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“Outside of a dog, a book is a man’s best friend. Inside of a dog, it is too dark to read.”
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Introduction

Given two graphs H1,H2, their Ramsey number r(H1,H2) is the
minimum N such that any red/blue coloring of E(KN) contains a red
H1 or a blue H2. Let r(H) = r(H,H).
It is known that

√
2t ≤ r(Kt) ≤ 4t.

If k < t, in a coloring with no monochromatic Kt, any monochromatic
Kk must lie in fewer than r(Kt,Kt−k)monochromatic Kk+1s.

Definition
The book graph B(k)

n consists of n copies
of Kk+1 joined along a common Kk.

...

Previous observation: if n = r(Kt,Kt−k), then r(Kt) ≤ r(B(k)
n ).
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Ramsey numbers of books

A random coloring shows that r(B(k)
n ) ≥ 2kn − ok(n).

Theorem (Conlon, 2018)
For any k ≥ 3, r(B(k)

n ) ≤ 2kn+ ok(n).

The ok(n) term is of tower type. Conlon conjectured that this
dependence was unnecessary.

Theorem (Conlon–Fox–W, 2019)
For any k ≥ 3,

r(B(k)
n ) ≤ 2kn+Ok

( n
(log log logn)1/25

)
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Quasirandomness

Definition (Chung–Graham–Wilson 1989)
A red/blue coloring of E(KN) is called quasirandom if for every
X ⊆ V(KN), eB(X) = 1

4 |X|2 ± o(N2).

[CGW] found many properties equivalent to quasirandomness.
Nikiforov–Rousseau–Schelp (2005) conjectured that a coloring with
no large monochromatic books must be quasirandom.

Theorem (Conlon–Fox–W 2019)
A coloring of KN with no monochromatic B(k)

2−kN+ok(N) is quasirandom.
A coloring is quasirandom iff at most ok(Nk)monochromatic Kks
have more than 2−kN+ ok(N) extensions to a monochromatic Kk+1.
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Key lemma

Vertex subsets X,Y are called ε-regular if
|dB(X,Y) − dB(X′,Y′)| ≤ ε whenever X′ ⊆ X,Y′ ⊆ Y
have |X′| ≥ ε|X|, |Y′| ≥ ε|Y|.

Definition
A (k, ε, δ)-good configuration is a tuple of disjoint
vertex sets C1, . . . ,Ck such that each pair (Ci,Cj) is
ε-regular, dR(Ci) ≥ δ, and dB(Ci,Cj) ≥ δ for i ̸= j.

Lemma (Conlon ’18, Conlon–Fox–W ’19)
Let N = (2k + β)n and ε ≪ δ ≪ β. If a coloring of
KN has a (k, ε, δ)-good configuration, then it
contains a monochromatic B(k)

n .
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Key lemma: proof sketch

Lemma
Let N = (2k + β)n and ε ≪ δ ≪ β. If a coloring
of KN has a (k, ε, δ)-good configuration, then it
contains a monochromatic B(k)

n .

QQ

v

LetQ be a random monochromatic Kk sampled as follows.
For a vertex v, let xi(v) = dB(v,Ci). Imagine that all edges among the
Ci are colored randomly.

Pr(Q ∪ {v} is monochromatic) = 1
2

( k∏
i=1

xi(v) +
1
k

k∑
i=1

(1 − xi(v))k
)

Fact: ≥ 2−k.

If ε ≪ 1, then ε-regularity is “like” randomness.
Adding up over all v shows thatQ has ≳ 2−kNmonochromatic
extensions on average =⇒ monochromatic B(k)

n .
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Ramsey results: proof sketches

Recall: We wish to prove that r(B(k)
n ) ≤ 2kn+ ok(n).

Sketch of Conlon’s proof.
Let N = (2k + β)n, and consider a two-coloring of E(KN). Apply
Szemerédi’s regularity lemma to find that either

• The coloring is nearly monochromatic, or
• It contains a good configuration.

Then apply the key lemma.

To obtain the stronger bound

r(B(k)
n ) ≤ 2kn+Ok

( n
(log log logn)1/25

)
,

we need to avoid invoking the regularity lemma.
Instead, we use much weaker partitioning results, and thus have to
work much harder to find a good configuration.
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Quasirandomness: proof sketch

Recall: A coloring with no monochrom. B(k)
2−kN+ok(N) is quasirandom.

Proof sketch.
Recall the inequality

f(x1, . . . , xk) :=
1
2

( k∏
i=1

xi +
1
k

k∑
i=1

(1 − xi)k
)

≥ 2−k.

For k ≥ 3, (12 , . . . , 1
2 ) is the unique minimizer of f on [0,1]k.

