Ramsey numbers of books and quasirandomness

Yuval Wigderson

#### Joint work with David Conlon and Jacob Fox

"Outside of a dog, a book is a man's best friend. Inside of a dog, it is too dark to read." -Groucho Marx

Given two graphs  $H_1$ ,  $H_2$ , their **Ramsey number**  $r(H_1, H_2)$  is the minimum N such that any red/blue coloring of  $E(K_N)$  contains a red  $H_1$  or a blue  $H_2$ . Let r(H) = r(H, H).

Given two graphs  $H_1$ ,  $H_2$ , their **Ramsey number**  $r(H_1, H_2)$  is the minimum N such that any red/blue coloring of  $E(K_N)$  contains a red  $H_1$  or a blue  $H_2$ . Let r(H) = r(H, H).

Theorem (Erdős 1947, Erdős-Szekeres 1935)  $\sqrt{2}^{t} \le r(K_t) \le 4^{t}.$ 

Given two graphs  $H_1$ ,  $H_2$ , their **Ramsey number**  $r(H_1, H_2)$  is the minimum N such that any red/blue coloring of  $E(K_N)$  contains a red  $H_1$  or a blue  $H_2$ . Let r(H) = r(H, H).

Theorem (Erdős 1947, Erdős-Szekeres 1935)  $\sqrt{2}^{t} \le r(K_t) \le 4^{t}.$ 

### Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all  $S \subseteq V$ ,  $e(S) = \frac{1}{2} {|S| \choose 2} \pm o(N^2).$ 

Given two graphs  $H_1$ ,  $H_2$ , their **Ramsey number**  $r(H_1, H_2)$  is the minimum N such that any red/blue coloring of  $E(K_N)$  contains a red  $H_1$  or a blue  $H_2$ . Let r(H) = r(H, H).

Theorem (Erdős 1947, Erdős-Szekeres 1935)  $\sqrt{2}^{t} \le r(K_t) \le 4^{t}.$ 

### Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all  $S \subseteq V$ ,  $e(S) = \frac{1}{2} {|S| \choose 2} \pm o(N^2)$ . This is equivalent to many other notions of being "random-like".

Given two graphs  $H_1$ ,  $H_2$ , their **Ramsey number**  $r(H_1, H_2)$  is the minimum N such that any red/blue coloring of  $E(K_N)$  contains a red  $H_1$  or a blue  $H_2$ . Let r(H) = r(H, H).

Theorem (Erdős 1947, Erdős-Szekeres 1935)  $\sqrt{2}^{t} \le r(K_t) \le 4^{t}.$ 

### Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all  $S \subseteq V$ ,  $e(S) = \frac{1}{2} {|S| \choose 2} \pm o(N^2)$ . This is equivalent to many other notions of being "random-like".

#### Conjecture (Sós)

Let  $N = r(K_t) - 1$ . If a coloring of  $K_N$  contains no monochromatic  $K_t$ , then the red and blue graphs are quasirandom as  $t \to \infty$ .

If k < t, in a coloring with no monochromatic  $K_t$ , any monochromatic  $K_k$  must lie in fewer than  $r(K_t, K_{t-k})$  monochromatic  $K_{k+1}$ s.



If k < t, in a coloring with no monochromatic  $K_t$ , any monochromatic  $K_k$  must lie in fewer than  $r(K_t, K_{t-k})$  monochromatic  $K_{k+1}$ s.



This observation drives every upper bound we have on  $r(K_t)$ .

If k < t, in a coloring with no monochromatic  $K_t$ , any monochromatic  $K_k$  must lie in fewer than  $r(K_t, K_{t-k})$  monochromatic  $K_{k+1}$ s.



This observation drives every upper bound we have on  $r(K_t)$ . **Erdős-Szekeres:**  $r(K_t) \leq 4^t$ , and more generally  $r(K_s, K_t) \leq {s+t \choose s}$ .

If k < t, in a coloring with no monochromatic  $K_t$ , any monochromatic  $K_k$  must lie in fewer than  $r(K_t, K_{t-k})$  monochromatic  $K_{k+1}$ s.



