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Abstract

The Ramsey number r(G,H) is the minimum N such that every graph on N vertices contains
G as a subgraph or its complement contains H as a subgraph. For integers n ≥ k ≥ 1, the
k-book Bk,n is the graph on n vertices consisting of a copy of Kk, called the spine, as well as
n − k additional vertices each adjacent to every vertex of the spine and non-adjacent to each
other. A connected graph H on n vertices is called p-good if r(Kp, H) = (p − 1)(n − 1) + 1.
Nikiforov and Rousseau proved that if n is sufficiently large in terms of p and k, then Bk,n is
p-good. Their proof uses Szemerédi’s regularity lemma and gives a tower-type bound on n. We
give a short new proof that avoids using the regularity method and shows that every Bk,n with

n ≥ 2k
10p

is p-good.
Using Szemerédi’s regularity lemma, Nikiforov and Rousseau also proved much more general

goodness-type results, proving a tight bound on r(G,H) for several families of sparse graphs G
and H as long as |V (G)| < δ|V (H)| for a small constant δ > 0. Using our techniques, we prove
a new result of this type, showing that r(G,H) = (p− 1)(n− 1) + 1 when H = Bk,n and G is a
complete p-partite graph whose first p− 1 parts have constant size and whose last part has size
δn, for some small absolute constant δ > 0.

1 Introduction

For two graphs G,H, their Ramsey number r(G,H) is the smallest N such that every graph Γ on
N vertices contains G as a subgraph, or its complement contains H as a subgraph. The existence
of r(G,H) is guaranteed by Ramsey’s theorem [24]. The most well-studied Ramsey number is the
diagonal Ramsey number r(Kk,Kk). One of the oldest (and easiest) results in Ramsey theory is
the fact that r(Kk,Kk) ≥ (k − 1)2 + 1, which is proved by taking Γ to be the complete balanced
(k − 1)-partite graph on (k − 1)2 vertices.

This quadratic lower bound is far from best possible. Indeed, it is known [13, 18] that r(Kk,Kk)
must grow exponentially in k, though the exact exponential rate remains unknown despite decades
of intense research. Nonetheless, it is an instance of a much more general inequality which can be
tight. Write χ(G) for the chromatic number of G. The inequality in question is then

r(G,H) ≥ (p− 1)(n− 1) + a, (1)
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which holds under the conditions that χ(G) = p and a is the minimum size of a color class among
all proper p-colorings of G, and H is a connected graph with n vertices. Inequality (1) was first
proved by Burr [3], by taking Γ to be a complete p-partite graph with p− 1 parts of size n− 1 and
one part of size a− 1.

Burr and Erdős [4] initiated the study of when (1) is tight; following their terminology, one says
that a connected n-vertex graph H is G-good if (1) is tight when χ(G) = p and a is the minimum
size of a color class among all proper p-colorings of G. In case G = Kp, one says that H is p-good,
rather than Kp-good.

While the Ramsey goodness bound (1) is far from tight in the case of cliques, it turns out that
many interesting graphs are p-good, and that the theory of Ramsey goodness generalizes many
important results in graph theory. For example, Turán’s theorem, which states that the balanced
complete (p − 1)-partite graph has the most edges among all Kp-free graphs on N vertices, is
equivalent to the fact that stars are p-good. Extending this fact, Chvátal [7] proved that all trees
are p-good for all p ≥ 3, and this theorem inspired Burr and Erdős to define Ramsey goodness. At
this point, there is a rich theory of Ramsey goodness, about which we refer the interested reader
to the survey [10, Section 2.5].

For n ≥ k ≥ 1, the k-book Bk,n on n vertices consists of a copy of Kk, called the spine, as well
as n− k additional vertices each joined to every vertex of the spine; equivalently, Bk,n consists1 of
n − k cliques of order k + 1 sharing a common Kk. Book graphs arise naturally in the study of
Ramsey numbers. Indeed, Ramsey [24] originally proved the finiteness of r(Kk,Kk) by proving the
finiteness of r(Bk,n, Bk,n) for every n, and it was observed by Erdős, Faudree, Rousseau, and Schelp
[16] that the classical Erdős–Szekeres [18] upper bound on Ramsey numbers can also be framed as
an upper bound on certain book Ramsey numbers. This connection yields an important approach
to improving upper bounds on r(Kk,Kk); for more details, see e.g. [8, 12].

In [22], Nikiforov and Rousseau used Szemerédi’s regularity lemma to prove that for every
k, p ≥ 1 and every sufficiently large n, the book Bk,n is p-good. One consequence of applying the
regularity method is that their proof yields tower-type bounds on how large n must be in terms of
k and p, and they raised the question of what the best possible n is. Our first main result is a new
proof of p-goodness for books which avoids the use of the regularity lemma, and thus gets a much
better dependence for n on k and p.

Theorem 1.1. If n ≥ 2k
10p

, then Bk,n is p-good.

Our main technique is a novel variant of the greedy embedding strategy, which allows us to build
a large induced copy of a complete multipartite graph inside a Kp-free graph whose complement
does not contain a very large book.

Extending the techniques from [22], Nikiforov and Rousseau [23] were later able to prove a
remarkable theorem, which remains the most general result in the field of Ramsey goodness. As
the result in its full generality requires some notation, we state only the following special case.

Theorem 1.2 (Nikiforov and Rousseau [23, Theorem 2.12]). For every k, p ≥ 2, there exists some
δ > 0 such that for all sufficiently large n,

r(Bp−1,δn, Bk,n) = (p− 1)(n− 1) + 1.

1We remark that other notation exists for book graphs; notably, some other papers (e.g. [8, 12, 22]) use B
(k)
n−k to

denote what is Bk,n in our notation.
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In other words, the Ramsey goodness result r(Kp, Bk,n) = (p− 1)(n− 1) + 1 remains true even
if we replace Kp by the much larger graph Bp−1,δn containing it. This result goes beyond the basic
Ramsey goodness framework introduced by Burr and Erdős, to show that r(G,H) = (p−1)(n−1)+1
in cases even when G is not a fixed graph.

Just as before, the proof of [23] uses Szemerédi’s regularity lemma, and hence the bound on
1/δ in Theorem 1.2 is of tower type. In order to demonstrate the flexibility of our proof technique,
we prove the following generalization of Theorem 1.2, which again goes beyond the basic Ramsey
goodness framework of Burr and Erdős.

