Ramsey numbers of books and quasirandomness

Yuval Wigderson

Joint work with David Conlon and Jacob Fox

"Outside of a dog, a book is a man's best friend. Inside of a dog, it is too dark to read."
-Groucho Marx

Ramsey numbers

Ramsey numbers

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.

Ramsey numbers

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
\sqrt{2}^{t} \leq r\left(K_{t}\right) \leq 4^{t}
$$

Ramsey numbers

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
\sqrt{2}^{t} \leq r\left(K_{t}\right) \leq 4^{t}
$$

Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all $S \subseteq V$, $e(S)=\frac{1}{2}\binom{|S|}{2} \pm o\left(N^{2}\right)$.

Ramsey numbers

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
\sqrt{2}^{t} \leq r\left(K_{t}\right) \leq 4^{t}
$$

Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all $S \subseteq V$, $e(S)=\frac{1}{2}\binom{|S|}{2} \pm o\left(N^{2}\right)$.
This is equivalent to many other notions of being "random-like".

Ramsey numbers

Given two graphs H_{1}, H_{2}, their Ramsey number $r\left(H_{1}, H_{2}\right)$ is the minimum N such that any red/blue coloring of $E\left(K_{N}\right)$ contains a red H_{1} or a blue H_{2}. Let $r(H)=r(H, H)$.

Theorem (Erdős 1947, Erdős-Szekeres 1935)

$$
\sqrt{2}^{t} \leq r\left(K_{t}\right) \leq 4^{t}
$$

Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all $S \subseteq V$, $e(S)=\frac{1}{2}\binom{|S|}{2} \pm o\left(N^{2}\right)$.
This is equivalent to many other notions of being "random-like".

Conjecture (Sós)

Let $N=r\left(K_{t}\right)-1$. If a coloring of K_{N} contains no monochromatic K_{t}, then the red and blue graphs are quasirandom as $t \rightarrow \infty$.

Upper bounding $r\left(K_{t}\right)$

Upper bounding $r\left(K_{t}\right)$

If $k<t$, in a coloring with no monochromatic K_{t}, any monochromatic K_{k} must lie in fewer than $r\left(K_{t}, K_{t-k}\right)$ monochromatic $K_{k+1} \mathrm{~s}$.

Upper bounding $r\left(K_{t}\right)$

If $k<t$, in a coloring with no monochromatic K_{t}, any monochromatic K_{k} must lie in fewer than $r\left(K_{t}, K_{t-k}\right)$ monochromatic $K_{k+1} \mathrm{~s}$.

This observation drives every upper bound we have on $r\left(K_{t}\right)$.

Upper bounding $r\left(K_{t}\right)$

If $k<t$, in a coloring with no monochromatic K_{t}, any monochromatic K_{k} must lie in fewer than $r\left(K_{t}, K_{t-k}\right)$ monochromatic $K_{k+1} \mathrm{~s}$.

This observation drives every upper bound we have on $r\left(K_{t}\right)$.
Erdős-Szekeres: $r\left(K_{t}\right) \leq 4^{t}$, and more generally $r\left(K_{s}, K_{t}\right) \leq\binom{ s+t}{s}$.

Upper bounding $r\left(K_{t}\right)$

If $k<t$, in a coloring with no monochromatic K_{t}, any monochromatic K_{k} must lie in fewer than $r\left(K_{t}, K_{t-k}\right)$ monochromatic $K_{k+1} \mathrm{~s}$.

This observation drives every upper bound we have on $r\left(K_{t}\right)$.
Erdős-Szekeres: $r\left(K_{t}\right) \leq 4^{t}$, and more generally $r\left(K_{s}, K_{t}\right) \leq\binom{ s+t}{s}$.
Conlon: $r\left(K_{t}\right) \leq t^{-c \log t / \log \log t} 4^{t}$.

Book graphs

Book graphs

Definition

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Book graphs

Definition

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Book graphs

Definition

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Book graphs

Definition

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Previous observation: if $n=r\left(K_{t}, K_{t-k}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.

Book graphs

Definition

The book graph $B_{n}^{(k)}$ consists of n copies of K_{k+1} joined along a common K_{k}.

