Ramsey numbers of books and quasirandomness

Yuval Wigderson (Stanford)

Joint work with David Conlon and Jacob Fox

"Outside of a dog, a book is a man's best friend. Inside of a dog, it is too dark to read." -Groucho Marx

Given two graphs H_1 , H_2 , their **Ramsey number** $r(H_1, H_2)$ is the minimum N such that any red/blue coloring of $E(K_N)$ contains a red H_1 or a blue H_2 . Let r(H) = r(H, H).

Given two graphs H_1 , H_2 , their **Ramsey number** $r(H_1, H_2)$ is the minimum N such that any red/blue coloring of $E(K_N)$ contains a red H_1 or a blue H_2 . Let r(H) = r(H, H).

It is known that $\sqrt{2}^t \leq r(K_t) \leq 4^t$.

Given two graphs H_1 , H_2 , their **Ramsey number** $r(H_1, H_2)$ is the minimum N such that any red/blue coloring of $E(K_N)$ contains a red H_1 or a blue H_2 . Let r(H) = r(H, H).

It is known that $\sqrt{2}^t \leq r(K_t) \leq 4^t$.

If k < t, in a coloring with no monochromatic K_t , any monochromatic K_k must lie in fewer than $r(K_t, K_{t-k})$ monochromatic K_{k+1} s.

Given two graphs H_1 , H_2 , their **Ramsey number** $r(H_1, H_2)$ is the minimum N such that any red/blue coloring of $E(K_N)$ contains a red H_1 or a blue H_2 . Let r(H) = r(H, H).

It is known that $\sqrt{2}^t \leq r(K_t) \leq 4^t$.

If k < t, in a coloring with no monochromatic K_t , any monochromatic K_k must lie in fewer than $r(K_t, K_{t-k})$ monochromatic $K_{k+1}s$.

Definition

The **book graph** $B_n^{(k)}$ consists of *n* copies of K_{k+1} joined along a common K_k .

Given two graphs H_1 , H_2 , their **Ramsey number** $r(H_1, H_2)$ is the minimum N such that any red/blue coloring of $E(K_N)$ contains a red H_1 or a blue H_2 . Let r(H) = r(H, H).

It is known that $\sqrt{2}^t \leq r(K_t) \leq 4^t$.

If k < t, in a coloring with no monochromatic K_t , any monochromatic K_k must lie in fewer than $r(K_t, K_{t-k})$ monochromatic $K_{k+1}s$.

Definition

The **book graph** $B_n^{(k)}$ consists of *n* copies of K_{k+1} joined along a common K_k .

Previous observation: if $n = r(K_t, K_{t-k})$, then $r(K_t) \le r(B_n^{(k)})$.

A random coloring shows that $r(B_n^{(k)}) \ge 2^k n - o_k(n)$.

A random coloring shows that $r(B_n^{(k)}) \ge 2^k n - o_k(n)$.

Theorem (Conlon, 2018) For any $k \ge 3$, $r(B_n^{(k)}) \le 2^k n + o_k(n)$.

A random coloring shows that $r(B_n^{(k)}) \ge 2^k n - o_k(n)$.

Theorem (Conlon, 2018)

For any $k \ge 3$, $r(B_n^{(k)}) \le 2^k n + n/(\log^* n)^{C_k}$.

The $o_k(n)$ term is of tower type. Conlon conjectured that this dependence was unnecessary.

A random coloring shows that $r(B_n^{(k)}) \ge 2^k n - o_k(n)$.

Theorem (Conlon, 2018)

For any $k \ge 3$, $r(B_n^{(k)}) \le 2^k n + n/(\log^* n)^{C_k}$.

The $o_k(n)$ term is of tower type. Conlon conjectured that this dependence was unnecessary.

Theorem (Conlon-Fox-W, 2019)

For any $k \geq 3$,

$$r(B_n^{(k)}) \le 2^k n + O_k\left(\frac{n}{(\log \log \log n)^{1/25}}\right)$$

Quasirandomness

Quasirandomness

Definition (Chung-Graham-Wilson 1989)

A red/blue coloring of $E(K_N)$ is called **quasirandom** if for every $X \subseteq V(K_N)$, $e_B(X) = \frac{1}{4}|X|^2 \pm o(N^2)$.

Quasirandomness

Definition (Chung-Graham-Wilson 1989)

A red/blue coloring of $E(K_N)$ is called **quasirandom** if for every $X \subseteq V(K_N)$, $e_B(X) = \frac{1}{4}|X|^2 \pm o(N^2)$.