Theorem 1.3. For every k, p, t ≥ 2, there exists δ > 0 such that the following holds for all n ≥ 1.
Let 1 ≤ a1 ≤ · · · ≤ ap−1 ≤ t and ap ≤ δn be positive integers. Let G be the complete p-partite graph
with parts of sizes a1, . . . , ap, and let H = Bk,n. Then r(G,H) = (p− 1)(n− 1) + a1 if and only if
a1 = a2 = 1.

Note that Theorem 1.3 is vacuously true unless n is sufficiently large, as otherwise there does not
exist a positive integer ap ≤ δn. Our proof shows that one may take 1/δ to be double-exponential
in k, p, and t. Additionally, once n is double-exponential in k, p, and t, the statement holds with
1/δ merely single-exponential in k, p, and t.

Although Theorem 1.3 has not appeared in the literature, the “if” direction (which is the
harder one) can be deduced from the general theorem of Nikiforov and Rousseau [23, Theorem 2.1].
Nonetheless, the main novelty is not the statement of Theorem 1.3, but rather the fact that our
proof again avoids the use of the regularity lemma, so that the bounds on 1/δ are not of tower-type.
It would be very interesting to see how far one can push these ideas; for example, is it possible to
completely eliminate the use of the regularity lemma from the proof of [23, Theorem 2.1]?

Organization. In Section 2, we warm up by proving Theorem 1.2; in fact, we prove a generalization
that sets the groundwork for Theorem 1.3. In Section 3, we prove a stability-supersaturation
version of Turán’s theorem, and use that to prove a variant of the Andrásfai–Erdős–Sós theorem,
Theorem 4.1, in Section 4. Theorem 4.1 is an important ingredient in the proof of Theorem 1.3,
as it essentially allows us to reduce to the case that Γ is (p − 1)-partite. While both such results
are relatively standard, the specific statements we need are apparently new. Finally, the proof of
Theorem 1.3 is completed in Section 5, and we collect some interesting open problems in Section 6.

For the sake of clarity of presentation, we omit floor and ceiling signs when they are not crucial.

2 Ramsey goodness of books

Let Kr(t) denote the complete r-partite graph with parts of size t. The following result is the
greedy embedding lemma that we use. Given a graph Γ, it allows us to find a large book in Γ or
find a large induced complete multipartite subgraph of Γ.

Lemma 2.1. Let k, r, s, t be positive integers with s ≤ t and 2k ≤ t, and let G be any graph. Let Γ
be a G-free graph with N ≥

(
t
s

)r t
2ksr(G,Ks) vertices which contains Kr(t) as an induced subgraph,

with parts V1, . . . , Vr. If Γ does not contain a book Bk,n with n ≥ (1 − 4ks/t)N/r vertices, then Γ
contains an induced copy of Kr+1(s) with parts W0, . . . ,Wr, where Wi ⊆ Vi for every 1 ≤ i ≤ r.

Proof. Let ε = s/t. Partition the vertex set of Γ into r + 1 parts U0, U1, . . . , Ur, where, for each
i ∈ [r], every vertex in Ui has degree at most εt to Vi, and every vertex in U0 has degree at least εt
to each Vj . Note that by construction, Vi ⊆ Ui for i ∈ [r].
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Suppose there is i ∈ [r] such that |Ui| ≥ (1 − 2kε)N/r. Let X denote the set of all vertices
v ∈ Vi with at most 2ε|Ui \ Vi| neighbors in Ui \ Vi. Since each vertex in Ui has density at most ε
to Vi, we have |X| ≥ |Vi|/2 = t/2 ≥ k. Let Q be any k vertices in X. Then all but at most a 2kε
fraction of the vertices in Ui \ Vi are empty to Q. So Q together with the vertices of Ui that have
have no neighbors in Q form a k-book in Γ with at least (1 − 2kε)|Ui \ Vi| + |Vi| ≥ (1 − 4kε)N/r
vertices.

So we may assume that there is no i ∈ [r] with |Ui| ≥ (1 − 2kε)N/r. In this case, we have
|U0| ≥ N − r(1 − 2kε)N/r = 2kεN . By the pigeonhole principle, there is a subset T ⊂ U0 of size

at least
(
t
s

)−r|U0| ≥ r(G,Ks) such that there are subsets Wi ⊆ Vi with |Wi| = s for i ≥ 1 such that
every vertex in T is complete to each Wi. As Γ and hence the induced subgraph Γ[T ] is G-free and
|T | ≥ r(G,Ks), we know that T contains an independent set W0 of order s. Then W0,W1, . . . ,Wr

form a complete induced (r + 1)-partite subgraph of Γ with parts of size s.

Our next lemma shows that, once we find a large induced complete multipartite subgraph of Γ,
we can find a large book in Γ.

Lemma 2.2. If a Kp-free graph Γ on n vertices contains Kp−1(k) as an induced subgraph, then its
vertex set can be partitioned into p− 1 subsets that each span a k-book in Γ.

Proof. Let V1, . . . , Vp−1 be the p− 1 parts of the induced Kp−1(k). As Γ is Kp-free, each vertex in
Γ has no neighbors in some Vi. Partition the vertex set of Γ into p− 1 parts U1, . . . , Up−1, where,
for each i ∈ [p − 1], each vertex in Ui has no neighbors in Vi. Then each Ui spans a k-book in Γ
with spine Vi.

Our next result is the main form in which we use Lemma 2.1, and follows from it by a simple
inductive argument.

Lemma 2.3. Let k, p, x be positive integers, and let z = x · (20k)p. Let Γ be a Kp-free graph on at
least N = (p − 1)(n − 1) + 1 vertices, and suppose S ⊆ V (Γ) satisfies |S| ≥ zz · r(Kp,Kz). Then
either Γ contains a copy of Bk,n, or else Γ contains Kp−1(x) as an induced subgraph, one part of
which is a subset of S.

Proof. For r = 1, . . . , p − 2, let εr = (1− r/(p− 1)) /(4k) so that (1 − 4kεr)/r = 1/(p − 1). Let
tp−1 = x and tr = tr+1/εr for r = p− 2, . . . , 1. Observe that

t1 = tp−1/

p−2∏
r=1

εr = x(4k)p−2(p− 1)p−2/(p− 2)! < (20k)px = z.

Since t1 ≥ t2 ≥ · · · ≥ tp−1, this implies that tr < z for all r. We now prove by induction on r for
r ∈ [p − 1] that Γ contains Kr(tr) as an induced subgraph, with the first part of Kr(tr) being a
subset of S.

