Ramsey numbers of books and quasirandomness

Yuval Wigderson (Stanford)

Joint work with David Conlon and Jacob Fox

"Outside of a dog, a book is a man's best friend. Inside of a dog, it is too dark to read."
-Groucho Marx

Introduction

Introduction

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.

Introduction

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.
It is known that $\sqrt{2}^{t} \leq r\left(K_{t}\right) \leq 4^{t}$.

Introduction

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.
It is known that $\sqrt{2}^{t} \leq r\left(K_{t}\right) \leq 4^{t}$.
If $k<t$, in a coloring with no monochromatic K_{t}, any monochromatic K_{k} must lie in fewer than $r\left(K_{t}, K_{t-k}\right)$ monochromatic $K_{k+1} \mathrm{~s}$.

Introduction

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.
It is known that $\sqrt{2}^{t} \leq r\left(K_{t}\right) \leq 4^{t}$.
If $k<t$, in a coloring with no monochromatic K_{t}, any monochromatic K_{k} must lie in fewer than $r\left(K_{t}, K_{t-k}\right)$ monochromatic $K_{k+1} \mathrm{~s}$.

Definition

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Introduction

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.
It is known that $\sqrt{2}^{t} \leq r\left(K_{t}\right) \leq 4^{t}$.
If $k<t$, in a coloring with no monochromatic K_{t}, any monochromatic K_{k} must lie in fewer than $r\left(K_{t}, K_{t-k}\right)$ monochromatic $K_{k+1} \mathrm{~s}$.

Definition

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Previous observation: if $n=r\left(K_{t}, K_{t-k}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.

Ramsey numbers of books

Ramsey numbers of books

A random coloring shows that $r\left(B_{n}^{(k)}\right) \geq 2^{k} n-o_{k}(n)$.

Ramsey numbers of books

A random coloring shows that $r\left(B_{n}^{(k)}\right) \geq 2^{k} n-o_{k}(n)$.
Theorem (Conlon, 2018)
For any $k \geq 3, r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.

Ramsey numbers of books

A random coloring shows that $r\left(B_{n}^{(k)}\right) \geq 2^{k} n-o_{k}(n)$.
Theorem (Conlon, 2018)
For any $k \geq 3, r\left(B_{n}^{(k)}\right) \leq 2^{k} n+n /\left(\log ^{*} n\right)^{C_{k}}$.
The $o_{k}(n)$ term is of tower type. Conlon conjectured that this dependence was unnecessary.

Ramsey numbers of books

A random coloring shows that $r\left(B_{n}^{(k)}\right) \geq 2^{k} n-o_{k}(n)$.
Theorem (Conlon, 2018)
For any $k \geq 3, r\left(B_{n}^{(k)}\right) \leq 2^{k} n+n /\left(\log ^{*} n\right)^{C_{k}}$.
The $o_{k}(n)$ term is of tower type. Conlon conjectured that this dependence was unnecessary.

Theorem (Conlon-Fox-W, 2019)

For any $k \geq 3$,

$$
r\left(B_{n}^{(k)}\right) \leq 2^{k} n+O_{k}\left(\frac{n}{(\log \log \log n)^{1 / 25}}\right)
$$

Quasirandomness

Quasirandomness

Definition (Chung-Graham-Wilson 1989)

A red/blue coloring of $E\left(K_{N}\right)$ is called quasirandom if for every $X \subseteq V\left(K_{N}\right), e_{B}(X)=\frac{1}{4}|X|^{2} \pm o\left(N^{2}\right)$.

Quasirandomness

Definition (Chung-Graham-Wilson 1989)

A red/blue coloring of $E\left(K_{N}\right)$ is called quasirandom if for every $X \subseteq V\left(K_{N}\right), e_{B}(X)=\frac{1}{4}|X|^{2} \pm o\left(N^{2}\right)$.
[CGW] found many properties equivalent to quasirandomness.