[CGW] found many properties equivalent to quasirandomness.

Definition (Chung-Graham-Wilson 1989)

A red/blue coloring of $E(K_N)$ is called **quasirandom** if for every $X \subseteq V(K_N)$, $e_B(X) = \frac{1}{4}|X|^2 \pm o(N^2)$.

[CGW] found many properties equivalent to quasirandomness. Nikiforov-Rousseau-Schelp (2005) conjectured that a coloring with no large monochromatic books must be quasirandom.

Definition (Chung-Graham-Wilson 1989)

A red/blue coloring of $E(K_N)$ is called **quasirandom** if for every $X \subseteq V(K_N)$, $e_B(X) = \frac{1}{4}|X|^2 \pm o(N^2)$.

[CGW] found many properties equivalent to quasirandomness. Nikiforov-Rousseau-Schelp (2005) conjectured that a coloring with no large monochromatic books must be quasirandom.

Theorem (Conlon-Fox-W 2019)

A coloring of K_N with no monochromatic $B_{2^{-k}N+o_k(N)}^{(k)}$ is quasirandom.

Definition (Chung-Graham-Wilson 1989)

A red/blue coloring of $E(K_N)$ is called **quasirandom** if for every $X \subseteq V(K_N)$, $e_B(X) = \frac{1}{4}|X|^2 \pm o(N^2)$.

[CGW] found many properties equivalent to quasirandomness. Nikiforov-Rousseau-Schelp (2005) conjectured that a coloring with no large monochromatic books must be quasirandom.

Theorem (Conlon-Fox-W 2019)

A coloring of K_N with no monochromatic $B_{2^{-k}N+o_k(N)}^{(k)}$ is quasirandom. A coloring is quasirandom iff at most $o_k(N^k)$ monochromatic K_k s have more than $2^{-k}N + o_k(N)$ extensions to a monochromatic K_{k+1} .

Vertex subsets X, Y are called ε -regular if $|d_B(X,Y) - d_B(X',Y')| \le \varepsilon$ whenever $X' \subseteq X, Y' \subseteq Y$ have $|X'| \ge \varepsilon |X|, |Y'| \ge \varepsilon |Y|$.

Vertex subsets X, Y are called ε -regular if $|d_B(X,Y) - d_B(X',Y')| \le \varepsilon$ whenever $X' \subseteq X, Y' \subseteq Y$ have $|X'| \ge \varepsilon |X|, |Y'| \ge \varepsilon |Y|$.

Definition

A (k, ε, δ) -good configuration is a tuple of disjoint vertex sets C_1, \ldots, C_k such that each pair (C_i, C_j) is ε -regular, $d_R(C_i) \ge \delta$, and $d_B(C_i, C_j) \ge \delta$ for $i \ne j$.

Vertex subsets X, Y are called ε -regular if $|d_B(X,Y) - d_B(X',Y')| \le \varepsilon$ whenever $X' \subseteq X, Y' \subseteq Y$ have $|X'| \ge \varepsilon |X|, |Y'| \ge \varepsilon |Y|$.

Definition

A (k, ε, δ) -good configuration is a tuple of disjoint vertex sets C_1, \ldots, C_k such that each pair (C_i, C_j) is ε -regular, $d_R(C_i) \ge \delta$, and $d_B(C_i, C_j) \ge \delta$ for $i \ne j$.

Lemma (Conlon '18, Conlon-Fox-W '19)

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as follows.

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as follows.

1. Pick red or blue with probability 1/2.

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as follows.

- 1. Pick red or blue with probability 1/2.
- 2. If blue, pick a uniform blue spanning K_k (one vertex in each C_i).

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as follows.

- 1. Pick red or blue with probability 1/2.
- 2. If blue, pick a uniform blue spanning K_k (one vertex in each C_i).
- 3. If red, pick $i \in [k]$ uniformly, then a uniform red K_k in C_i .

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as above.

For a vertex v, let $x_i(v) = d_B(v, C_i)$. Imagine that all edges among the C_i are colored randomly.

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as above.

For a vertex v, let $x_i(v) = d_B(v, C_i)$. Imagine that all edges among the C_i are colored randomly.

 $Pr(Q \cup \{v\} \text{ is monochromatic}) =$

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as above.

For a vertex v, let $x_i(v) = d_B(v, C_i)$. Imagine that all edges among the C_i are colored randomly.

 $\Pr(Q \cup \{v\} \text{ is monochromatic}) = \frac{1}{2} \left(\prod_{i=1}^{k} x_i(v) \right)$

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as above.