For the base case r = 1, we have |S| ≥ r(Kp,Kz) > r(Kp,Kt1), so Γ contains an independent
set of order t1, that is, Γ[S] contains Kr(tr) with r = 1 as an induced subgraph.

Now suppose Γ contains Kr(tr) as an induced subgraph, with the first part a subset of S. We
apply Lemma 2.1 with s = tr+1, t = tr, and G = Kp. Observe that(

tr+1

tr

)r
(2ktr+1/tr)

−1r(Kp,Ktr+1) ≤ (e/εr)
rtr(2ktr+1/tr)

−1r(Kp,Ktr+1)

< zz · r(Kp,Kz) ≤ |S|.
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So either Γ contains a k-book with at least (1− 4kεr)N/r = N/(p− 1) ≥ n vertices, in which case
we are done, or Γ contains an induced Kr+1(tr+1) whose first r parts are subsets of the r parts of
the Kr(tr). In particular, the first part of this induced Kr+1(tr) is a subset of S. This proves the
claimed inductive statement. The desired statement is just then the case r = p− 1.

We are now ready to prove Theorem 1.1, whose statement we now recall.

Theorem 1.1. If n ≥ 2k
10p

, then Bk,n is p-good, that is, r(Kp, Bk,n) = (p− 1)(n− 1) + 1.

Proof. Let N = (p − 1)(n − 1) + 1. Our choice of n guarantees that if z = k(20k)p, then N ≥
zz · r(Kp,Kz). Suppose for the sake of contradiction that there is a Kp-free graph on N vertices
such that Γ does not contain a k-book with n vertices. By Lemma 2.3, applied with S = V (Γ) and
x = k, we see that Γ must contain Kp−1(k) as an induced subgraph. But then Lemma 2.2 implies
that Γ contains a k-book with n vertices as a subgraph, completing the proof.

3 A stability-supersaturation theorem

One of our main tools is a version of the Erdős–Simonovits stability version of Turán’s theorem.
While many variants of the stability theorem are known, we were not able to find the following
result in the literature, though its proof is similar to the proofs of several known results. Roughly
speaking, this result combines two types of well-known variants of Turán’s theorem. The first,
namely the Erdős–Simonovits stability theorem [15, 25], says that if Γ is a Kp-free graph with
slightly fewer edges than the Turán graph, then Γ can be turned into the Turán graph by changing
a small number of edges. The second, often known as a supersaturation result [17], says that if
Γ is an m-vertex graph with slightly more edges than the Kp-free Turán graph, then it actually
contains many (that is, Ω(mp)) copies of Kp. Contrapositively, this latter result says that if Γ has
few copies of Kp, then it cannot have substantially more edges than the Turán graph.

The result that we need, a combination of the two mentioned above, is the following. It asserts
that if Γ has slightly fewer edges than the Turán graph (the stability regime) and has few copies of
Kp (the supersaturation regime), then it is close to the Turán graph.

Theorem 3.1. For every ε > 0 and every integer p ≥ 3, there exist η, γ > 0 such that the following
holds for all m ≥ 5. Suppose Γ is a graph on m vertices with minimum degree at least (1− 1

p−1−γ)m
and at most ηmp copies of Kp. Then V (Γ) can be partitioned into V1 t · · · t Vp−1, such that the
total number of internal edges in V1, . . . , Vp−1 is at most ε

(
m
2

)
.

Moreover, we may take γ = min{1/(2p2), ε/2} and η = p−10pε.

A natural approach to prove Theorem 3.1 is to first apply the celebrated graph removal lemma
(see the survey [9]). This allows us to pass to a Kp-free subgraph Γ′ of Γ which still has very
many edges. At this point, we can apply the standard stability theorem to deduce that Γ′ is nearly
(p − 1)-partite; since we deleted few edges to go from Γ to Γ′, we must also have that Γ is nearly
(p− 1)-partite. This proof technique was used to prove [11, Corollary 3.4], which is a very similar
result to Theorem 3.1. This proof technique actually proves a stronger theorem than Theorem 3.1,
weakening the minimum degree condition to an average degree condition.

However, since the known bounds in the graph removal lemma are very weak, this proof tech-
nique would yield a tower-type dependence in the parameters ε and η in the statement of Theo-
rem 3.1. Moreover, a super-polynomial dependence on the parameters is unavoidable if one only
assumes an average degree condition. Indeed, let Γ be the disjoint union of a Turán graph on
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(1− γ)m vertices and a graph Γ0 on γm vertices which is extremal for the Kp removal lemma, so
that Γ has at least (1 − 1

p−1 − γ)
(
m
2

)
edges. Then the distance of Γ from being (p − 1)-partite is

roughly the same as the distance of Γ0 from being Kp-free, and it is known that the clique removal
lemma requires super-polynomial bounds in general. Such a construction shows that the clique
removal lemma and stability-supersaturation theorems like Theorem 3.1 are very closely related.

The Γ constructed has high average degree but low minimum degree, and this distinction turns
out to be crucial. Indeed, in [19], Fox and Wigderson proved that the Kp removal lemma has
linear bounds if the minimum degree of Γ is above a certain threshold, namely (1− 2

2p−3)m. This
allows us to prove Theorem 3.1 using the technique outlined above, while obtaining much stronger
quantitative control.

The first tool we need to prove Theorem 3.1 is the high-degree removal lemma with linear
bounds mentioned above, from [19, Theorem 2.1]. We remark that the explicit p-dependence of the
constant is not given in [19, Theorem 2.1], but it is easy to verify that the proof yields the following
result.

Theorem 3.2. Let Γ be an m-vertex graph with with minimum degree at least (1− 2
2p−3 +β)m and

with at most (10p)−2pβλmp copies of Kp. Then Γ can be made Kp-free by deleting at most λm2

edges.

We also use the following quantitative form of the stability theorem, due to Füredi [20].

Theorem 3.3. Let Γ be an m-vertex Kp-free graph with at least (1 − 1
p−1)m

2

2 − ` edges. Then Γ
can be made (p− 1)-partite by deleting at most ` edges.

With these preliminaries, we can now prove Theorem 3.1.

Proof of Theorem 3.1. Since γ ≤ 1/(2p2), we see that

1− 1

p− 1
− γ ≥ 1− 1

p− 1
− 1

2p2
= 1− 2

2p− 3
+

5p− 3

4p4 − 10p3 + 6p2
≥ 1− 2

2p− 3
+

1

p3
.