This observation drives every upper bound we have on  $r(K_t)$ . **Erdős-Szekeres:**  $r(K_t) \le 4^t$ , and more generally  $r(K_s, K_t) \le {s+t \choose s}$ . **Conlon:**  $r(K_t) \le t^{-c \log t/\log \log t} 4^t$ .

### Definition

The **book graph**  $B_n^{(k)}$  consists of *n* copies of  $K_{k+1}$  joined along a common  $K_k$ .



### Definition

The **book graph**  $B_n^{(k)}$  consists of *n* copies of  $K_{k+1}$  joined along a common  $K_k$ .



### Definition

The **book graph**  $B_n^{(k)}$  consists of *n* copies of  $K_{k+1}$  joined along a common  $K_k$ .



### Definition

The **book graph**  $B_n^{(k)}$  consists of *n* copies of  $K_{k+1}$  joined along a common  $K_k$ .



Previous observation: if  $n = r(K_t, K_{t-k})$ , then  $r(K_t) \le r(B_n^{(k)})$ .

### Definition

The **book graph**  $B_n^{(k)}$  consists of *n* copies of  $K_{k+1}$  joined along a common  $K_k$ .



Previous observation: if  $n = r(K_t, K_{t-k})$ , then  $r(K_t) \le r(B_n^{(k)})$ .

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason) $2^kn-o_k(n)\leq r(B_n^{(k)})\leq 4^kn$ 

# Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

 $2^k n - o_k(n) \le r(B_n^{(k)}) \le 4^k n$ 

Theorem (Conlon, 2018)

$$2^{k}n - o_{k}(n) \le r(B_{n}^{(k)}) \le 2^{k}n + o_{k}(n)$$

Theorem (Conlon, 2018)  $2^k n - o_k(n) \le r(B_n^{(k)}) \le 2^k n + o_k(n)$ 

If t is sufficiently large in terms of k and  $n = r(K_t, K_{t-k})$ , then

 $r(K_t) \leq r(B_n^{(k)})$ 

Theorem (Conlon, 2018)  $2^k n - o_k(n) \le r(B_n^{(k)}) \le 2^k n + o_k(n)$ 

If t is sufficiently large in terms of k and  $n = r(K_t, K_{t-k})$ , then

$$r(K_t) \le r(B_n^{(k)}) \le 2^{k+1}n$$

## Theorem (Conlon, 2018) $2^k n - o_k(n) \le r(B_n^{(k)}) \le 2^k n + o_k(n)$

If t is sufficiently large in terms of k and  $n = r(K_t, K_{t-k})$ , then

$$r(K_t) \leq r(B_n^{(k)}) \leq 2^{k+1}n \leq 2^{k+1} \binom{2t-k}{t-k}.$$

Theorem (Conlon, 2018)  $2^k n - o_k(n) \le r(B_n^{(k)}) \le 2^k n + o_k(n)$ 

If t is sufficiently large in terms of k and  $n = r(K_t, K_{t-k})$ , then

$$r(K_t) \leq r(B_n^{(k)}) \leq 2^{k+1}n \leq 2^{k+1}\binom{2t-k}{t-k}.$$

If this holds with t = O(k), then we'd get  $r(K_t) \le (4 - \varepsilon)^t$ .

## Theorem (Conlon, 2018) $2^k n - o_k(n) \le r(B_n^{(k)}) \le 2^k n + o_k(n)$

If t is sufficiently large in terms of k and  $n = r(K_t, K_{t-k})$ , then

$$r(K_t) \leq r(B_n^{(k)}) \leq 2^{k+1}n \leq 2^{k+1}\binom{2t-k}{t-k}.$$

If this holds with t = O(k), then we'd get  $r(K_t) \le (4 - \varepsilon)^t$ .