For a vertex v, let $x_i(v) = d_B(v, C_i)$. Imagine that all edges among the C_i are colored randomly.

$$\Pr(Q \cup \{v\} \text{ is monochromatic}) = \frac{1}{2} \left(\prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as above.

For a vertex v, let $x_i(v) = d_B(v, C_i)$. Imagine that all edges among the C_i are colored randomly.

$$Pr(Q \cup \{v\} \text{ is monochromatic}) = \frac{1}{2} \left(\prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$

Fact: $\geq 2^{-k}$.

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as above.

For a vertex v, let $x_i(v) = d_B(v, C_i)$. Imagine that all edges among the C_i are colored randomly.

$$Pr(Q \cup \{v\} \text{ is monochromatic}) = \frac{1}{2} \left(\prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$

Fact: $\geq 2^{-k}$.

If $\varepsilon \ll 1$, then ε -regularity is "like" randomness.

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as above. For a vertex v, let $x_i(v) = d_B(v, C_i)$. If C_1, \ldots, C_k is a (k, ε, δ) -good configuration,

$$Pr(Q \cup \{v\} \text{ is monochromatic}) \approx \frac{1}{2} \left(\prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$

Fact: $\geq 2^{-k}$.

If $\varepsilon \ll 1$, then ε -regularity is "like" randomness.

Lemma

Let $N = (2^k + \beta)n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_N has a (k, ε, δ) -good configuration, then it contains a monochromatic $B_n^{(k)}$.

Let Q be a random monochromatic K_k sampled as above. For a vertex v, let $x_i(v) = d_B(v, C_i)$. If C_1, \ldots, C_k is a (k, ε, δ) -good configuration,

$$Pr(Q \cup \{v\} \text{ is monochromatic}) \approx \frac{1}{2} \left(\prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$

Fact: $\geq 2^{-k}$.

If $\varepsilon \ll 1$, then ε -regularity is "like" randomness. Adding up over all v shows that Q has $\gtrsim 2^{-k}N$ monochromatic extensions on average \Longrightarrow monochromatic $B_n^{(k)}$.

Recall: We wish to prove that $r(B_n^{(k)}) \leq 2^k n + o_k(n)$.

Recall: We wish to prove that $r(B_n^{(k)}) \leq 2^k n + o_k(n)$.

Sketch of Conlon's proof.

Let $N = (2^k + \beta)n$, and consider a two-coloring of $E(K_N)$.

Recall: We wish to prove that $r(B_n^{(k)}) \leq 2^k n + o_k(n)$.

Sketch of Conlon's proof.

Let $N = (2^k + \beta)n$, and consider a two-coloring of $E(K_N)$. Apply Szemerédi's regularity lemma to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Recall: We wish to prove that $r(B_n^{(k)}) \leq 2^k n + o_k(n)$.

Sketch of Conlon's proof.

Let $N = (2^k + \beta)n$, and consider a two-coloring of $E(K_N)$. Apply Szemerédi's regularity lemma to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.

Recall: We wish to prove that $r(B_n^{(k)}) \leq 2^k n + o_k(n)$.

Sketch of Conlon's proof.

Let $N = (2^k + \beta)n$, and consider a two-coloring of $E(K_N)$. Apply Szemerédi's regularity lemma to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.

To obtain the stronger bound

$$r(B_n^{(k)}) \le 2^k n + O_k\left(\frac{n}{(\log \log \log n)^{1/25}}\right),$$

we need to avoid invoking the regularity lemma.

Recall: We wish to prove that $r(B_n^{(k)}) \leq 2^k n + o_k(n)$.

Sketch of Conlon's proof.

Let $N = (2^k + \beta)n$, and consider a two-coloring of $E(K_N)$. Apply Szemerédi's regularity lemma to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.

To obtain the stronger bound

$$r(B_n^{(k)}) \le 2^k n + O_k\left(\frac{n}{(\log \log \log n)^{1/25}}\right),$$

we need to avoid invoking the regularity lemma.

Instead, we use much weaker partitioning results, and thus have to work much harder to find a good configuration.

Recall: A coloring with no monochrom. $B_{2^{-k}N+o_k(N)}^{(k)}$ is quasirandom.

Recall: A coloring with no monochrom. $B_{2^{-k}N+o_k(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$f(x_1,\ldots,x_k) := \frac{1}{2} \left(\prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}$$

Recall: A coloring with no monochrom. $B_{2^{-k}N+o_k(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$f(x_1,\ldots,x_k) := \frac{1}{2} \left(\prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}$$

For $k \ge 3$, $(\frac{1}{2}, \dots, \frac{1}{2})$ is the unique minimizer of f on $[0, 1]^k$.