Therefore, we may apply Theorem 3.2 with β = 1/p3. We also set λ = ε/10, and note that the
number of Kp in Γ is at most

ηmp = p−10pεmp ≤ (10p)−2p · 1

p3
· ε

10
·mp = (10p)−2pβλmp.

This implies that we may delete at most ε
10m

2 edges from Γ to obtain a Kp-free graph Γ′. Since Γ

has minimum degree at least (1− 1
p−1 − γ)n, we see that Γ′ has at least (1 − 1

p−1 − γ)m
2

2 −
ε
10m

2

edges. Therefore, by Theorem 3.3, we see that Γ′ can be made (p− 1)-partite by deleting at most
(γ2 + ε

10)m2 edges. Let Γ′′ be this (p − 1)-partite subgraph, and let V1 t · · · t Vp−1 be its (p − 1)-
partition. Since each Vi is an independent set in Γ′′, we see that the total number of edges of Γ
contained in V1, . . . , Vp−1 is at most

ε

10
m2 +

(γ
2

+
ε

10

)
m2 ≤

(ε
5

+
ε

4

)
m2 ≤ ε

(
m

2

)
by our choice of γ ≤ ε/2 and m ≥ 5.
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4 A blowup variant of the Andrásfai–Erdős–Sós theorem

The Andrásfai–Erdős–Sós theorem [1] is a minimum-degree stability version of Turán’s theorem. It
says that if an m-vertex Kp-free graph has minimum degree greater than 3p−7

3p−4m, then it is (p− 1)-

partite; moreover, the constant 3p−7
3p−4 is best possible. We need a related result, which says that if a

graph has high minimum degree and does not contain some blowup of Kp, then it is (p−1)-partite.
We remark that unlike Andrásfai, Erdős, and Sós, we do not obtain the exact minimum degree
threshold for being (p− 1)-partite; for more on such refined questions, see e.g. [21].

Theorem 4.1. For every p, t ≥ 2, every 1 = a1 = a2 ≤ a3 ≤ · · · ≤ ap−1 ≤ t, there exist
some γ, δ > 0 such that if m is large enough in terms of ap−1 and p, ap ≤ δm, and Γ is a
Kp(a1, a2, . . . , ap)-free graph on m vertices with minimum degree at least (1−1/(p−1)−γ)m, then
Γ is (p− 1)-partite.

We need the following lemma, which is essentially due to Erdős [14].

Lemma 4.2. For every η > 0 and p, t ≥ 2, and 1 ≤ a1 ≤ · · · ≤ ap−1 ≤ t, there exists some δ > 0
such that the following holds for large enough m. If ap ≤ δm and Γ is a Kp(a1, a2, . . . , ap)-free
graph on m vertices, then Γ has at most ηmp copies of Kp.

Proof. We proceed by induction on p. The base case p = 2 just says that a Ka1,δm-free graph has
at most ηm2 edges. We double-count the number of copies of K1,a1 in Γ. On the one hand, every
a1-set has at most δm common neighbors, so there are at most δm

(
m
a1

)
< δma1+1 copies of K1,a1 .

On the other hand, a vertex of degree d contributes
(
d
a1

)
many copies. Therefore,

δma1+1 >
∑

v∈V (G)

(
deg(v)

a1

)
≥ m

(
2e(Γ)/m

a1

)
≥ m

(
2e(Γ)

ea1m

)a1

where the second inequality uses Jensen’s inequality. Rearranging, we find that e(Γ) < 2a1δ
1/a1m2.

If we let δ = (η/(2a1))a1 , this gives the desired result.
We now proceed with the inductive step. For every (p− 1)-set of vertices S, let ext(S) denote

the set of vertices v such that S ∪{v} is a Kp. Note that the sum of |ext(S)| over all (p− 1)-sets S
is exactly p times the number of Kp in Γ. By assumption, this sum is therefore more than pηmp.
Thus, the average value of |ext(S)| is greater than pηmp/

(
m
p−1

)
> ηm. Again by convexity

∑
S∈(V (Γ)

p−1 )

(
ext(S)

a1

)
>

(
m

p− 1

)(
ηm

a1

)

Therefore, there is some a1-set A such that the common neighborhood of A has at least(
m

p− 1

)(
ηm

a1

)
/

(
m

a1

)
≥ η′mp−1

copies of Kp−1, for some η′ depending only on η, t, and p. By induction, the common neighborhood
of A must have a copy of Kp−1(a2, . . . , ap), which is a contradiction.

We can now prove Theorem 4.1.
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Proof of Theorem 4.1. Fix some small ε > 0 depending on p and t. Let γ, η be the parameters
given in Theorem 3.1, depending only on ε and p, and recall that γ ≤ ε. Finally, let δ > 0
be the parameter in Lemma 4.2. By Lemma 4.2, we see that since Γ is a Kp(a1, a2, . . . , ap)-free
graph on m vertices, it must have at most ηmp copies of Kp, and it has minimum degree at least
(1 − 1/(p − 1) − γ)m by assumption. Therefore, Theorem 3.1 implies that Γ has a partition into
parts V1, . . . , Vp−1 such that the total number of internal edges is at most ε

(
m
2

)
. We fix such a

partition with the minimum number of total internal edges. In particular, every vertex must have
at least as many neighbors in every other part as it does in its own part.

Since Γ has minimum degree at least (1−1/(p−1)−γ)m, it must have at least (1−1/(p−1)−γ)m
2

2

edges. Therefore, since there are at most εm
2

2 internal edges in V1, . . . , Vp−1, we must have that

∑
1≤i<j≤p−1

e(Vi, Vj) ≥
(

1− 1

p− 1
− γ − ε

)
m2

2
≥
(

1− 1

p− 1
− 2ε

)
m2

2
(2)

since γ ≤ ε. We note that

p−1∑
i=1

(
|Vi| −

m

p− 1

)2

=

p−1∑
i=1

|Vi|2 −
2m

p− 1

p−1∑
i=1

|Vi|+
m2

p− 1
=

p−1∑
i=1

|Vi|2 −
m2

p− 1
. (3)

Since the left-hand side of (3) is non-negative, we see that

∑
1≤i<j≤p−1

|Vi||Vj | =
1

2

(
m2 −

p−1∑
i=1

|Vi|2
)
≤ 1

2

(
m2 − m2

p− 1

)
=

(
1− 1

p− 1

)
m2

2
.

