Blowups of triangle-free graphs

Yuval Wigderson ETH Zürich

Eurocomb'25 August 28, 2025

Joint with António Girão and Zach Hunter

In memory of Gábor Simonyi

Gábor Simonyi (1963-2025)

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 edges. Then G contains a copy of $K_{k,k}$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$$

and c > 0 is an absolute constant.

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 edges. Then G contains a copy of $K_{k,k'}$ where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$$

and c > 0 is an absolute constant.

This is tight up to the value of c

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 edges. Then G contains a copy of $K_{k,k}$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$$

and c > 0 is an absolute constant.

This is tight up to the value of c: a random N-vertex graph with εN^2 edges contains no copy of $K_{k,k}$ with $k = C \frac{\log N}{\log \frac{1}{\varepsilon}}$, for some C > 0.

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 edges. Then G contains a copy of $K_{k,k}$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$$

and c > 0 is an absolute constant.

This is tight up to the value of c: a random N-vertex graph with εN^2 edges contains no copy of $K_{k,k}$ with $k = C \frac{\log N}{\log \frac{1}{\varepsilon}}$, for some C > 0.

This holds for all ε and all N.

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 edges. Then G contains a copy of $K_{k,k}$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$$

and c > 0 is an absolute constant.

This is tight up to the value of c: a random N-vertex graph with εN^2 edges contains no copy of $K_{k,k}$ with $k = C \frac{\log N}{\log \frac{1}{\epsilon}}$, for some C > 0.

This holds for all ε and all N. For example, taking $\varepsilon = N^{-c/k}$ shows that every graph with $N^{2-c/k}$ edges contains $K_{k,k}$.

The k-blowup H[k] of a graph H is obtained by replacing each vertex of H by k vertices, and each edge of H by $K_{k,k}$.

The k-blowup H[k] of a graph H is obtained by replacing each vertex of H by k vertices, and each edge of H by $K_{k,k}$.

The k-blowup H[k] of a graph H is obtained by replacing each vertex of H by k vertices, and each edge of H by $K_{k,k}$.

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 edges. Then G contains a copy of $K_{k,k}$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

The k-blowup H[k] of a graph H is obtained by replacing each vertex of H by k vertices, and each edge of H by $K_{k,k}$.

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 copies of K_2 . Then G contains a copy of $K_{k,k}$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

The k-blowup H[k] of a graph H is obtained by replacing each vertex of H by k vertices, and each edge of H by $K_{k,k}$.

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 copies of K_2 . Then G contains a copy of $K_2[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 copies of K_2 . Then G contains a copy of $K_2[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 copies of K_2 . Then G contains a copy of $K_2[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

What if G contains many copies of some other graph H?

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 copies of K_2 . Then G contains a copy of $K_2[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

What if G contains many copies of some other graph H?

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H.

Theorem (Kővári-Sós-Turán '54)

Let G be an N-vertex graph with at least εN^2 copies of K_2 . Then G contains a copy of $K_2[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

What if G contains many copies of some other graph H?

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

For $H = K_3$, this says that if G has $\Omega(N^3)$ triangles, it contains a copy of $K_3[k]$ with $k = \Omega(\sqrt{\log N})$.

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

For $H = K_3$, this says that if G has $\Omega(N^3)$ triangles, it contains a copy of $K_3[k]$ with $k = \Omega(\sqrt{\log N})$.

This is not tight for random graphs: a random graph with $\Theta(N^3)$ triangles contains $K_3[k]$ with $k = \Theta(\log N)$.

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

For $H = K_3$, this says that if G has $\Omega(N^3)$ triangles, it contains a copy of $K_3[k]$ with $k = \Omega(\sqrt{\log N})$.

This is not tight for random graphs: a random graph with $\Theta(N^3)$ triangles contains $K_3[k]$ with $k = \Theta(\log N)$.

Erdős's theorem holds for arbitrary hypergraphs, and is tight for random hypergraphs.

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

For $H = K_3$, this says that if G has $\Omega(N^3)$ triangles, it contains a copy of $K_3[k]$ with $k = \Omega(\sqrt{\log N})$.

This is not tight for random graphs: a random graph with $\Theta(N^3)$ triangles contains $K_3[k]$ with $k = \Theta(\log N)$.

Erdős's theorem holds for arbitrary hypergraphs, and is tight for random hypergraphs.

The triangles in a graph are not a "generic" 3-uniform hypergraph!