...but Conlon's proof only works if  $t \ge 2^{2^{2^{t-1}}}$ 

## Theorem (Conlon, 2018)

$$2^{k}n - o_{k}(n) \leq r(B_{n}^{(k)}) \leq 2^{k}n + o_{k}(n)$$

If t is sufficiently large in terms of k and  $n = r(K_t, K_{t-k})$ , then

$$r(K_t) \leq r(B_n^{(k)}) \leq 2^{k+1}n \leq 2^{k+1} \binom{2t-k}{t-k}.$$

If this holds with t = O(k), then we'd get  $r(K_t) \le (4 - \varepsilon)^t$ .

... but Conlon's proof only works if  $t \ge 2^{2^{2^{-1^2}}}$ 

Conlon conjectured that this dependence was unnecessary.

## Theorem (Conlon, 2018)

$$2^{k}n - o_{k}(n) \leq r(B_{n}^{(k)}) \leq 2^{k}n + o_{k}(n)$$

If t is sufficiently large in terms of k and  $n = r(K_t, K_{t-k})$ , then

$$r(K_t) \leq r(B_n^{(k)}) \leq 2^{k+1}n \leq 2^{k+1} \binom{2t-k}{t-k}.$$

If this holds with t = O(k), then we'd get  $r(K_t) \le (4 - \varepsilon)^t$ .

...but Conlon's proof only works if  $t \ge 2^{2^{2^{-1}}}$ 

Conlon conjectured that this dependence was unnecessary.

Theorem (Conlon-Fox-W, 2020) This holds for  $t \ge 2^{2^{2^{k^4}}}$ .

### Conjecture (Sós)

Let  $N = r(K_t) - 1$ . If a coloring of  $K_N$  contains no monochromatic  $K_t$ , then the red and blue graphs are quasirandom as  $t \to \infty$ .

### Conjecture (Sós)

Let  $N = r(K_t) - 1$ . If a coloring of  $K_N$  contains no monochromatic  $K_t$ , then the red and blue graphs are quasirandom as  $t \to \infty$ .

### Conjecture (Nikiforov-Rousseau-Schelp)

Fix  $k \ge 2$  and let  $N = 2^k n - o(n)$ . If a coloring of  $K_N$  contains no monochromatic  $B_n^{(k)}$ , then the coloring is quasirandom.

### Conjecture (Sós)

Let  $N = r(K_t) - 1$ . If a coloring of  $K_N$  contains no monochromatic  $K_t$ , then the red and blue graphs are quasirandom as  $t \to \infty$ .

#### Conjecture (Nikiforov-Rousseau-Schelp)

Fix  $k \ge 2$  and let  $N = 2^k n - o(n)$ . If a coloring of  $K_N$  contains no monochromatic  $B_n^{(k)}$ , then the coloring is quasirandom.

#### Theorem (Conlon-Fox-W, 2020)

Fix  $k \ge 2$ . A coloring of  $K_N$  with no monochromatic  $B_{2^{-k}N+o(N)}^{(k)}$  is quasirandom.

### Conjecture (Sós)

Let  $N = r(K_t) - 1$ . If a coloring of  $K_N$  contains no monochromatic  $K_t$ , then the red and blue graphs are quasirandom as  $t \to \infty$ .

### Conjecture (Nikiforov-Rousseau-Schelp)

Fix  $k \ge 2$  and let  $N = 2^k n - o(n)$ . If a coloring of  $K_N$  contains no monochromatic  $B_n^{(k)}$ , then the coloring is quasirandom.

#### Theorem (Conlon-Fox-W, 2020)

Fix  $k \ge 2$ . A coloring of  $K_N$  with no monochromatic  $B_{2^{-k}N+o(N)}^{(k)}$  is quasirandom. A coloring of  $K_N$  is quasirandom iff at most  $o(N^k)$  monochromatic  $K_k$  have more than  $2^{-k}N + o(N)$  extensions to a monochromatic  $K_{k+1}$ .

Sets  $X, Y \subseteq V(G)$  are called  $\varepsilon$ -regular if  $|d(X, Y) - d(X', Y')| \le \varepsilon$  for all  $X' \subseteq X, Y' \subseteq Y$  with  $|X'| \ge \varepsilon |X|, |Y'| \ge \varepsilon |Y|$ . Here d is edge density.