We can conclude from this that each Vi has cardinality m
p−1 ±

√
2εm. For if not, then the left-hand

side of (3) would be larger than 2εm2, and the above computation would contradict (2).
Now, suppose that for some 1 ≤ a < b ≤ p− 1, we have that e(Va, Vb) < (1− p2ε)|Va||Vb|. Then

we would find that∑
1≤i<j≤p−1

e(Vi, Vj) <
∑

1≤i<j≤p−1

|Vi||Vj | − p2ε|Va||Vb| ≤
(

1− 1

p− 1
− 2ε

)
m2

2
,

contradicting (2), using the bound |Va| ≥ m
p−1 −

√
2εm ≥ m/p for sufficiently small ε. Therefore,

we find that for all i 6= j,
e(Vi, Vj) ≥ (1− p2ε)|Vi||Vj |. (4)

Now suppose that some vertex v ∈ Vi has more than 2p2√ε|Vi| neighbors in its own part Vi. By our
assumption above, this means that v also has more than 2p2√ε|Vi| ≥ p2√ε|Vj | neighbors in each
part Vj for j 6= i, where we used the fact that |Vj | = m

p−1 ±
√

2εm and the fact that ε is sufficiently

small to conclude that |Vi| ≥ 1
2 |Vj |. Let Uj = N(v) ∩ Vj denote the neighbors of v in Vj . For every

1 ≤ a 6= b ≤ p− 1, we have by (4) that

e(Ua, Ub) ≥ |Ua||Ub| − p2ε|Va||Vb| ≥
(

1− p2ε

p4ε

)
|Ua||Ub| =

(
1− 1

p2

)
|Ua||Ub|,

where the second inequality uses our assumption that |Ua| ≥ p2√ε|Va|, and similarly for Ub. By
the union bound, if we pick a random vertex from Ua for each 1 ≤ a ≤ p − 1, then they span a
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copy of Kp−1 with probability at least 1 −
(
p
2

)
/p2 ≥ 1

2 . Therefore, the neighborhood of v contains
at least

1

2

p−1∏
a=1

|Ua| ≥
(p2√ε)p−1

2

p−1∏
a=1

|Va| ≥
(p2√ε)p−1

2pp−1
mp−1 = η′mp−1

copies of Kp−1, for η′ depending only on p and ε. By Lemma 4.2, this implies that if δ is sufficiently
small in terms of p, t, and ε, then the neighborhood of v contains a copy of Kp−1(a2, . . . , ap). Since
a1 = 1, this implies that Γ contains a copy of Kp(a1, a2, . . . , ap), which is a contradiction. Thus,
we conclude that every vertex v ∈ Vi has at most 2p2√ε|Vi| neighbors in its own part Vi, for every
1 ≤ i ≤ p− 1.

We now claim that for every 1 ≤ i 6= j ≤ p−1, every vertex v ∈ Vi has at least (1−1/(2pt))|Vj |
neighbors in Vj , as long as ε is sufficiently small in terms of p and t. Indeed, if not, then v has at
least |Vj |/(2pt) non-neighbors in Vj , and at least (1− 2p2√ε)|Vi| − 1 non-neighbors in Vi. In total,
the number of non-neighbors of v is at least

1

2pt
|Vj |+ (1− 2p2√ε)|Vi| − 1 >

(
1 +

1

2pt
− 2p2√ε− 4

√
ε

)
m

p− 1
>

(
1

p− 1
+ ε

)
m,

as long as ε is sufficiently small in terms of p and t. This contradicts the assumption that the
minimum degree of Γ is at least (1− 1/(p− 1)− ε)m.

Now suppose that there is some edge vw inside some part Vi, and assume without loss of
generality that i = 1. The vertices v and w have at least (1− 1/(pt))|V2| > a3 common neighbors
in V2, so we may pick some set of a3 common neighbors in V2. Then v, w, and these a3 common
neighbors have at least (1 − (a3 + 2)/(2pt))|V3| > (1 − 2t/(2pt))|V3| > a4 common neighbors in
V3, so we may pick a4 such common neighbors in V3. Continuing in this way, we can greedily
pick aj+1 vertices from Vj which are common neighbors of the previously chosen vertices, for each
j ≤ p − 2. Having done this, we have picked at most pt vertices, so they still have at least
(1 − pt/(2pt))|Vp−1| = 1

2 |Vp−1| > δm common neighbors in Vp−1. Thus, we have built a copy of
Kp(a1, . . . , ap) in Γ, a contradiction. This shows that there can be no edge inside any Vi, and thus
that Γ is (p− 1)-partite.

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. Recall the statement: for any k, p, t ≥ 2, there exists δ > 0
such that the following holds. If n is large enough in terms of k, p and t, 1 ≤ a1 ≤ a2 ≤ · · · ≤
ap−1 ≤ t ≤ ap = δn, G = Kp(a1, a2, . . . , ap), and H = Bk,n, then r(G,H) = (p − 1)(n − 1) + a1

if and only if a1 = a2 = 1. Here Kp(a1, a2, . . . , ap) is the complete p-partite graph with part sizes
a1, . . . , ap.

We start with the construction for the “only if” direction.

Proof of “only if” direction of Theorem 1.3. It suffices to show that if a2 ≥ 2, then r(G,H) >
(p− 1)(n− 1) + a1.

Let Γ be a graph on N = (p − 1)(n − 1) + a1 vertices which are divided into p − 1 parts
U1, . . . , Up−1 with |U1| = n+ a1 − 1 and |U2| = · · · = |Up−1| = n− 1. The edges of Γ are defined as
follows. First, all pairs of vertices in two different parts are adjacent. Second, U1 induces a C4-free
subgraph A = Γ[U1] which is almost a1-regular. This means that either A is a1-regular (if |U1| or
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a1 is even), or else all but one vertices of A have degree a1 and one vertex has degree a1− 1 (if |U1|
and a1 are both odd). Such a graph A always exists if n is large enough in terms of a1.

It remains to show that Γ is G-free and Γ is H-free. Suppose Γ contained a copy of G. Since G
is complete p-partite and U2, . . . , Up−1 are independent sets of Γ, each of these sets can contain only
vertices from one part of this copy of G. Thus, at least two parts of G must be entirely contained
inside U1, which means that Γ[U1] must contain a copy of the complete bipartite graph Ka1,a2 .
By construction, A = Γ[U1] is C4-free, so this is impossible unless a1 = 1. When a1 = 1, A has
maximum degree 1 and thus cannot contain a copy of Ka1,a2 either, when a2 ≥ 2. In all cases, Γ is
G-free.