Quasirandomness

Definition (Chung-Graham-Wilson 1989)
 A red/blue coloring of $E\left(K_{N}\right)$ is called quasirandom if for every $X \subseteq V\left(K_{N}\right), e_{B}(X)=\frac{1}{4}|X|^{2} \pm o\left(N^{2}\right)$.

[CGW] found many properties equivalent to quasirandomness. Nikiforov-Rousseau-Schelp (2005) conjectured that a coloring with no large monochromatic books must be quasirandom.

Quasirandomness

Definition (Chung-Graham-Wilson 1989)
 A red/blue coloring of $E\left(K_{N}\right)$ is called quasirandom if for every
 $X \subseteq V\left(K_{N}\right), e_{B}(X)=\frac{1}{4}|X|^{2} \pm o\left(N^{2}\right)$.

[CGW] found many properties equivalent to quasirandomness.
Nikiforov-Rousseau-Schelp (2005) conjectured that a coloring with no large monochromatic books must be quasirandom.

Theorem (Conlon-Fox-W 2019)
A coloring of K_{N} with no monochromatic $B_{2-k N+o_{k}(N)}^{(k)}$ is quasirandom.

Quasirandomness

Definition (Chung-Graham-Wilson 1989)
 A red/blue coloring of $E\left(K_{N}\right)$ is called quasirandom if for every
 $X \subseteq V\left(K_{N}\right), e_{B}(X)=\frac{1}{4}|X|^{2} \pm o\left(N^{2}\right)$.

[CGW] found many properties equivalent to quasirandomness.
Nikiforov-Rousseau-Schelp (2005) conjectured that a coloring with no large monochromatic books must be quasirandom.

Theorem (Conlon-Fox-W 2019)
A coloring of K_{N} with no monochromatic $B_{2-k N+o_{k}(N)}^{(k)}$ is quasirandom.
A coloring is quasirandom iff at most $o_{k}\left(N^{k}\right)$ monochromatic $K_{k} s$ have more than $2^{-k} N+o_{k}(N)$ extensions to a monochromatic K_{k+1}.

Key lemma

Key lemma

Vertex subsets X, Y are called ε-regular if $\left|d_{B}(X, Y)-d_{B}\left(X^{\prime}, Y^{\prime}\right)\right| \leq \varepsilon$ whenever $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$ have $\left|X^{\prime}\right| \geq \varepsilon|X|,\left|Y^{\prime}\right| \geq \varepsilon|Y|$.

Key lemma

Vertex subsets X, Y are called ε-regular if $\left|d_{B}(X, Y)-d_{B}\left(X^{\prime}, Y^{\prime}\right)\right| \leq \varepsilon$ whenever $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$ have $\left|X^{\prime}\right| \geq \varepsilon|X|,\left|Y^{\prime}\right| \geq \varepsilon|Y|$.

Definition

A (k, ε, δ)-good configuration is a tuple of disjoint vertex sets C_{1}, \ldots, C_{k} such that each pair $\left(C_{i}, C_{j}\right)$ is ε-regular, $d_{R}\left(C_{i}\right) \geq \delta$, and $d_{B}\left(C_{i}, C_{j}\right) \geq \delta$ for $i \neq j$.

Key lemma

Vertex subsets X, Y are called ε-regular if $\left|d_{B}(X, Y)-d_{B}\left(X^{\prime}, Y^{\prime}\right)\right| \leq \varepsilon$ whenever $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$ have $\left|X^{\prime}\right| \geq \varepsilon|X|,\left|Y^{\prime}\right| \geq \varepsilon|Y|$.

Definition

A (k, ε, δ)-good configuration is a tuple of disjoint vertex sets C_{1}, \ldots, C_{k} such that each pair $\left(C_{i}, C_{j}\right)$ is ε-regular, $d_{R}\left(C_{i}\right) \geq \delta$, and $d_{B}\left(C_{i}, C_{j}\right) \geq \delta$ for $i \neq j$.

Lemma (Conlon '18, Conlon-Fox-W '19)

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as follows.

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as follows.

1. Pick red or blue with probability $1 / 2$.

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as follows.