Sets  $X, Y \subseteq V(G)$  are called  $\varepsilon$ -regular if  $|d(X, Y) - d(X', Y')| \le \varepsilon$  for all  $X' \subseteq X, Y' \subseteq Y$  with  $|X'| \ge \varepsilon |X|, |Y'| \ge \varepsilon |Y|$ . Here d is edge density.

Theorem (Szemerédi's regularity lemma++)

For all  $\varepsilon > 0$ , there exists M such that for every graph G, there is an equitable partition  $V(G) = V_1 \sqcup \cdots \sqcup V_m$  with  $m \le M$ , such that each  $V_i$  is  $\varepsilon$ -regular with itself and with at least  $(1 - \varepsilon)m$  other  $V_i$ .

Sets  $X, Y \subseteq V(G)$  are called  $\varepsilon$ -regular if  $|d(X, Y) - d(X', Y')| \le \varepsilon$  for all  $X' \subseteq X, Y' \subseteq Y$  with  $|X'| \ge \varepsilon |X|, |Y'| \ge \varepsilon |Y|$ . Here d is edge density.

### Theorem (Szemerédi's regularity lemma++)

For all  $\varepsilon > 0$ , there exists M such that for every graph G, there is an equitable partition  $V(G) = V_1 \sqcup \cdots \sqcup V_m$  with  $m \le M$ , such that each  $V_i$  is  $\varepsilon$ -regular with itself and with at least  $(1 - \varepsilon)m$  other  $V_i$ .

### Definition

A  $(k, \varepsilon, \delta)$ -good configuration is a tuple of disjoint vertex sets  $C_1, ..., C_k$  such that each pair  $(C_i, C_j)$  is  $\varepsilon$ -regular,  $d_R(C_i) \ge \delta$ , and  $d_B(C_i, C_j) \ge \delta$  for  $i \ne j$ .



#### Definition

A  $(k, \varepsilon, \delta)$ -good configuration is a tuple of disjoint vertex sets  $C_1, ..., C_k$  such that each pair  $(C_i, C_j)$  is  $\varepsilon$ -regular,  $d_R(C_i) \ge \delta$ , and  $d_B(C_i, C_j) \ge \delta$  for  $i \ne j$ .



#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .

Proof sketch:



#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

Let Q be a random monochromatic  $K_k$  sampled as follows.

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

Let Q be a random monochromatic  $K_k$  sampled as follows.

1. Pick red or blue with probability 1/2.

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

Let Q be a random monochromatic  $K_k$  sampled as follows.

- 1. Pick red or blue with probability 1/2.
- 2. If blue, pick a uniform blue spanning  $K_k$  (one vertex in each  $C_i$ ).

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



### Proof sketch:

Let Q be a random monochromatic  $K_k$  sampled as follows.

- 1. Pick red or blue with probability 1/2.
- 2. If blue, pick a uniform blue spanning  $K_k$  (one vertex in each  $C_i$ ).
- 3. If red, pick  $i \in [k]$  uniformly, then a uniform red  $K_k$  in  $C_i$ .

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

Let Q be a random monochromatic  $K_k$  sampled as above. For a vertex v, let  $x_i(v)$  be the fraction of edges to  $C_i$  that are blue. Imagine that all edges among the  $C_i$  are colored randomly.

 $Pr(Q \cup \{v\} \text{ is monochromatic}) =$ 

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

$$\Pr(Q \cup \{v\} \text{ is monochromatic}) = \frac{1}{2} \left( \prod_{i=1}^{k} x_i(v) \right)$$

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

$$\Pr(\mathcal{Q} \cup \{v\} \text{ is monochromatic}) = \frac{1}{2} \left( \prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

$$Pr(Q \cup \{v\} \text{ is monochromatic}) = \frac{1}{2} \left( \prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$
  
Fact:  $\geq 2^{-k}$ .