The complement Γ is a disjoint union of A and p− 2 copies of Kn−1. The book H is connected
and has n vertices, so Kn−1 cannot contain a copy of H. Also, k ≥ 2, so H contains at least two
vertices of degree n−1, whereas A has either one or zero vertices of degree at least n−1. It follows
that A contains no copies of H either, completing the proof.

The proof of the “if” direction of Theorem 1.3 divides into three parts. First, we show Lemma 5.1
below (which uses Lemma 2.3) that under the assumptions of the theorem, we can assume that
most vertices of Γ have degree at least (1− 1/(p− 1)− o(1))N . We then apply Theorem 4.1, which
proves that except for the small number of low-degree vertices, Γ is (p − 1)-partite. Finally, we
use a careful averaging argument to show that under these assumptions, Γ must contain a copy of
H = Bk,n, completing the proof.

We begin by proving that most vertices of Γ have high degree.

Lemma 5.1. Under the assumptions of Theorem 1.3, if a1 = a2 = 1, then the following holds for
any α > 0, assuming that n is sufficiently large in terms of α. If Γ is a graph on N = (p−1)(n−1)+1
vertices such that Γ is G-free and Γ is H-free, then at most αN vertices of Γ have degree at most
d = (1− 1/(p− 1)− α)N .

Proof. Let ε = ε(k, α) > 0 be small in terms of k and α, and let x = x(k, ε) ≥ 1 be large in terms
of k and ε. We also assume that δ = δ(k, p, t) > 0 is chosen to be small in terms of ε and α.

Let S ⊂ V (Γ) be the set of vertices of degree less than d. We proceed by contradiction and
assume that |S| ≥ αN . By Lemma 2.3, there is an induced copy of Kp−1(x) in Γ whose parts
are V1, . . . , Vp−1 with V1 ⊆ S. Thus, all the vertices of V1 have degree less than d. We remark
that Lemma 2.3 requires |S| to be double-exponentially large in p, so we require n to be at least
double-exponentially large in p for this step. This is the only place where a double-exponential
dependence is needed.

Partition the vertices of Γ into p parts U0, . . . , Up−1, where for i ≥ 1, each vertex in Ui has at
most εx neighbors in Vi, and U0 consists of all vertices more than εx neighbors in each Vi.

First, if |U0| ≥ (e/ε)tp · δn, then we can find a copy of G in Γ as follows. If we pick a set W by
taking ai vertices uniformly at random from Vi for i = 1, . . . , p − 1, then the expected number of
vertices of U0 complete to W is at least

p−1∏
i=1

(
εx
ai

)(
x
ai

) · |U0| ≥ (ε/e)tp · |U0| ≥ δn.

Thus, there exists a W for which we can find δn vertices of U0 which together with W form a copy
of G = Kp(a1, . . . , ap), which is impossible.

Next, suppose |Ui| ≥ (1 − 2kε)−1(n − k) for some i ≥ 1. Every vertex in Ui has at most εx
neighbors in Vi, so we may remove half the vertices of Vi (the ones with highest degree to Ui)
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to find a subset V ′i such that every v ∈ V ′i has at most 2ε|Ui| neighbors in Ui. Take W to be
any k-subset of V ′i , and let U ′i ⊆ Ui be the set of vertices with no neighbors in W . We have
|U ′i | ≥ (1− 2kε)|Ui| ≥ n− k, and so W and U ′i form a copy of Bk,n in Γ, which is again impossible.
We henceforth assume that |Ui| < (1− 2kε)−1(n− k) for all i ≥ 1.

Finally, suppose |U1| ≥ (1−2kε)−1(n−k)−(α/10)kN. We seek to find a copy of Bk,n in Γ again,
this time using the degree condition on V1. As before, we may pass to a subset V ′1 of half the vertices
of V1 such that each has at least (1− 2ε)|U1| non-neighbors in U1. Each vertex of V ′1 has degree at
most d = (1− 1/(p− 1)−α)N , and so has at least N − 1− d = N/(p− 1) +αN − 1 ≥ n+αN − 2
non-neighbors in total. In particular, since |U1| < (1−2kε)−1(n−k) < (1+3kε)n−2 and α ≥ 6kε,
each vertex of V ′1 has at least (n+ αN − 2)− |U1| ≥ αN/2 non-neighbors in U1.

Pick a random k-subset W of V ′1 to form the spine of the book. The number of common non-
neighbors the vertices of W have inside U1 is at least (1 − 2kε)|U1|. We now count the expected
number of common non-neighbors the vertices of W have in U1. For the convenience of the following
calculation, we insert phantom vertices to U1, each complete to W , until |U1| = N ; this has no
effect on the common non-neighborhood we care about. If u ∈ U1 has y non-neighbors in V ′1 , then

the probability that W is chosen entirely among these y vertices is
(
y
k

)
/
(x/2
k

)
. Since vertices in V ′1

have at most (1− α/2)N neighbors in U1, the average value of y over a random u ∈ U1 is at least
α/2 · |V ′1 | = αx/4. By linearity of expectation and convexity we find that the expected number of
common non-neighbors of W in U1 is at least(

αx/4

k

)(
x/2

k

)−1

|U1| ≥
(αx

4k

)k (2k

ex

)k
|U1| ≥ (α/(2e))k · (N/2) ≥ (α/10)kN.

Thus, there exists some particular W with at least (1− 2ε)|U1|+ (α/10)kN ≥ n− k non-neighbors,
forming the desired Bk,n in Γ. This contradicts our assumptions on Γ.

We conclude that the partition V (Γ) = U0 t · · · t Up−1 satisfies

|U0| < (e/ε)tp · δn

|U1| <
n− k

1− 2kε
− (α/10)kN

|Ui| <
n− k

1− 2kε
if i ≥ 2.

Adding these together, we obtain that the number N of vertices in Γ is

p−1∑
i=0

|Ui| < (e/ε)tp · δn+ (p− 1)
n− k

1− 2kε
− (α/10)kN

< (1 + 3kε)N + (e/ε)tp · δn− (α/10)kN

< N,

if ε is small enough compared to k and α, and δ is small enough compared to ε, t, and p. This is a
contradiction and we are done.

We now have all the tools to complete the proof.