1. Pick red or blue with probability $1 / 2$.
2. If blue, pick a uniform blue spanning K_{k} (one vertex in each C_{i}).

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as follows.

1. Pick red or blue with probability $1 / 2$.
2. If blue, pick a uniform blue spanning K_{k} (one vertex in each C_{i}).
3. If red, pick $i \in[k]$ uniformly, then a uniform red K_{k} in C_{i}.

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)=d_{B}\left(v, C_{i}\right)$. Imagine that all edges among the C_{i} are colored randomly.

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)=d_{B}\left(v, C_{i}\right)$. Imagine that all edges among the C_{i} are colored randomly.
$\operatorname{Pr}(Q \cup\{v\}$ is monochromatic $)=$

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)=d_{B}\left(v, C_{i}\right)$. Imagine that all edges among the C_{i} are colored randomly.

$$
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic })=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)\right.
$$

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)=d_{B}\left(v, C_{i}\right)$. Imagine that all edges among the C_{i} are colored randomly.

$$
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic })=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right)
$$

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)=d_{B}\left(v, C_{i}\right)$. Imagine that all edges among the C_{i} are colored randomly.

$$
\begin{aligned}
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic }) & =\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right) \\
\quad \text { Fact: } & \geq 2^{-k} .
\end{aligned}
$$

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)=d_{B}\left(v, C_{i}\right)$. Imagine that all edges among the C_{i} are colored randomly.

$$
\begin{aligned}
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic }) & =\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right) \\
\text { Fact: } & \geq 2^{-k} .
\end{aligned}
$$

If $\varepsilon \ll 1$, then ε-regularity is "like" randomness.

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)=d_{B}\left(v, C_{i}\right)$. If C_{1}, \ldots, C_{k} is a (k, ε, δ)-good configuration,

$$
\begin{aligned}
& \operatorname{Pr}(Q \cup\{v\} \text { is monochromatic }) \approx \frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right) \\
& \quad \text { Fact: } \quad \geq 2^{-k} .
\end{aligned}
$$

If $\varepsilon \ll 1$, then ε-regularity is "like" randomness.

Key lemma: proof sketch

Lemma

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)=d_{B}\left(v, C_{i}\right)$. If C_{1}, \ldots, C_{k} is a (k, ε, δ)-good configuration,

$$
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic }) \approx \frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right)
$$

$$
\text { Fact: } \quad \geq 2^{-k}
$$

If $\varepsilon \ll 1$, then ε-regularity is "like" randomness.
Adding up over all v shows that Q has $\gtrsim 2^{-k} N$ monochromatic extensions on average \Longrightarrow monochromatic $B_{n}^{(k)}$.

Ramsey results: proof sketches

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.
Sketch of Conlon's proof.
Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.

Sketch of Conlon's proof.

Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$. Apply Szemerédi's regularity lemma to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.

Sketch of Conlon's proof.

Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$. Apply Szemerédi's regularity lemma to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.

Sketch of Conlon's proof.

Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$. Apply Szemerédi's regularity lemma to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.
To obtain the stronger bound

$$
r\left(B_{n}^{(k)}\right) \leq 2^{k} n+O_{k}\left(\frac{n}{(\log \log \log n)^{1 / 25}}\right)
$$

we need to avoid invoking the regularity lemma.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.

Sketch of Conlon's proof.

Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$. Apply Szemerédi's regularity lemma to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.
To obtain the stronger bound

$$
r\left(B_{n}^{(k)}\right) \leq 2^{k} n+O_{k}\left(\frac{n}{(\log \log \log n)^{1 / 25}}\right)
$$

we need to avoid invoking the regularity lemma. Instead, we use much weaker partitioning results, and thus have to work much harder to find a good configuration.

Quasirandomness: proof sketch

Quasirandomness: proof sketch

Recall: A coloring with no monochrom. $B_{2-{ }^{-k} N+o_{k}(N)}^{(k)}$ is quasirandom.

