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“Outside of a dog, a book is a man’s best friend. Inside of a dog, it is too dark to read.”
—Groucho Marx



Ramsey numbers

Given two graphs H1,H2, their Ramsey number r(H1,H2) is the
minimum N such that any red/blue coloring of E(KN) contains a red
H1 or a blue H2. Let r(H) = r(H,H).

Theorem (Erdős 1947, Erdős–Szekeres 1935)
√
2t ≤ r(Kt) ≤ 4t.

Definition (Chung–Graham–Wilson 1989)
A graph G on N vertices is called quasirandom if for all S ⊆ V,
e(S) = 1

2
(|S|
2
)

± o(N2).
This is equivalent to many other notions of being “random-like”.

Conjecture (Sós)
Let N = r(Kt) − 1. If a coloring of KN contains no monochromatic Kt,
then the red and blue graphs are quasirandom as t → ∞.
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Upper bounding r(Kt)

If k < t, in a coloring with no monochromatic Kt, any monochromatic
Kk must lie in fewer than r(Kt,Kt−k)monochromatic Kk+1s.

...

This observation drives every upper bound we have on r(Kt).
Erdős–Szekeres: r(Kt) ≤ 4t, and more generally r(Ks,Kt) ≤

(s+t
s
)
.

Conlon: r(Kt) ≤ t−c log t/ log log t4t.
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Book graphs

Definition
The book graph B(k)

n consists of n copies of Kk+1 joined along a
common Kk.

...
...

Previous observation: if n = r(Kt,Kt−k), then r(Kt) ≤ r(B(k)
n ).

Theorem (Erdős–Faudree–Rousseau–Schelp, Thomason)
2kn − ok(n) ≤ r(B(k)
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Ramsey numbers of books

Theorem (Erdős–Faudree–Rousseau–Schelp, Thomason)
2kn − ok(n) ≤ r(B(k)

n ) ≤ 4kn

+ ok(n)

If t is sufficiently large in terms of k and n = r(Kt,Kt−k), then

r(Kt) ≤ r(B(k)
n ) ≤ 2k+1n ≤ 2k+1

(2t − k
t − k

)
.

If this holds with t = O(k), then we’d get r(Kt) ≤ (4 − ε)t.

…but Conlon’s proof only works if t ≥ 222
. . .2
}
2k4

Conlon conjectured that this dependence was unnecessary.

Theorem (Conlon–Fox–W, 2020)
This holds for t ≥ 222

k4

.
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Quasirandomness

Conjecture (Sós)
Let N = r(Kt) − 1. If a coloring of KN contains no monochromatic Kt,
then the red and blue graphs are quasirandom as t → ∞.

Conjecture (Nikiforov–Rousseau–Schelp)
Fix k ≥ 2 and let N = 2kn − o(n). If a coloring of KN contains no
monochromatic B(k)

n , then the coloring is quasirandom.

Theorem (Conlon–Fox–W, 2020)
Fix k ≥ 2. A coloring of KN with no monochromatic B(k)

2−kN+o(N) is
quasirandom.
A coloring of KN is quasirandom iff at most o(Nk)monochromatic Kk
have more than 2−kN+ o(N) extensions to a monochromatic Kk+1.
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Proof preliminaries

Sets X,Y ⊆ V(G) are called ε-regular if |d(X,Y) − d(X′,Y′)| ≤ ε for all
X′ ⊆ X,Y′ ⊆ Y with |X′| ≥ ε|X|, |Y′| ≥ ε|Y|. Here d is edge density.

Theorem (Szemerédi’s regularity lemma++)
For all ε > 0, there exists M such that for every graph G, there is an
equitable partition V(G) = V1 ⊔ · · · ⊔ Vm with m ≤ M, such that each
Vi is ε-regular with itself and with at least (1 − ε)m other Vj.

Definition
A (k, ε, δ)-good configuration is a tuple of disjoint
vertex sets C1,…,Ck such that each pair (Ci,Cj) is
ε-regular, dR(Ci) ≥ δ, and dB(Ci,Cj) ≥ δ for i ̸= j.
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Key lemma

Definition
A (k, ε, δ)-good configuration is a tuple of
disjoint vertex sets C1,…,Ck such that each
pair (Ci,Cj) is ε-regular, dR(Ci) ≥ δ, and
dB(Ci,Cj) ≥ δ for i ̸= j.
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LetQ be a random monochromatic Kk sampled as follows.
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Let N = (2k + β)n and ε ≪ δ ≪ β. If a coloring
of KN has a (k, ε, δ)-good configuration, then it
contains a monochromatic B(k)
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Proof sketch:
LetQ be a random monochromatic Kk sampled as follows.
1. Pick red or blue with probability 1/2.