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

Let Q be a random monochromatic  $K_k$  sampled as above. For a vertex v, let  $x_i(v)$  be the fraction of edges to  $C_i$  that are blue. Imagine that all edges among the  $C_i$  are colored randomly.

$$Pr(Q \cup \{v\} \text{ is monochromatic}) = \frac{1}{2} \left( \prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$
  
Fact:  $> 2^{-k}$ .

If  $\varepsilon \ll 1$ , then  $\varepsilon$ -regularity is "like" randomness.

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

Let Q be a random monochromatic  $K_k$  sampled as above. For a vertex v, let  $x_i(v)$  be the fraction of edges to  $C_i$  that are blue. If  $C_1, ..., C_k$  is a  $(k, \varepsilon, \delta)$ -good configuration,

$$\Pr(\mathcal{Q} \cup \{v\} \text{ is monochromatic}) \approx \frac{1}{2} \left( \prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$
  
Fact:  $> 2^{-k}$ .

If  $\varepsilon \ll 1$ , then  $\varepsilon$ -regularity is "like" randomness.

#### Lemma (Conlon '18, Conlon-Fox-W)

Let  $N = (2^k + \beta)n$  and  $\varepsilon \ll \delta \ll \beta$ . If a coloring of  $K_N$  has a  $(k, \varepsilon, \delta)$ -good configuration, then it contains a monochromatic  $B_n^{(k)}$ .



#### Proof sketch:

Let Q be a random monochromatic  $K_k$  sampled as above. For a vertex v, let  $x_i(v)$  be the fraction of edges to  $C_i$  that are blue. If  $C_1, ..., C_k$  is a  $(k, \varepsilon, \delta)$ -good configuration,

$$\Pr(\mathcal{Q} \cup \{v\} \text{ is monochromatic}) \approx \frac{1}{2} \left( \prod_{i=1}^{k} x_i(v) + \frac{1}{k} \sum_{i=1}^{k} (1 - x_i(v))^k \right)$$
  
Fact:  $> 2^{-k}$ 

If  $\varepsilon \ll 1$ , then  $\varepsilon$ -regularity is "like" randomness. Adding up over all v shows that Q has  $\gtrsim 2^{-k}N$  monochromatic extensions on average  $\Longrightarrow$  monochromatic  $B_n^{(k)}$ .

**Recall:** We wish to prove that  $r(B_n^{(k)}) \le 2^k n + o_k(n)$ .

**Recall:** We wish to prove that  $r(B_n^{(k)}) \leq 2^k n + o_k(n)$ .

Sketch of Conlon's proof.

Let  $N = (2^k + \beta)n$ , and consider a two-coloring of  $E(K_N)$ .

**Recall:** We wish to prove that  $r(B_n^{(k)}) \leq 2^k n + o_k(n)$ .

#### Sketch of Conlon's proof.

Let  $N = (2^k + \beta)n$ , and consider a two-coloring of  $E(K_N)$ . Apply Szemerédi's regularity lemma++ to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

**Recall:** We wish to prove that  $r(B_n^{(k)}) \leq 2^k n + o_k(n)$ .

#### Sketch of Conlon's proof.

Let  $N = (2^k + \beta)n$ , and consider a two-coloring of  $E(K_N)$ . Apply Szemerédi's regularity lemma++ to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.

**Recall:** We wish to prove that  $r(B_n^{(k)}) \leq 2^k n + o_k(n)$ .

#### Sketch of Conlon's proof.

Let  $N = (2^k + \beta)n$ , and consider a two-coloring of  $E(K_N)$ . Apply Szemerédi's regularity lemma++ to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.

To obtain our stronger bound (without the tower-type dependence), we need to avoid invoking the regularity lemma.

**Recall:** We wish to prove that  $r(B_n^{(k)}) \leq 2^k n + o_k(n)$ .

#### Sketch of Conlon's proof.

Let  $N = (2^k + \beta)n$ , and consider a two-coloring of  $E(K_N)$ . Apply Szemerédi's regularity lemma++ to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.