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

Theorem (Nikiforov '08)

Fix $\varepsilon > 0$ and an h-vertex graph H. If N is sufficiently large, and G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \varepsilon^h \log N$$
.

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

Theorem (Nikiforov '08)

Fix $\varepsilon > 0$ and an h-vertex graph H. If N is sufficiently large, and G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \varepsilon^h \log N$$
.

Pros: Right dependence on N! It's about graphs, not hypergraphs.

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

Theorem (Nikiforov '08)

Fix $\varepsilon > 0$ and an h-vertex graph H. If N is sufficiently large, and G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \varepsilon^h \log N$$
.

Pros: Right dependence on N! It's about graphs, not hypergraphs. **Cons:** Requires N sufficiently large; wrong dependence on ε . A random graph has $k = C_H \frac{\log N}{\log 2}$.

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

Theorem (Nikiforov '08; Rödl-Schacht '12)

Fix $\varepsilon > 0$ and an h-vertex graph H. If N is sufficiently large, and G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \varepsilon^{1+o(1)} \log N$$
.

Pros: Right dependence on N! It's about graphs, not hypergraphs. **Cons:** Requires N sufficiently large; wrong dependence on ε . A random graph has $k = C_H \frac{\log N}{\log 2}$.

Theorem (Erdős '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least εN^h copies of H. Then G contains a copy of H[k], where

$$k \geqslant c_H \frac{(\log N)^{\frac{1}{h-1}}}{\log \frac{1}{\varepsilon}}.$$

Theorem (Nikiforov '08; Rödl-Schacht '12; Fox-Luo-W '21)

Fix $\varepsilon > 0$ and an h-vertex graph H. If N is sufficiently large, and G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \varepsilon^{1-1/e(H)+o(1)} \log N.$$

Pros: Right dependence on N! It's about graphs, not hypergraphs. **Cons:** Requires N sufficiently large; wrong dependence on ε . A random graph has $k = C_H \frac{\log N}{\log 2}$.

Conjecture (Folklore?)

Let H be an h-vertex graph. If G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

Conjecture (Folklore?)

Let H be an h-vertex graph. If G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

This would be tight for random graphs, and is for all ε and all N.

Conjecture (Folklore?)

Let H be an h-vertex graph. If G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

This would be tight for random graphs, and is for all ε and all N. Partial progress:

Conjecture (Folklore?)

Let H be an h-vertex graph. If G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

This would be tight for random graphs, and is for all ε and all N. Partial progress:

• Kővári-Sós-Turán: the conjecture is true for $H = K_2$.

Conjecture (Folklore?)

Let H be an h-vertex graph. If G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

This would be tight for random graphs, and is for all ε and all N. Partial progress:

• Kővári-Sós-Turán: the conjecture is true for bipartite *H*.

Conjecture (Folklore?)

Let H be an h-vertex graph. If G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

This would be tight for random graphs, and is for all ε and all N.

Partial progress:

- Kővári-Sós-Turán: the conjecture is true for bipartite H.
- That's it.

A bold conjecture

Conjecture (Folklore?)

Let H be an h-vertex graph. If G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c_H \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

This would be tight for random graphs, and is for all ε and all N.

Partial progress:

- Kővári-Sós-Turán: the conjecture is true for bipartite H.
- That's it.

Theorem (Girão-Hunter-W '24+)

The conjecture is true if H is triangle-free.

Let *H* be an *h*-vertex triangle-free graph.

Theorem (Girão-Hunter-W '24+)

If G is an N-vertex graph with at least εN^h copies of H, then G contains a copy of H[k], where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

Let H be an h-vertex triangle-free graph. We'll focus on $H = C_5$.

Theorem (Girão-Hunter-W '24+)

If G is an N-vertex graph with at least εN^5 copies of C_5 , then G contains a copy of $C_5[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

Let H be an h-vertex triangle-free graph. We'll focus on $H = C_5$.

Theorem (Girão-Hunter-W '24+)

If G is an N-vertex graph with at least εN^5 copies of C_5 , then G contains a copy of $C_5[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

We may assume that G is 5-partite.

Let H be an h-vertex triangle-free graph. We'll focus on $H = C_5$.

Theorem (Girão-Hunter-W '24+)

If G is an N-vertex graph with at least εN^5 copies of C_5 , then G contains a copy of $C_5[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

We may assume that G is 5-partite.

 $|V_i| = N$, and εN^5 canonical copies of C_5 .

Let H be an h-vertex triangle-free graph. We'll focus on $H = C_5$.