Proof of “if” direction of Theorem 1.3. Recall that H = Bk,n, and G = Kp(a1, . . . , ap), where
1 ≤ a1 ≤ · · · ≤ ap−1 ≤ t, ap = δn, and n is sufficiently large in terms of t, k, and p. We are given
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a G-free graph Γ on N = (p− 1)(n− 1) + 1 vertices, and we wish to show that Γ contains a copy
of H. We have already proved in Lemma 5.1 that at most αN vertices of Γ have degree at most
d = (1 − 1/(p − 1) − α)N , for any fixed α > 0 and sufficiently large N . If we let T be the set of
vertices of degree greater than d, then the induced subgraph Γ[T ] has at least (1−α)N vertices and
thus minimum degree at least (1−1/(p−1)−2α)|T |. Applying Theorem 4.1 to the graph Γ[T ], we
find that as long as α is sufficiently small in terms of p and t, we have that Γ[T ] is (p− 1)-partite.
Let the parts of Γ[T ] be T1, . . . , Tp−1. We now argue roughly as in the proof of Theorem 4.1.

Recall that for a vertex v and a vertex set W , we denote by d(v,W ) the density of v to W ,
namely the number of neighbors of v in W divided by |W |.

Claim 5.2. Let T1, . . . , Tp−1 be as defined above. Let ξ = 4p2α. Then for every 1 ≤ i 6= j ≤ p− 1,
we have that (

1

p− 1
− ξ
)
N ≤ |Ti| ≤

(
1

p− 1
+ ξ

)
N (5)

and
d(w, Tj) ≥ 1− ξ for every w ∈ Ti. (6)

Proof. Since Ti is an independent set, every vertex in Ti has degree at most N − |Ti|. Since every
vertex in Ti has degree at least d, this implies that |Ti| ≤ N − d = (1/(p − 1) + α)N . Since
T1, . . . , Tp−1 partition T , which has size at least (1−α)N , this implies that |Ti| = |T |−

∑
j 6=i|Tj | ≥

(1/(p− 1)− pα)N , which proves (5) since pα < ξ.
For (6), we recall that the induced subgraph Γ[T ] has minimum degree at least (1− 1/(p− 1)−

2α)|T |. So any w ∈ Ti has at most (1/(p− 1) + 2α)|T | non-neighbors in T . Additionally, since Ti
is an independent set, every w ∈ Ti has |Ti| − 1 non-neighbors in Ti. If d(w, Tj) < 1− ξ, then the
total number of non-neighbors of w is at least

ξ|Tj |+ |Ti| − 1 ≥ (1 + ξ)

(
1

p− 1
− pα

)
N − 1 >

(
1 + ξ

p− 1
− 2pα

)
N >

(
1

p− 1
+ 2α

)
|T |,

using the computations above and our choice of ξ = 4p2α. This is a contradiction.

Let S be the complement of T , i.e. the set of vertices in Γ with degree less than d, and recall
that |S| ≤ αN .

Claim 5.3. Let ζ = ptξ = 4p3tα. For every v ∈ S, at least one of the following is true. Either v
has no edges to some Ti, or else d(v, Ti) < ζ for at least two different choices of i ∈ [p− 1].

Proof. Suppose for contradiction that this is false for some v ∈ S. Thus, d(v, Ti) ≥ ζ for all but at
most one choice of i ∈ [p−1], and additionally v has a neighbor in each Ti. By relabeling the parts,
we may assume that d(v, Ti) ≥ ζ for all i ∈ [p − 2]. Let w be a neighbor of v in Tp−1. By (6), we
see that v and w have at least (ζ − ξ)|T1| > ξ|T1| > a3 common neighbors in T1, for N sufficiently
large. Pick any a3 common neighbors in T1. Then v, w, and these a3 common neighbors have at
least (ζ − (a3 + 1)ξ)|T2| > ξ|T2| > a4 common neighbors in T2. Continuing in this way, we can pick
out ai vertices in Ti+2 which are common neighbors of all previously-chosen vertices. At the end
of this process, we can still pick at least (ζ − (p− 1)tξ)|Tp−2| ≥ δn common neighbors in Tp−2, and
thus we can build a copy of G, contradicting our assumption that Γ is G-free.
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We partition S into S1 ∪ S2, where S1 consists of all vertices in S that are empty to some part
Ti, and S2 consists of the remaining vertices v, namely those satisfying d(v, Ti) < ζ for at least two
choices of 1 ≤ i ≤ p− 1.

Now, we pick an index i ∈ [p− 1] uniformly at random, and then pick a k-set Q ⊂ Vi uniformly
at random. By doing so, we obtain a (non-uniform) distribution on the set of k-cliques in Γ. For a
vertex v ∈ V (Γ), let us say that v extends Q if Q ∪ {v} is also a clique in Γ, or equivalently if v is
not adjacent in Γ to any vertex of Q. Note that if v ∈ Q, then we still say that v extends Q, even
though this is not really an extension per se. We observe that if v ∈ T , then the probability that v
extends Q is at least 1/(p− 1). Indeed, the probability that v extends Q is at least the probability
that v ∈ Ti for the randomly chosen index i, which is exactly 1/(p − 1) since we pick the index i
uniformly at random.

Next, if v ∈ S1, then we again have that the probability that v extends Q is at least 1/(p− 1).
Indeed, if v ∈ S1, then v has no edges to Tj for at least one index j. The probability that v extends
Q is then at least the probability that j is the randomly chosen index, which equals 1/(p− 1).

Finally, if v ∈ S2, then without loss of generality, d(v, T1) < ζ and d(v, T2) < ζ. If the randomly
chosen index i is 1 or 2, then the probability that v has an edge to Q is at most kζ, by the union
bound. Therefore, if v ∈ S2, then

Pr(v extends Q) ≥ 2

p− 1
· (1− kζ) ≥ 1

p− 1
,

since we may pick α sufficiently small so that kζ ≤ 1/2. By putting all of this together, we find that
Pr(v extends Q) ≥ 1/(p − 1) for every vertex v ∈ V (Γ). By linearity of expectation, this implies
that

E[|{v : v extends Q}|] =
∑

v∈V (Γ)

Pr(v extends Q) ≥ N

p− 1

Therefore, there exists some clique Q in Γ which has at least dN/(p − 1)e = n extensions. Since
exactly k of these extensions are the degenerate ones coming from vertices in Q itself, we find that
Γ contains a copy of H = Bk,n. This completes the proof.

6 Concluding remarks

In this section we collect a few of the tantalizing open questions remaining in this area.

