhood of
a1,…, as,b1,…,bs; similarly for Y5.
Crucially: Y2 × Y5 is the set of pairs
completing all ai,bi, ci to a C5.
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Thank you!