Theorem (Girão-Hunter-W '24+)

If G is an N-vertex graph with at least εN^5 copies of C_5 , then G contains a copy of $C_5[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

We may assume that G is 5-partite.

 $|V_i| = N$, and εN^5 canonical copies of C_5 .

Key lemma: There exist

Let H be an h-vertex triangle-free graph. We'll focus on $H = C_5$.

Theorem (Girão-Hunter-W '24+)

If G is an N-vertex graph with at least εN^5 copies of C_5 , then G contains a copy of $C_5[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

We may assume that G is 5-partite.

 $|V_i| = N$, and εN^5 canonical copies of C_5 .

Key lemma: There exist

•
$$|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
 and $|Y_i| \geqslant \sqrt{N}$

Let H be an h-vertex triangle-free graph. We'll focus on $H = C_5$.

Theorem (Girão-Hunter-W '24+)

If G is an N-vertex graph with at least εN^5 copies of C_5 , then G contains a copy of $C_5[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

We may assume that G is 5-partite.

 $|V_i| = N$, and εN^5 canonical copies of C_5 .

Key lemma: There exist

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{c}}$ and $|Y_i| \geqslant \sqrt{N}$
- X_1 is complete to Y_2 , Y_5

Let H be an h-vertex triangle-free graph. We'll focus on $H = C_5$.

Theorem (Girão-Hunter-W '24+)

If G is an N-vertex graph with at least εN^5 copies of C_5 , then G contains a copy of $C_5[k]$, where

$$k \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}.$$

We may assume that G is 5-partite.

 $|V_i| = N$, and εN^5 canonical copies of C_5 .

Key lemma: There exist

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$ and $|Y_i| \geqslant \sqrt{N}$
- X_1 is complete to Y_2 , Y_5
- There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P_4

$$|X_2| \geqslant c \frac{\log |Y_2|}{\log \frac{1}{\varepsilon^C}}$$
$$\geqslant c \frac{\log \sqrt{N}}{\log \frac{1}{\varepsilon^C}}$$

$$|X_{2}| \geqslant c \frac{\log|Y_{2}|}{\log \frac{1}{\varepsilon^{C}}}$$
$$\geqslant c \frac{\log \sqrt{N}}{\log \frac{1}{\varepsilon^{C}}}$$
$$= c' \frac{\log N}{\log \frac{1}{2}}$$

$$|X_{2}| \geqslant c \frac{\log|Y_{2}|}{\log \frac{1}{\varepsilon^{C}}}$$
$$\geqslant c \frac{\log \sqrt{N}}{\log \frac{1}{\varepsilon^{C}}}$$
$$= c' \frac{\log N}{\log \frac{1}{\log \frac{1}{2}}}$$

Key lemma: There exist

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$ and $|Y_i| \geqslant \sqrt{N}$
- X_1 is complete to Y_2 , Y_5
- There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P_4

Key lemma: There exist

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$ and $|Y_i| \geqslant \sqrt{N}$
- X_1 is complete to Y_2 , Y_5
- There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P_4

Let
$$s = c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
.

Key lemma: There exist

 $X_1 \subseteq V_1$, $Y_2 \subseteq V_2$, $Y_5 \subseteq V_5$ such that:

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$ and $|Y_i| \geqslant \sqrt{N}$
- X_1 is complete to Y_2 , Y_5
- There are $\varepsilon^{\mathbb{C}}|Y_2||V_3||V_4||Y_5|$ canonical P_4

Let
$$s = c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
.

Pick random vertices $a_1, ..., a_s \in V_1$ and random edges

$$b_1c_1,...,b_sc_s \in V_3 \times V_4.$$

Key lemma: There exist

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$ and $|Y_i| \geqslant \sqrt{N}$
- X_1 is complete to Y_2 , Y_5
- There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P_4

Let
$$s = c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
.
Pick random vertices $a_1, ..., a_s \in V_1$ and random edges

$$b_1c_1, ..., b_sc_s \in V_3 \times V_4.$$

Let $X_1 = \{a_1, ..., a_s\}.$

Key lemma: There exist

 $X_1 \subseteq V_1$, $Y_2 \subseteq V_2$, $Y_5 \subseteq V_5$ such that:

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$ and $|Y_i| \geqslant \sqrt{N}$
- X_1 is complete to Y_2 , Y_5
- There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P_4

Let
$$s = c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
.