Recall: A coloring with no monochrom. $B_{2^{-k}N+o_k(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$f(x_1,\ldots,x_k) := \frac{1}{2} \left(\prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}$$

For $k \ge 3$, $(\frac{1}{2}, \ldots, \frac{1}{2})$ is the unique minimizer of f on $[0, 1]^k$. So if some x_i is far from $\frac{1}{2}$, then $f(x_1, \ldots, x_k) \ge 2^{-k} + c$.

Recall: A coloring with no monochrom. $B_{2^{-k}N+o_k(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$f(x_1,\ldots,x_k) := \frac{1}{2} \left(\prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}$$

For $k \ge 3$, $(\frac{1}{2}, \ldots, \frac{1}{2})$ is the unique minimizer of f on $[0, 1]^k$. So if some x_i is far from $\frac{1}{2}$, then $f(x_1, \ldots, x_k) \ge 2^{-k} + c$. Strengthen the key lemma: if some C_i is not ε -regular to the rest of the graph, we can find a monochromatic $B_{(2^{-k}+c)N}^{(k)}$.

Recall: A coloring with no monochrom. $B_{2^{-k}N+o_k(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$f(x_1,\ldots,x_k) := \frac{1}{2} \left(\prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}$$

For $k \ge 3$, $(\frac{1}{2}, \ldots, \frac{1}{2})$ is the unique minimizer of f on $[0, 1]^k$. So if some x_i is far from $\frac{1}{2}$, then $f(x_1, \ldots, x_k) \ge 2^{-k} + c$. Strengthen the key lemma: if some C_i is not ε -regular to the rest of the graph, we can find a monochromatic $B_{(2^{-k}+c)N}^{(k)}$.

Inductively apply the previous argument to "nibble" out these ε -regular pieces, and conclude quasirandomness.

Conclusion

• Book Ramsey numbers are natural and interesting.

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r(B_n^{(k)})$ and $r(K_t)$.

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r(B_n^{(k)})$ and $r(K_t)$.
 - If $n = r(K_t, K_{k-t})$, then $r(K_t) \leq r(B_n^{(k)})$.

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r(B_n^{(k)})$ and $r(K_t)$.
 - If $n = r(K_t, K_{k-t})$, then $r(K_t) \le r(B_n^{(k)})$.
 - Connections to Ramsey multiplicity.

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r(B_n^{(k)})$ and $r(K_t)$.
 - If $n = r(K_t, K_{k-t})$, then $r(K_t) \le r(B_n^{(k)})$.
 - Connections to Ramsey multiplicity.
 - Sós conjectured that every extremal coloring with no monochromatic K_t is quasirandom; we prove the book analogue.

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r(B_n^{(k)})$ and $r(K_t)$.
 - If $n = r(K_t, K_{k-t})$, then $r(K_t) \le r(B_n^{(k)})$.
 - Connections to Ramsey multiplicity.
 - Sós conjectured that every extremal coloring with no monochromatic K_t is quasirandom; we prove the book analogue.
- Off-diagonal $r(B_n^{(k)}, B_{cn}^{(k)})$ for fixed $c \in (0, 1)$. We can prove analoguous results when k is sufficiently large.

Open problems

• Can one improve the error bound $O_k(n/(\log \log \log n)^C)$?

• Can one improve the error bound $O_k(n/(\log \log \log n)^C)$?

$$r(B_n^{(k)}) \le \qquad 2^k n + o_k(n)$$

- Can one improve the error bound $O_k(n/(\log \log \log n)^C)$?
- Do there exist $C > 0, \varepsilon > 0$ such that if $n \ge C^k$, then

$$r(B_n^{(k)}) \leq (1+\varepsilon)^k 2^k n + o(n)?$$

If this held with $\varepsilon \ll 1/C$, it would imply that $r(K_t) \leq (4 - \delta)^t$.

- Can one improve the error bound $O_k(n/(\log \log \log n)^C)$?
- Do there exist $C > 0, \varepsilon > 0$ such that if $n \ge C^k$, then

$$r(B_n^{(k)}) \leq (1+\varepsilon)^k 2^k n + o(0)?$$

If this held with $\varepsilon \ll 1/C$, it would imply that $r(K_t) \leq (4 - \delta)^t$.

• Thomason conjectured that $r(B_n^{(k)}) \le 2^k(n+k-2)+2$.