To obtain our stronger bound (without the tower-type dependence), we need to avoid invoking the regularity lemma. Instead, we use much weaker partitioning results, and thus have to work much harder to find a good configuration.

**Recall:** A coloring is quasirandom iff it has few monochromatic  $B_{2^{-k}N+o(N)}^{(k)}$ .

**Recall:** A coloring is quasirandom iff it has few monochromatic  $B_{2^{-k}N+o(N)}^{(k)}$ .

Proof sketch.

Recall the inequality

$$f(x_1,...,x_k) := \frac{1}{2} \left( \prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}.$$

**Recall:** A coloring is quasirandom iff it has few monochromatic  $B_{2^{-k}N+o(N)}^{(k)}$ .

Proof sketch.

Recall the inequality

$$f(x_1,...,x_k) := \frac{1}{2} \left( \prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}.$$

For  $k \ge 3$ ,  $(\frac{1}{2}, ..., \frac{1}{2})$  is the unique minimizer of f on  $[0, 1]^k$ .

**Recall:** A coloring is quasirandom iff it has few monochromatic  $B_{2^{-k}N+o(N)}^{(k)}$ .

Proof sketch.

Recall the inequality

$$f(x_1,...,x_k) := \frac{1}{2} \left( \prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}.$$

For  $k \ge 3$ ,  $(\frac{1}{2}, ..., \frac{1}{2})$  is the unique minimizer of f on  $[0, 1]^k$ . So if some  $x_i$  is far from  $\frac{1}{2}$ , then  $f(x_1, ..., x_k) \ge 2^{-k} + \mu$ .

**Recall:** A coloring is quasirandom iff it has few monochromatic  $B_{2^{-k}N+o(N)}^{(k)}$ .

Proof sketch.

Recall the inequality

$$f(x_1,...,x_k) := \frac{1}{2} \left( \prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}.$$

For  $k \ge 3$ ,  $(\frac{1}{2}, ..., \frac{1}{2})$  is the unique minimizer of f on  $[0, 1]^k$ . So if some  $x_i$  is far from  $\frac{1}{2}$ , then  $f(x_1, ..., x_k) \ge 2^{-k} + \mu$ . Strengthen the key lemma: if some  $C_i$  is not  $\varepsilon$ -regular to the rest of the graph, we can find many monochromatic  $B_{(2^{-k}+\mu)N}^{(k)}$ .

**Recall:** A coloring is quasirandom iff it has few monochromatic  $B_{2^{-k}N+o(N)}^{(k)}$ .

Proof sketch.

Recall the inequality

$$f(x_1,...,x_k) := \frac{1}{2} \left( \prod_{i=1}^k x_i + \frac{1}{k} \sum_{i=1}^k (1-x_i)^k \right) \ge 2^{-k}.$$

For  $k \ge 3$ ,  $(\frac{1}{2}, ..., \frac{1}{2})$  is the unique minimizer of f on  $[0, 1]^k$ . So if some  $x_i$  is far from  $\frac{1}{2}$ , then  $f(x_1, ..., x_k) \ge 2^{-k} + \mu$ . Strengthen the key lemma: if some  $C_i$  is not  $\varepsilon$ -regular to the rest of the graph, we can find many monochromatic  $B_{(2^{-k}+\mu)N}^{(k)}$ . Inductively apply the previous argument to "nibble" out these  $\varepsilon$ -regular pieces, and conclude quasirandomness.

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

Random lower bound Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

Random lower bound Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Deterministic lower bound  $r(B_n^{(k)}, B_{cn}^{(k)}) > k(n + k - 1).$ 

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

Random lower bound

Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Deterministic lower bound  $r(B_n^{(k)}, B_{cn}^{(k)}) > k(n + k - 1).$ 

$$\begin{cases} n+k-1 \text{ vertices} \\ (k=4) \end{cases}$$

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

Random lower bound

Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Deterministic lower bound  $r(B_n^{(k)}, B_{cn}^{(k)}) > k(n + k - 1).$ 

For  $c \ll 1$ , this beats random!

$$\begin{cases} n+k-1 \text{ vertices} \\ (k=4) \end{cases}$$

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

#### Random lower bound

Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Deterministic lower bound  $r(B_n^{(k)}, B_{cn}^{(k)}) > k(n + k - 1).$ 

$$\begin{cases} n+k-1 \text{ vertices} \\ (k=4) \end{cases}$$

For  $c \ll 1$ , this beats random!

Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)

If  $c \leq c_0(k)$ , the deterministic bound is tight.

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

#### Random lower bound

Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Deterministic lower bound  $r(B_n^{(k)}, B_{cn}^{(k)}) > k(n + k - 1).$ 



For  $c \ll 1$ , this beats random!

Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)

If  $c \leq c_0(k),$  the deterministic bound is tight. If  $c \geq c_1(k),$  the random bound is asymptotically tight.

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

#### Random lower bound

Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Deterministic lower bound  $r(B_n^{(k)}, B_{cn}^{(k)}) > k(n + k - 1).$ 

n+k-1 vertices (k=4)

For  $c \ll 1$ , this beats random!

Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)

If  $c \le c_0(k)$ , the deterministic bound is tight. If  $c \ge c_1(k)$ , the random bound is asymptotically tight.

Moreover, the above constructions are essentially unique.

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

### Random lower bound

Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Deterministic lower bound  $r(B_n^{(k)}, B_{cn}^{(k)}) > k(n + k - 1).$ 

For  $c \ll 1$ , this beats random!

$$n+k-1 \text{ vertices}$$

$$(k=4)$$

Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)

If  $c \le c_0(k)$ , the deterministic bound is tight. If  $c \ge c_1(k)$ , the random bound is asymptotically tight. Moreover, the above constructions are essentially unique.

Fix  $k \ge 2$  and  $c \in (0, 1)$ . Instead of the diagonal Ramsey number  $r(B_n^{(k)}, B_n^{(k)})$ , we can study the off-diagonal  $r(B_n^{(k)}, B_{cn}^{(k)})$ .

### Random lower bound

Let  $p = 1/(c^{1/k} + 1)$ . Then  $r(B_n^{(k)}, B_{cn}^{(k)}) \ge p^{-k}n - o_k(n)$ .

Deterministic lower bound  $r(B_n^{(k)}, B_{cn}^{(k)}) > k(n + k - 1).$ 

For  $c \ll 1$ , this beats random!

$$n+k-1 \text{ vertices}$$

$$(k=4)$$

Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)

If  $c \le c_0(k)$ , the deterministic bound is tight. If  $c \ge c_1(k)$ , the random bound is asymptotically tight.

Moreover, the above constructions are essentially unique.

• Book Ramsey numbers are natural and interesting.

- Book Ramsey numbers are natural and interesting.
- There are many connections between  $r(B_n^{(k)})$  and  $r(K_t)$ .

- Book Ramsey numbers are natural and interesting.
- There are many connections between  $r(B_n^{(k)})$  and  $r(K_t)$ .

• If 
$$n = r(K_t, K_{k-t})$$
, then  $r(K_t) \le r(B_n^{(k)})$ .

- Book Ramsey numbers are natural and interesting.
- There are many connections between  $r(B_n^{(k)})$  and  $r(K_t)$ .
  - If  $n = r(K_t, K_{k-t})$ , then  $r(K_t) \le r(B_n^{(k)})$ .
  - Connections to Ramsey goodness and Ramsey multiplicity.

- Book Ramsey numbers are natural and interesting.
- There are many connections between  $r(B_n^{(k)})$  and  $r(K_t)$ .
  - If  $n = r(K_t, K_{k-t})$ , then  $r(K_t) \le r(B_n^{(k)})$ .
  - Connections to Ramsey goodness and Ramsey multiplicity.
  - Extremal colorings are quasirandom; Sós conjectured that the same holds for r(K<sub>t</sub>).