Previous observation: if $n=r\left(K_{t}, K_{t-k}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 4^{k} n
$$

Ramsey numbers of books

Theorem (Erdős-Faudree-Rousseau-Schelp, Thomason)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 4^{k} n
$$

Ramsey numbers of books

Theorem (Conlon, 2018)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)
$$

Ramsey numbers of books

Theorem (Conlon, 2018)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)
$$

If t is sufficiently large in terms of k and $n=r\left(K_{t}, K_{t-k}\right)$, then

$$
r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)
$$

Ramsey numbers of books

Theorem (Conlon, 2018)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)
$$

If t is sufficiently large in terms of k and $n=r\left(K_{t}, K_{t-k}\right)$, then

$$
r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k+1} n
$$

Ramsey numbers of books

Theorem (Conlon, 2018)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)
$$

If t is sufficiently large in terms of k and $n=r\left(K_{t}, K_{t-k}\right)$, then

$$
r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k+1} n \leq 2^{k+1}\binom{2 t-k}{t-k} .
$$

Ramsey numbers of books

Theorem (Conlon, 2018)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)
$$

If t is sufficiently large in terms of k and $n=r\left(K_{t}, K_{t-k}\right)$, then

$$
r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k+1} n \leq 2^{k+1}\binom{2 t-k}{t-k} .
$$

If this holds with $t=O(k)$, then we'd get $r\left(K_{t}\right) \leq(4-\varepsilon)^{t}$.

Ramsey numbers of books

Theorem (Conlon, 2018)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)
$$

If t is sufficiently large in terms of k and $n=r\left(K_{t}, K_{t-k}\right)$, then

$$
r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k+1} n \leq 2^{k+1}\binom{2 t-k}{t-k} .
$$

If this holds with $t=O(k)$, then we'd get $r\left(K_{t}\right) \leq(4-\varepsilon)^{t}$.
...but Conlon's proof only works if $\left.t \geq 2^{2^{2^{\cdot .^{2}}}}\right\} 2^{k^{4}}$

Ramsey numbers of books

Theorem (Conlon, 2018)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)
$$

If t is sufficiently large in terms of k and $n=r\left(K_{t}, K_{t-k}\right)$, then

$$
r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k+1} n \leq 2^{k+1}\binom{2 t-k}{t-k} .
$$

If this holds with $t=O(k)$, then we'd get $r\left(K_{t}\right) \leq(4-\varepsilon)^{t}$.
...but Conlon's proof only works if $\left.t \geq 2^{2^{2 \cdot .^{2}}}\right\} 2^{k^{4}}$
Conlon conjectured that this dependence was unnecessary.

Ramsey numbers of books

Theorem (Conlon, 2018)

$$
2^{k} n-o_{k}(n) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)
$$

If t is sufficiently large in terms of k and $n=r\left(K_{t}, K_{t-k}\right)$, then

$$
r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right) \leq 2^{k+1} n \leq 2^{k+1}\binom{2 t-k}{t-k} .
$$

If this holds with $t=O(k)$, then we'd get $r\left(K_{t}\right) \leq(4-\varepsilon)^{t}$.
...but Conlon's proof only works if $\left.t \geq 2^{2^{2 \cdot}}\right\} 2^{k^{4}}$
Conlon conjectured that this dependence was unnecessary.
Theorem (Conlon-Fox-W, 2020)
This holds for $t \geq 2^{2^{2^{k^{4}}}}$.

Quasirandomness

Quasirandomness

Conjecture (Sós)

Let $N=r\left(K_{t}\right)$ - 1. If a coloring of K_{N} contains no monochromatic K_{t}, then the red and blue graphs are quasirandom as $t \rightarrow \infty$.

Quasirandomness

Conjecture (Sós)

Let $N=r\left(K_{t}\right)-1$. If a coloring of K_{N} contains no monochromatic K_{t}, then the red and blue graphs are quasirandom as $t \rightarrow \infty$.

Conjecture (Nikiforov-Rousseau-Schelp)

Fix $k \geq 2$ and let $N=2^{k} n-o(n)$. If a coloring of K_{N} contains no monochromatic $B_{n}^{(k)}$, then the coloring is quasirandom.