So if some xi is far from 1
2 , then f(x1, . . . , xk) ≥ 2−k + c.

Strengthen the key lemma: if some Ci is not ε-regular to the rest of
the graph, we can find a monochromatic B(k)

(2−k+c)N.
Inductively apply the previous argument to “nibble” out these
ε-regular pieces, and conclude quasirandomness.
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Conclusion

• Book Ramsey numbers are natural and interesting.
• There are many connections between r(B(k)

n ) and r(Kt).

▶ If n = r(Kt,Kk−t), then r(Kt) ≤ r(B(k)
n ).

▶ Connections to Ramsey multiplicity.
▶ Sós conjectured that every extremal coloring with no

monochromatic Kt is quasirandom; we prove the book analogue.

• Off-diagonal r(B(k)
n ,B(k)

cn ) for fixed c ∈ (0,1). We can prove
analoguous results when k is sufficiently large.



Conclusion

• Book Ramsey numbers are natural and interesting.

• There are many connections between r(B(k)
n ) and r(Kt).

▶ If n = r(Kt,Kk−t), then r(Kt) ≤ r(B(k)
n ).

▶ Connections to Ramsey multiplicity.
▶ Sós conjectured that every extremal coloring with no

monochromatic Kt is quasirandom; we prove the book analogue.

• Off-diagonal r(B(k)
n ,B(k)

cn ) for fixed c ∈ (0,1). We can prove
analoguous results when k is sufficiently large.



Conclusion

• Book Ramsey numbers are natural and interesting.
• There are many connections between r(B(k)

n ) and r(Kt).

▶ If n = r(Kt,Kk−t), then r(Kt) ≤ r(B(k)
n ).

▶ Connections to Ramsey multiplicity.
▶ Sós conjectured that every extremal coloring with no

monochromatic Kt is quasirandom; we prove the book analogue.

• Off-diagonal r(B(k)
n ,B(k)

cn ) for fixed c ∈ (0,1). We can prove
analoguous results when k is sufficiently large.



Conclusion

• Book Ramsey numbers are natural and interesting.
• There are many connections between r(B(k)

n ) and r(Kt).
▶ If n = r(Kt,Kk−t), then r(Kt) ≤ r(B(k)

n ).

▶ Connections to Ramsey multiplicity.
▶ Sós conjectured that every extremal coloring with no

monochromatic Kt is quasirandom; we prove the book analogue.

• Off-diagonal r(B(k)
n ,B(k)

cn ) for fixed c ∈ (0,1). We can prove
analoguous results when k is sufficiently large.



Conclusion

• Book Ramsey numbers are natural and interesting.
• There are many connections between r(B(k)

n ) and r(Kt).
▶ If n = r(Kt,Kk−t), then r(Kt) ≤ r(B(k)

n ).
▶ Connections to Ramsey multiplicity.

▶ Sós conjectured that every extremal coloring with no
monochromatic Kt is quasirandom; we prove the book analogue.

• Off-diagonal r(B(k)
n ,B(k)

cn ) for fixed c ∈ (0,1). We can prove
analoguous results when k is sufficiently large.



Conclusion

• Book Ramsey numbers are natural and interesting.
• There are many connections between r(B(k)

n ) and r(Kt).
▶ If n = r(Kt,Kk−t), then r(Kt) ≤ r(B(k)

n ).
▶ Connections to Ramsey multiplicity.
▶ Sós conjectured that every extremal coloring with no

monochromatic Kt is quasirandom; we prove the book analogue.

• Off-diagonal r(B(k)
n ,B(k)

cn ) for fixed c ∈ (0,1). We can prove
analoguous results when k is sufficiently large.



Conclusion

• Book Ramsey numbers are natural and interesting.
• There are many connections between r(B(k)

n ) and r(Kt).
▶ If n = r(Kt,Kk−t), then r(Kt) ≤ r(B(k)

n ).
▶ Connections to Ramsey multiplicity.
▶ Sós conjectured that every extremal coloring with no

monochromatic Kt is quasirandom; we prove the book analogue.

• Off-diagonal r(B(k)
n ,B(k)

cn ) for fixed c ∈ (0,1). We can prove
analoguous results when k is sufficiently large.



Open problems

• Can one improve the error boundOk(n/(log log logn)C)?

• Do there exist C > 0, ε > 0 such that if n ≥ Ck, then

r(B(k)
n ) ≤

(1+ ε)k

2kn+ ok(n)

?

If this held with ε ≪ 1/C, it would imply that r(Kt) ≤ (4 − δ)t.

• Thomason conjectured that r(B(k)
n ) ≤ 2k(n+ k − 2) + 2.
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