Pick random vertices $a_1, ..., a_s \in V_1$ and random edges

$$b_1c_1, ..., b_sc_s \in V_3 \times V_4.$$

Let $X_1 = \{a_1, ..., a_s\}.$

Let Y_2 be the common neighborhood of

$$a_1, ..., a_s, b_1, ..., b_s$$

Key lemma: There exist

 $X_1 \subseteq V_1$, $Y_2 \subseteq V_2$, $Y_5 \subseteq V_5$ such that:

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$ and $|Y_i| \geqslant \sqrt{N}$
- X_1 is complete to Y_2 , Y_5
- There are $\varepsilon^{\mathbb{C}}|Y_2||V_3||V_4||Y_5|$ canonical P_4

Let
$$s = c \frac{\log N}{\log \frac{1}{\epsilon}}$$
.
Pick random vertices $a_1, ..., a_s \in V_1$ and random edges $b_1c_1, ..., b_sc_s \in V_3 \times V_4$.
Let $X_1 = \{a_1, ..., a_s\}$.
Let Y_2 be the common

 $a_1, ..., a_s, b_1, ..., b_s$; similarly for Y_5 .

neighborhood of

Key lemma: There exist

- $|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$ and $|Y_i| \geqslant \sqrt{N}$
- $\sqrt{X_1}$ is complete to $\frac{Y_2}{Y_5}$
- There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P_4

Let
$$s = c \frac{\log N}{\log \frac{1}{\epsilon}}$$
.
Pick random vertices $a_1, ..., a_s \in V_1$ and random edges $b_1c_1, ..., b_sc_s \in V_3 \times V_4$.
Let $X_1 = \{a_1, ..., a_s\}$.
Let Y_2 be the common neighborhood of $a_1, ..., a_s, b_1, ..., b_s$; similarly for Y_5 .

Key lemma: There exist

 $X_1 \subset V_1, Y_2 \subset V_2, Y_5 \subset V_5$ such that:

$$|X_1| \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
 and $|Y_i| \geqslant \sqrt{N}$

- $\sqrt{X_1}$ is complete to $\frac{Y_2}{Y_5}$
- There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P₄

Let
$$s = c \frac{\log N}{\log \frac{1}{\epsilon}}$$
.

Pick random vertices $a_1, ..., a_s \in V_1$ and random edges

$$b_1c_1,...,b_sc_s \in V_3 \times V_4.$$

Let
$$X_1 = \{a_1, ..., a_s\}$$
.
Let Y_2 be the common

neighborhood of $a_1, ..., a_s, b_1, ..., b_s$; similarly for Y_5 .

$$a_1, ..., a_s, b_1, ..., b_s$$
; similarly for Y_5 .

Key lemma: There exist

 $X_1 \subseteq V_1$, $Y_2 \subseteq V_2$, $Y_5 \subseteq V_5$ such that:

$$\sqrt{|X_1|} \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
 and $|Y_i| \geqslant \sqrt{N}$

- \checkmark X_1 is complete to Y_2 , Y_5
- There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P_4

Let
$$s = c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
.

Pick random vertices $a_1, ..., a_s \in V_1$ and random edges

$$b_1c_1,...,b_sc_s \in V_3 \times V_4.$$

Let
$$X_1 = \{a_1, ..., a_s\}$$
.

Let Y_2 be the common neighborhood of

 $a_1, ..., a_s, b_1, ..., b_s$; similarly for Y_5 .

Crucially: $Y_2 \times Y_5$ is the set of pairs completing all a_i , b_i , c_i to a C_5 .

Key lemma: There exist

 $X_1 \subseteq V_1$, $Y_2 \subseteq V_2$, $Y_5 \subseteq V_5$ such that:

$$\sqrt{|X_1|} \geqslant c \frac{\log N}{\log \frac{1}{\varepsilon}} \text{ and } |Y_i| \geqslant \sqrt{N}$$

- $\sqrt{X_1}$ is complete to Y_2 , Y_5
- ✓ There are $\varepsilon^C |Y_2| |V_3| |V_4| |Y_5|$ canonical P_4

Let
$$s = c \frac{\log N}{\log \frac{1}{\varepsilon}}$$
.

Pick random vertices $a_1, ..., a_s \in V_1$ and random edges

$$b_1c_1,...,b_sc_s \in V_3 \times V_4.$$

Let
$$X_1 = \{a_1, ..., a_s\}$$
.

Let Y_2 be the common neighborhood of

 $a_1, ..., a_s, b_1, ..., b_s$; similarly for Y_5 .

Crucially: $Y_2 \times Y_5$ is the set of pairs completing all a_i , b_i , c_i to a C_5 .