Quasirandomness

Conjecture (Sós)

Let $N=r\left(K_{t}\right)-1$. If a coloring of K_{N} contains no monochromatic K_{t}, then the red and blue graphs are quasirandom as $t \rightarrow \infty$.

Conjecture (Nikiforov-Rousseau-Schelp)

Fix $k \geq 2$ and let $N=2^{k} n-o(n)$. If a coloring of K_{N} contains no monochromatic $B_{n}^{(k)}$, then the coloring is quasirandom.

Theorem (Conlon-Fox-W, 2020)

Fix $k \geq 2$. A coloring of K_{N} with no monochromatic $B_{2^{-k} N+o(N)}^{(k)}$ is quasirandom.

Quasirandomness

Conjecture (Sós)

Let $N=r\left(K_{t}\right)-1$. If a coloring of K_{N} contains no monochromatic K_{t}, then the red and blue graphs are quasirandom as $t \rightarrow \infty$.

Conjecture (Nikiforov-Rousseau-Schelp)

Fix $k \geq 2$ and let $N=2^{k} n-o(n)$. If a coloring of K_{N} contains no monochromatic $B_{n}^{(k)}$, then the coloring is quasirandom.

Theorem (Conlon-Fox-W, 2020)

Fix $k \geq 2$. A coloring of K_{N} with no monochromatic $B_{2^{-k} N+o(N)}^{(k)}$ is quasirandom.
A coloring of K_{N} is quasirandom iff at most o $\left(N^{k}\right)$ monochromatic K_{k} have more than $2^{-k} N+o(N)$ extensions to a monochromatic K_{k+1}.

Proof preliminaries

Proof preliminaries

Sets $X, Y \subseteq V(G)$ are called ε-regular if $\left|d(X, Y)-d\left(X^{\prime}, Y^{\prime}\right)\right| \leq \varepsilon$ for all $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$ with $\left|X^{\prime}\right| \geq \varepsilon|X|,\left|Y^{\prime}\right| \geq \varepsilon|Y|$. Here d is edge density.

Proof preliminaries

Sets $X, Y \subseteq V(G)$ are called ε-regular if $\left|d(X, Y)-d\left(X^{\prime}, Y^{\prime}\right)\right| \leq \varepsilon$ for all $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$ with $\left|X^{\prime}\right| \geq \varepsilon|X|,\left|Y^{\prime}\right| \geq \varepsilon|Y|$. Here d is edge density.

Theorem (Szemerédi's regularity lemma++)

For all $\varepsilon>0$, there exists M such that for every graph G, there is an equitable partition $V(G)=V_{1} \sqcup \cdots \sqcup V_{m}$ with $m \leq M$, such that each V_{i} is ε-regular with itself and with at least $(1-\varepsilon) m$ other V_{j}.

Proof preliminaries

Sets $X, Y \subseteq V(G)$ are called ε-regular if $\left|d(X, Y)-d\left(X^{\prime}, Y^{\prime}\right)\right| \leq \varepsilon$ for all $X^{\prime} \subseteq X, Y^{\prime} \subseteq Y$ with $\left|X^{\prime}\right| \geq \varepsilon|X|,\left|Y^{\prime}\right| \geq \varepsilon|Y|$. Here d is edge density.

Theorem (Szemerédi's regularity lemma++)

For all $\varepsilon>0$, there exists M such that for every graph G, there is an equitable partition $V(G)=V_{1} \sqcup \cdots \sqcup V_{m}$ with $m \leq M$, such that each V_{i} is ε-regular with itself and with at least $(1-\varepsilon) m$ other V_{j}.

Definition

A (k, ε, δ)-good configuration is a tuple of disjoint vertex sets C_{1}, \ldots, C_{k} such that each pair $\left(C_{i}, C_{j}\right)$ is ε-regular, $d_{R}\left(C_{i}\right) \geq \delta$, and $d_{B}\left(C_{i}, C_{j}\right) \geq \delta$ for $i \neq j$.

Key lemma

Definition

A (k, ε, δ)-good configuration is a tuple of disjoint vertex sets C_{1}, \ldots, C_{k} such that each pair $\left(C_{i}, C_{j}\right)$ is ε-regular, $d_{R}\left(C_{i}\right) \geq \delta$, and $d_{B}\left(C_{i}, C_{j}\right) \geq \delta$ for $i \neq j$.