Removing regularity. Note that the full Ramsey goodness results of Nikiforov and Rousseau [23]
hold in greater generality than our results Theorem 1.2 and Theorem 1.3. However, due to the
dependence of their arguments on Szemerédi’s regularity lemma, the quantitative dependence be-
tween the graph sizes involved are tower-type. It would be interesting to find a direct proof of their
goodness results without regularity, as this would likely lead to superior quantitative bounds.

Near Ramsey goodness. In Theorem 1.3, we study the Ramsey number r(Kp(a1, . . . , ap), Bk,n)
for sufficiently large n, where a1, . . . , ap−1 are fixed and ap ≤ δn for some absolute constant δ > 0.
We are able to determine this Ramsey number in the case a1 = a2 = 1 (in which case the answer
is given by the Ramsey goodness bound), but it is natural to ask what happens for larger values
of a1 and a2. In this case, there is a natural lower bound, generalizing the proof of the “only if”
direction of Theorem 1.3, and which shows a surprising connection to an analogue of the classical
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extremal problem for complete bipartite graphs. To explain this connection, we first define the
following Dirac-type extremal function.

Definition 6.1. Given a graph H and integers k, n, let dk(n,H) be the maximum d for which
there is an (n+ d− 1)-vertex H-free graph, at most k− 1 vertices of which have degree less than d.

Now let d = dk(n,Ka1,a2), and let Γ0 be a Ka1,a2-free graph on n+d−1 vertices, at most k−1 of
which have degree less than d. Let Γ be a graph with N = (p− 1)(n− 1) + d vertices, whose vertex
set is divided into p−1 parts U1, . . . , Up−1 with |U1| = n+d−1 and |U2| = · · · = |Up−1| = n−1, such
that Γ[U1] is isomorphic to Γ0, and such that all pairs of vertices in different parts are adjacent.
Then Γ is Kp(a1, . . . , ap)-free, since U2, . . . , Up−1 are independent sets, and Γ[U1] is Ka1,a2-free.
Additionally, Γ is a disjoint union of Γ0 and p − 2 cliques of order n − 1. The cliques are too
small to contain a copy of Bk,n, and all but at most k − 1 vertices of Γ0 have degree at most
(n+ d− 1)− 1− d = n− 2. Since Bk,n has k vertices of degree n− 1, this shows that Γ is Bk,n-free.
Thus, we conclude that

r(Kp(a1, . . . , ap), Bk,n) > (p− 1)(n− 1) + dk(n,Ka1,a2). (7)

Our proof of the “only if” direction of Theorem 1.3 used the same argument, and we simply noted
that if a2 > 1, then for sufficiently large n, we have dk(n,Ka1,a2) ≥ a1 for all k ≥ 2. We conjecture
that the lower bound (7) is tight for sufficiently large n, if a1, . . . , ap−1 are fixed, and ap ≤ δn.

Conjecture 6.2. For all integers k, p, t ≥ 2, there exists some δ > 0 such that the following holds
for all n ≥ 1. For positive integers a1 ≤ · · · ≤ ap−1 ≤ t and ap ≤ δn, we have

r(Kp(a1, . . . , ap), Bk,n) = (p− 1)(n− 1) + dk(n,Ka1,a2) + 1.

Thus, Theorem 1.3 verifies Conjecture 6.2 in the case a1 = a2 = 1.

Disconnected graphs. Ramsey goodness results are some of the rare examples in graph Ramsey
theory where exact values of Ramsey numbers are known. Another such example is an old result
of Burr, Erdős, and Spencer [5], recently improved by Bucić and Sudakov [2], which shows

r(nG, nG) = 2(|G| − α(G))n+ c

for n sufficiently large and some constant c = c(G). Here, G is a fixed graph, nG is a vertex disjoint
union of n copies of G, and α(G) is the independence number of G. Does there exist a theory
of Ramsey goodness for disconnected graphs, giving a common generalization of the Burr–Erdős–
Spencer result and our theorems?

Empty pairs in triangle-free graphs. Motivated by a well-studied approach to the famous
Erdős–Hajnal conjecture, the following conjecture was proposed by Conlon, Fox, and Sudakov.

Conjecture 6.3 ([10, Conjecture 3.14]). There exists some ε > 0 such that every N -vertex triangle
complete graph contains two vertex subsets A,B with |A| ≥ εN , |B| ≥ N ε, and with no edges
between A and B.
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For more on this conjecture and its variants, see also [6]. Conjecture 6.3 remains open. The
strongest result in this direction, due independently to Fox and Shapira (unpublished) says that
one may take |A| ≥ εN and |B| ≥ ε logN/ log logN . One consequence of Theorem 1.1 is that we
may take |A| ≥ εN and |B| ≥ (logN)ε, for ε = 1/31. Indeed, Theorem 1.1 with p = 3 says that
if n ≥ 2k

10p
= 2k

30
and if N = (p − 1)(n − 1) + 1 = 2n − 1, then for every N -vertex triangle-free

graph Γ, its complement Γ contains a copy of Bk,n. Let A be the set of leaves of this book and B
be its spine, so that |A| = n ≥ N/31 and |B| = k ≥ (logN)1/31. Since A ∪ B span a book in Γ,
there are no edges between A and B in Γ.

By the same argument, we see that improving the bounds in Theorem 1.1 could yield progress
on Conjecture 6.3. For example, improving the bound n ≥ 2k

10p
in Theorem 1.1 to a bound that

is single-exponential in both k and p would allow one to take |A| ≥ εN and |B| ≥ ε logN in
Conjecture 6.3.

Ramsey goodness threshold. More generally, it is natural to ask what the “Ramsey goodness
threshold” is in Theorem 1.1. That is, what is the smallest n (in terms of k and p) such that
r(Kp, Bk,n) = (p−1)(n−1)+1? A simple random construction shows that this threshold is at least
(k/ log p)cp, for an absolute constant c > 0. Indeed, let n = (k/ log p)cp and N = (p− 1)(n− 1) + 1,
and let Γ be an Erdős–Rényi random graph on N vertices with edge probability2 C(log p)/k, for
an absolute constant C > 0. Then a first moment estimate shows that with positive probability, Γ
does not contain a copy of Kp and its complement does not contain a copy of Bk,n.

However, there remains a rather large gap between the lower bound of (k/ log p)cp and the upper
bound of 2k

10p
for this threshold. In particular, it would be interesting to determine if, for p fixed,

the correct behavior is polynomial or exponential in k.
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Theory 7 (1983), 39–51.
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