Quasirandomness: proof sketch

Recall: A coloring with no monochrom. $B_{2-k N+o_{k}(N)}^{(k)}$ is quasirandom.
Proof sketch.
Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k} .
$$

Quasirandomness: proof sketch

Recall: A coloring with no monochrom. $B_{2-k N+o_{k}(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k} .
$$

For $k \geq 3,\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is the unique minimizer of f on $[0,1]^{k}$.

Quasirandomness: proof sketch

Recall: A coloring with no monochrom. $B_{2-k N+o_{k}(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k} .
$$

For $k \geq 3,\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is the unique minimizer of f on $[0,1]^{k}$. So if some x_{i} is far from $\frac{1}{2}$, then $f\left(x_{1}, \ldots, x_{k}\right) \geq 2^{-k}+c$.

Quasirandomness: proof sketch

Recall: A coloring with no monochrom. $B_{2-k N+o_{k}(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k} .
$$

For $k \geq 3,\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is the unique minimizer of f on $[0,1]^{k}$.
So if some x_{i} is far from $\frac{1}{2}$, then $f\left(x_{1}, \ldots, x_{k}\right) \geq 2^{-k}+c$. Strengthen the key lemma: if some C_{i} is not ε-regular to the rest of the graph, we can find a monochromatic $B_{\left(2^{-k}+c\right) N}^{(k)}$.

Quasirandomness: proof sketch

Recall: A coloring with no monochrom. $B_{2-k N+o_{k}(N)}^{(k)}$ is quasirandom.

Proof sketch.

Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k} .
$$

For $k \geq 3,\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is the unique minimizer of f on $[0,1]^{k}$. So if some x_{i} is far from $\frac{1}{2}$, then $f\left(x_{1}, \ldots, x_{k}\right) \geq 2^{-k}+c$. Strengthen the key lemma: if some C_{i} is not ε-regular to the rest of the graph, we can find a monochromatic $B_{\left(2^{-k}+c\right) N}^{(k)}$.
Inductively apply the previous argument to "nibble" out these ε-regular pieces, and conclude quasirandomness.

Conclusion

Conclusion

- Book Ramsey numbers are natural and interesting.

Conclusion

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.

Conclusion

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.

Conclusion

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey multiplicity.

Conclusion

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey multiplicity.
- Sós conjectured that every extremal coloring with no monochromatic K_{t} is quasirandom; we prove the book analogue.

Conclusion

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey multiplicity.
- Sós conjectured that every extremal coloring with no monochromatic K_{t} is quasirandom; we prove the book analogue.
- Off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$ for fixed $c \in(0,1)$. We can prove analoguous results when k is sufficiently large.

Open problems

Open problems

- Can one improve the error bound $O_{k}\left(n /(\log \log \log n)^{C}\right)$?

Open problems

- Can one improve the error bound $O_{k}\left(n /(\log \log \log n)^{C}\right)$?

$$
r\left(B_{n}^{(k)}\right) \leq \quad 2^{k} n+o_{k}(n)
$$

Open problems

- Can one improve the error bound $O_{k}\left(n /(\log \log \log n)^{C}\right)$?
- Do there exist $C>0, \varepsilon>0$ such that if $n \geq C^{k}$, then

$$
r\left(B_{n}^{(k)}\right) \leq(1+\varepsilon)^{k} 2^{k} n+\text { onti|? }
$$

If this held with $\varepsilon \ll 1 / C$, it would imply that $r\left(K_{t}\right) \leq(4-\delta)^{t}$.

Open problems

- Can one improve the error bound $O_{k}\left(n /(\log \log \log n)^{C}\right)$?
- Do there exist $C>0, \varepsilon>0$ such that if $n \geq C^{k}$, then

$$
r\left(B_{n}^{(k)}\right) \leq(1+\varepsilon)^{k} 2^{k} n+\text { onti|? }
$$

If this held with $\varepsilon \ll 1 / C$, it would imply that $r\left(K_{t}\right) \leq(4-\delta)^{t}$.

- Thomason conjectured that $r\left(B_{n}^{(k)}\right) \leq 2^{k}(n+k-2)+2$.