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:
Let Q be a random monochromatic K_{k} sampled as follows.

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:
Let Q be a random monochromatic K_{k} sampled as follows.

1. Pick red or blue with probability $1 / 2$.

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as follows.

1. Pick red or blue with probability $1 / 2$.
2. If blue, pick a uniform blue spanning K_{k} (one vertex in each C_{i}).

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as follows.

1. Pick red or blue with probability $1 / 2$.
2. If blue, pick a uniform blue spanning K_{k} (one vertex in each C_{i}).
3. If red, pick $i \in[k]$ uniformly, then a uniform red K_{k} in C_{i}.

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as above. For a vertex v, let $x_{i}(v)$ be the fraction of edges to C_{i} that are blue. Imagine that all edges among the C_{i} are colored randomly.

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as above. For a vertex v, let $x_{i}(v)$ be the fraction of edges to C_{i} that are blue. Imagine that all edges among the C_{i} are colored randomly.
$\operatorname{Pr}(Q \cup\{v\}$ is monochromatic $)=$

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as above. For a vertex v, let $x_{i}(v)$ be the fraction of edges to C_{i} that are blue. Imagine that all edges among the C_{i} are colored randomly.

$$
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic })=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)\right.
$$

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as above. For a vertex v, let $x_{i}(v)$ be the fraction of edges to C_{i} that are blue. Imagine that all edges among the C_{i} are colored randomly.

$$
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic })=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right)
$$

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)

Let $N=\left(2^{k}+\beta\right)$ n and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as above. For a vertex v, let $x_{i}(v)$ be the fraction of edges to C_{i} that are blue. Imagine that all edges among the C_{i} are colored randomly.

$$
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic })=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right)
$$

$$
\text { Fact: } \quad \geq 2^{-k}
$$

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as above. For a vertex v, let $x_{i}(v)$ be the fraction of edges to C_{i} that are blue. Imagine that all edges among the C_{i} are colored randomly.

$$
\begin{aligned}
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic }) & =\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right) \\
\quad \text { Fact: } & \geq 2^{-k} .
\end{aligned}
$$

If $\varepsilon \ll 1$, then ε-regularity is "like" randomness.

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)
Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)$ be the fraction of edges to C_{i} that are blue.
If C_{1}, \ldots, C_{k} is a (k, ε, δ)-good configuration,

$$
\begin{aligned}
& \operatorname{Pr}(\mathrm{Q} \cup\{v\} \text { is monochromatic }) \approx \frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right) \\
& \quad \text { Fact: } \quad \geq 2^{-k} .
\end{aligned}
$$

If $\varepsilon \ll 1$, then ε-regularity is "like" randomness.

Key lemma

Lemma (Conlon '18, Conlon-Fox-W)

Let $N=\left(2^{k}+\beta\right) n$ and $\varepsilon \ll \delta \ll \beta$. If a coloring of K_{N} has a (k, ε, δ)-good configuration, then it contains a monochromatic $B_{n}^{(k)}$.

Proof sketch:

Let Q be a random monochromatic K_{k} sampled as above.
For a vertex v, let $x_{i}(v)$ be the fraction of edges to C_{i} that are blue.
If C_{1}, \ldots, C_{k} is a (k, ε, δ)-good configuration,

$$
\operatorname{Pr}(Q \cup\{v\} \text { is monochromatic }) \approx \frac{1}{2}\left(\prod_{i=1}^{k} x_{i}(v)+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}(v)\right)^{k}\right)
$$

$$
\text { Fact: } \quad \geq 2^{-k}
$$

If $\varepsilon \ll 1$, then ε-regularity is "like" randomness. Adding up over all v shows that Q has $\gtrsim 2^{-k} N$ monochromatic extensions on average \Longrightarrow monochromatic $B_{n}^{(k)}$.

Ramsey results: proof sketches

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.
Sketch of Conlon's proof.
Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.
Sketch of Conlon's proof.
Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$. Apply Szemerédi's regularity lemma++ to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.
Sketch of Conlon's proof.
Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$. Apply
Szemerédi's regularity lemma++ to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.
Sketch of Conlon's proof.
Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$. Apply Szemerédi's regularity lemma++ to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.
To obtain our stronger bound (without the tower-type dependence), we need to avoid invoking the regularity lemma.