2. If blue, pick a uniform blue spanning Kk (one vertex in each Ci).
3. If red, pick i ∈ [k] uniformly, then a uniform red Kk in Ci.
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Proof sketch:
LetQ be a random monochromatic Kk sampled as above.
For a vertex v, let xi(v) be the fraction of edges to Ci that are blue.
Imagine that all edges among the Ci are colored randomly.

Pr(Q ∪ {v} is monochromatic) = 1
2

( k∏
i=1

xi(v) +
1
k

k∑
i=1

(1 − xi(v))k
)

Fact: ≥ 2−k.
If ε ≪ 1, then ε-regularity is “like” randomness.
Adding up over all v shows that Q has ≳ 2−kN monochromatic
extensions on average =⇒ monochromatic B(k)

n .
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For a vertex v, let xi(v) be the fraction of edges to Ci that are blue.
Imagine that all edges among the Ci are colored randomly.
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If ε ≪ 1, then ε-regularity is “like” randomness.
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Ramsey results: proof sketches

Recall: We wish to prove that r(B(k)
n ) ≤ 2kn+ ok(n).

Sketch of Conlon’s proof.
Let N = (2k + β)n, and consider a two-coloring of E(KN). Apply
Szemerédi’s regularity lemma++ to find that either

• The coloring is nearly monochromatic, or
• It contains a good configuration.

Then apply the key lemma.

To obtain our stronger bound (without the tower-type
dependence), we need to avoid invoking the regularity lemma.
Instead, we use much weaker partitioning results, and thus have to
work much harder to find a good configuration.
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Quasirandomness: proof sketch

Recall: A coloring is quasirandom iff it has few monochromatic
B(k)
2−kN+o(N).

Proof sketch.
Recall the inequality

f(x1,…, xk) :=
1
2

( k∏
i=1

xi +
1
k

k∑
i=1

(1 − xi)k
)

≥ 2−k.

For k ≥ 3, (12 ,…, 12 ) is the unique minimizer of f on [0,1]k.
So if some xi is far from 1

2 , then f(x1,…, xk) ≥ 2−k + μ.
Strengthen the key lemma: if some Ci is not ε-regular to the rest of
the graph, we can find many monochromatic B(k)

(2−k+μ)N.
Inductively apply the previous argument to “nibble” out these
ε-regular pieces, and conclude quasirandomness.
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Off-diagonal book Ramsey numbers

Fix k ≥ 2 and c ∈ (0,1). Instead of the diagonal Ramsey number
r(B(k)

n ,B(k)
n ), we can study the off-diagonal r(B(k)

n ,B(k)
cn ).

Random lower bound
Let p = 1/(c1/k + 1). Then r(B(k)

n ,B(k)
cn ) ≥ p−kn − ok(n).

Deterministic lower bound
r(B(k)

n ,B(k)
cn ) > k(n+ k − 1).

For c ≪ 1, this beats random!

}
n+ k − 1 vertices

(k = 4)

Theorem (Nikiforov–Rousseau ’09, Conlon–Fox–W ’20)
If c ≤ c0(k), the deterministic bound is tight. If c ≥ c1(k), the random
bound is asymptotically tight.
Moreover, the above constructions are essentially unique.

c0 c10 1roughly k-partite quasirandom
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Conclusions and open problems

• Book Ramsey numbers are natural and interesting.
• There are many connections between r(B(k)

n ) and r(Kt).

▶ If n = r(Kt,Kk−t), then r(Kt) ≤ r(B(k)
n ).

▶ Connections to Ramsey goodness and Ramsey multiplicity.
▶ Extremal colorings are quasirandom; Sós conjectured that the

same holds for r(Kt).

• How does r(B(k)
n ,B(k)

cn ) behave for c0 < c < c1?
c0 c10 1roughly k-partite quasirandom???

• Do there exist C > 0, δ > 0 such that if n ≥ Ck, then

r(B(k)
n ) ≤

(1+ δ)k

2kn

+ ok(n) ?

If this held with δ ≪ 1/C, it would imply that r(Kt) ≤ (4 − ε)t.

• Thomason conjectured that r(B(k)
n ) ≤ 2k(n+ k − 2) + 2.
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