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The K&vari-Sds-Turan theorem

Theorem (K&vari-Sés-Turan '54)

Let G be an N-vertex graph with at least eN? edges. Then G contains
a copy of Ky, where
logN

Iog%

k>c

and ¢ > 0 is an absolute constant.

This is tight up to the value of c: a random N-vertex graph with eN?

edges contains no copy of K, with k = C:gg’f, for some C > 0.

This holds for all € and all N. For example, taking € = N=¢/k shows
that every graph with N>=</k edges contains Kj ;.
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Theorem (K&vari-Sés-Turan '54)

Let G be an N-vertex graph with at least eN? copies of K. Then G
contains a copy of Ky [k], where
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Theorem (Erdds '64)
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Theorem (Erdds '64)

Let H be an h-vertex graph. Let G be an N-vertex graph with at least
eNP copies of H. Then G contains a copy of H[k], where
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For H = K3, this says that if G has Q(N?) triangles, it contains a copy
of Ks[k] with k = Q(y/log N).

This is not tight for random graphs: a random graph with ©(N?)
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Erdds's theorem holds for arbitrary hypergraphs, and is tight for
random hypergraphs.

The triangles in a graph are not a “generic” 3-uniform hypergraph!
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Theorem (Nikiforov '‘08; RédI-Schacht '12; Fox-Luo-W '21)
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Theorem (Girdo-Hunter-W '24+)

The conjecture is true if H is triangle-free.
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Let H be an h-vertex triangle-free graph. We'll focus on H = Cs.

Theorem (Girdo-Hunter-W '24+)

If G is an N-vertex graph with at least eN° copies of Cs, then G
contains a copy of Csk|, where

logN
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We may assume that G is 5-partite.

|Vi| = N, and eN> canonical copies of Cs.
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