Ramsey results: proof sketches

Recall: We wish to prove that $r\left(B_{n}^{(k)}\right) \leq 2^{k} n+o_{k}(n)$.
Sketch of Conlon's proof.
Let $N=\left(2^{k}+\beta\right) n$, and consider a two-coloring of $E\left(K_{N}\right)$. Apply Szemerédi's regularity lemma++ to find that either

- The coloring is nearly monochromatic, or
- It contains a good configuration.

Then apply the key lemma.
To obtain our stronger bound (without the tower-type dependence), we need to avoid invoking the regularity lemma. Instead, we use much weaker partitioning results, and thus have to work much harder to find a good configuration.

Quasirandomness: proof sketch

Quasirandomness: proof sketch

Recall: A coloring is quasirandom iff it has few monochromatic $B_{2-k N+o(N)}^{(k)}$.

Quasirandomness: proof sketch

Recall: A coloring is quasirandom iff it has few monochromatic $B_{2-k N+o(N)}^{(k)}$.

Proof sketch.
Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k}
$$

Quasirandomness: proof sketch

Recall: A coloring is quasirandom iff it has few monochromatic $B_{2-k N+o(N)}^{(k)}$.

Proof sketch.
Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k}
$$

For $k \geq 3,\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is the unique minimizer of f on $[0,1]^{k}$.

Quasirandomness: proof sketch

Recall: A coloring is quasirandom iff it has few monochromatic $B_{2-k N+o(N)}^{(k)}$.

Proof sketch.
Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k}
$$

For $k \geq 3,\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is the unique minimizer of f on $[0,1]^{k}$. So if some x_{i} is far from $\frac{1}{2}$, then $f\left(x_{1}, \ldots, x_{k}\right) \geq 2^{-k}+\mu$.

Quasirandomness: proof sketch

Recall: A coloring is quasirandom iff it has few monochromatic $B_{2-k N+o(N)}^{(k)}$.

Proof sketch.

Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k}
$$

For $k \geq 3,\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is the unique minimizer of f on $[0,1]^{k}$.
So if some x_{i} is far from $\frac{1}{2}$, then $f\left(x_{1}, \ldots, x_{k}\right) \geq 2^{-k}+\mu$. Strengthen the key lemma: if some C_{i} is not ε-regular to the rest of the graph, we can find many monochromatic $B_{\left(2^{-k}+\mu\right) N}^{(k)}$.

Quasirandomness: proof sketch

Recall: A coloring is quasirandom iff it has few monochromatic $B_{2-k N+o(N)}^{(k)}$.

Proof sketch.

Recall the inequality

$$
f\left(x_{1}, \ldots, x_{k}\right):=\frac{1}{2}\left(\prod_{i=1}^{k} x_{i}+\frac{1}{k} \sum_{i=1}^{k}\left(1-x_{i}\right)^{k}\right) \geq 2^{-k}
$$

For $k \geq 3,\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$ is the unique minimizer of f on $[0,1]^{k}$.
So if some x_{i} is far from $\frac{1}{2}$, then $f\left(x_{1}, \ldots, x_{k}\right) \geq 2^{-k}+\mu$. Strengthen the key lemma: if some C_{i} is not ε-regular to the rest of the graph, we can find many monochromatic $B_{(2-k+\mu) N}^{(k)}$. Inductively apply the previous argument to "nibble" out these ε-regular pieces, and conclude quasirandomness.

Off-diagonal book Ramsey numbers

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound
Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound
Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.
Deterministic lower bound $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)>k(n+k-1)$.

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound
Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.
Deterministic lower bound $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)>k(n+k-1)$.

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound
Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.
Deterministic lower bound $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)>k(n+k-1)$.
$\left\{\begin{array}{c}n+k-1 \text { vertices } \\ (k=4)\end{array}\right.$
For $c \ll 1$, this beats random!

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound
Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.
Deterministic lower bound $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)>k(n+k-1)$.

For $c \ll 1$, this beats random!
Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)
If $c \leq c_{0}(k)$, the deterministic bound is tight.