- Book Ramsey numbers are natural and interesting.
- There are many connections between  $r(B_n^{(k)})$  and  $r(K_t)$ .
  - If  $n = r(K_t, K_{k-t})$ , then  $r(K_t) \le r(B_n^{(k)})$ .
  - Connections to Ramsey goodness and Ramsey multiplicity.
  - Extremal colorings are quasirandom; Sós conjectured that the same holds for r(K<sub>t</sub>).
- How does  $r(B_n^{(k)}, B_{cn}^{(k)})$  behave for  $c_0 < c < c_1$ ?

| 0 | roughly <i>k</i> -partite c | ° ??? <sup>c</sup> | <sup>1</sup> quasirandom <sup>1</sup> |
|---|-----------------------------|--------------------|---------------------------------------|
|   |                             |                    |                                       |

- Book Ramsey numbers are natural and interesting.
- There are many connections between  $r(B_n^{(k)})$  and  $r(K_t)$ .
  - If  $n = r(K_t, K_{k-t})$ , then  $r(K_t) \le r(B_n^{(k)})$ .
  - Connections to Ramsey goodness and Ramsey multiplicity.
  - Extremal colorings are quasirandom; Sós conjectured that the same holds for r(K<sub>t</sub>).
- How does  $r(B_n^{(k)}, B_{cn}^{(k)})$  behave for  $c_0 < c < c_1$ ?

| 0 | roughly <i>k</i> -partite <sup>c</sup> | · ??? | <sup>c1</sup> quasirandom 1 |  |
|---|----------------------------------------|-------|-----------------------------|--|
|   |                                        |       | 1                           |  |

$$r(B_n^{(k)}) \leq 2^k n + o_k(n)$$

- Book Ramsey numbers are natural and interesting.
- There are many connections between  $r(B_n^{(k)})$  and  $r(K_t)$ .
  - If  $n = r(K_t, K_{k-t})$ , then  $r(K_t) \le r(B_n^{(k)})$ .
  - Connections to Ramsey goodness and Ramsey multiplicity.
  - Extremal colorings are quasirandom; Sós conjectured that the same holds for r(K<sub>t</sub>).
- How does  $r(B_n^{(k)}, B_{cn}^{(k)})$  behave for  $c_0 < c < c_1$ ?

| 0   | roughly <i>k</i> -partite <sup>c</sup> | ° ??? <sup>c</sup> | <sup>1</sup> quasirandom 1 |  |
|-----|----------------------------------------|--------------------|----------------------------|--|
| . Г |                                        |                    |                            |  |

• Do there exist C > 0,  $\delta > 0$  such that if  $n \ge C^k$ , then

$$r(B_n^{(k)}) \leq (1+\delta)^k 2^k n + 2^k n$$

If this held with  $\delta \ll 1/C$ , it would imply that  $r(K_t) \leq (4 - \varepsilon)^t$ .

- Book Ramsey numbers are natural and interesting.
- There are many connections between  $r(B_n^{(k)})$  and  $r(K_t)$ .
  - If  $n = r(K_t, K_{k-t})$ , then  $r(K_t) \le r(B_n^{(k)})$ .
  - Connections to Ramsey goodness and Ramsey multiplicity.
  - Extremal colorings are quasirandom; Sós conjectured that the same holds for r(K<sub>t</sub>).
- How does  $r(B_n^{(k)}, B_{cn}^{(k)})$  behave for  $c_0 < c < c_1$ ?

| 0 | roughly <i>k</i> -partite <sup>c</sup> | ° ??? <sup>c</sup> | <sup>1</sup> quasirandom <sup>1</sup> | 1 |
|---|----------------------------------------|--------------------|---------------------------------------|---|
|   |                                        |                    |                                       |   |

• Do there exist C > 0,  $\delta > 0$  such that if  $n \ge C^k$ , then

$$r(B_n^{(k)}) \le (1+\delta)^k 2^k n$$
?

If this held with  $\delta \ll 1/C$ , it would imply that  $r(K_t) \leq (4 - \varepsilon)^t$ .

• Thomason conjectured that  $r(B_n^{(k)}) \le 2^k(n+k-2)+2$ .