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound
Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.
Deterministic lower bound $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)>k(n+k-1)$.

For $c \ll 1$, this beats random!
Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)
If $c \leq c_{0}(k)$, the deterministic bound is tight. If $c \geq c_{1}(k)$, the random bound is asymptotically tight.

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound
Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.
Deterministic lower bound $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)>k(n+k-1)$.

For $c \ll 1$, this beats random!
Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)
If $c \leq c_{0}(k)$, the deterministic bound is tight. If $c \geq c_{1}(k)$, the random bound is asymptotically tight.
Moreover, the above constructions are essentially unique.

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound
Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.
Deterministic lower bound $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)>k(n+k-1)$.

For $c \ll 1$, this beats random!
Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)
If $c \leq c_{0}(k)$, the deterministic bound is tight. If $c \geq c_{1}(k)$, the random bound is asymptotically tight. Moreover, the above constructions are essentially unique.

Off-diagonal book Ramsey numbers

Fix $k \geq 2$ and $c \in(0,1)$. Instead of the diagonal Ramsey number $r\left(B_{n}^{(k)}, B_{n}^{(k)}\right)$, we can study the off-diagonal $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$.
Random lower bound Let $p=1 /\left(c^{1 / k}+1\right)$. Then $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right) \geq p^{-k} n-o_{k}(n)$.

Deterministic lower bound $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)>k(n+k-1)$.

For $c \ll 1$, this beats random!
Theorem (Nikiforov-Rousseau '09, Conlon-Fox-W '20)
If $c \leq c_{0}(k)$, the deterministic bound is tight. If $c \geq c_{1}(k)$, the random bound is asymptotically tight. Moreover, the above constructions are essentially unique.

Conclusions and open problems

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey goodness and Ramsey multiplicity.

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey goodness and Ramsey multiplicity.
- Extremal colorings are quasirandom; Sós conjectured that the same holds for $r\left(K_{t}\right)$.

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey goodness and Ramsey multiplicity.
- Extremal colorings are quasirandom; Sós conjectured that the same holds for $r\left(K_{t}\right)$.
- How does $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$ behave for $c_{0}<c<c_{1}$?

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey goodness and Ramsey multiplicity.
- Extremal colorings are quasirandom; Sós conjectured that the same holds for $r\left(K_{t}\right)$.
- How does $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$ behave for $c_{0}<c<c_{1}$?

$$
r\left(B_{n}^{(k)}\right) \leq \quad 2^{k} n+o_{k}(n)
$$

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey goodness and Ramsey multiplicity.
- Extremal colorings are quasirandom; Sós conjectured that the same holds for $r\left(K_{t}\right)$.
- How does $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$ behave for $c_{0}<c<c_{1}$?

- Do there exist $C>0, \delta>0$ such that if $n \geq C^{k}$, then

$$
r\left(B_{n}^{(k)}\right) \leq(1+\delta)^{k} 2^{k} n+\text { O }^{x}(1) ?
$$

If this held with $\delta \ll 1 / C$, it would imply that $r\left(K_{t}\right) \leq(4-\varepsilon)^{t}$.

Conclusions and open problems

- Book Ramsey numbers are natural and interesting.
- There are many connections between $r\left(B_{n}^{(k)}\right)$ and $r\left(K_{t}\right)$.
- If $n=r\left(K_{t}, K_{k-t}\right)$, then $r\left(K_{t}\right) \leq r\left(B_{n}^{(k)}\right)$.
- Connections to Ramsey goodness and Ramsey multiplicity.
- Extremal colorings are quasirandom; Sós conjectured that the same holds for $r\left(K_{t}\right)$.
- How does $r\left(B_{n}^{(k)}, B_{c n}^{(k)}\right)$ behave for $c_{0}<c<c_{1}$?

- Do there exist $C>0, \delta>0$ such that if $n \geq C^{k}$, then

$$
r\left(B_{n}^{(k)}\right) \leq(1+\delta)^{k} 2^{k} n
$$

If this held with $\delta \ll 1 / C$, it would imply that $r\left(K_{t}\right) \leq(4-\varepsilon)^{t}$.

- Thomason conjectured that $r\left(B_{n}^{(k)}\right) \leq 2^{k}(n+k-2)+2$.

