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“Outside of a dog, a book is a man’s best friend. Inside of a dog, it is too dark to read.”
—Groucho Marx



Ramsey numbers



Ramsey numbers

Given two graphs Hq, Hy, their Ramsey number r(H;, H,) is the
minimum N such that any red/blue coloring of E(Ky) contains a red
H ora blue Hy. Letr(H) = r(H, H).



Ramsey numbers

Given two graphs Hq, Hy, their Ramsey number r(H;, H,) is the
minimum N such that any red/blue coloring of E(Ky) contains a red
H ora blue Hy. Letr(H) = r(H, H).

Theorem (Erd8s 1947, Erd&s-Szekeres 1935)
V2 <r(K) < 4.



Ramsey numbers

Given two graphs Hq, Hy, their Ramsey number r(H;, H,) is the
minimum N such that any red/blue coloring of E(Ky) contains a red
H ora blue Hy. Letr(H) = r(H, H).

Theorem (Erd8s 1947, Erd&s-Szekeres 1935)
V2 <r(K) < 4.

Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all S C V,
e(S) = 3(5) £ o(N?).



Ramsey numbers

Given two graphs Hq, Hy, their Ramsey number r(H;, H,) is the
minimum N such that any red/blue coloring of E(Ky) contains a red
H ora blue Hy. Letr(H) = r(H, H).

Theorem (Erd8s 1947, Erd&s-Szekeres 1935)
V2 <r(K,) < 4.

Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all S C V,
e(S) = 3(5) £ o(N?).
This is equivalent to many other notions of being “random-like”.



Ramsey numbers

Given two graphs Hq, Hy, their Ramsey number r(H;, H,) is the
minimum N such that any red/blue coloring of E(Ky) contains a red
H ora blue Hy. Letr(H) = r(H, H).

Theorem (Erd8s 1947, Erd&s-Szekeres 1935)
V2 <r(K,) < 4.

Definition (Chung-Graham-Wilson 1989)

A graph G on N vertices is called quasirandom if for all S C V,
e(S) = 3(5) £ o(N?).
This is equivalent to many other notions of being “random-like”.

Conjecture (S6s)
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Ki must lie in fewer than r(K, K;_x) monochromatic K 1s.

This observation drives every upper bound we have on r(K;).
Erdés-Szekeres: r(K;) < 4%, and more generally r(K,, K;) < (°).
Conlon: r(K;) < t=clogt/leglogtgt,
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If this holds with t = O(k), then we'd get r(K;) < (4 —¢)".

_.'2 k4
...but Conlon’s proof only works if t > 22 }2

Conlon conjectured that this dependence was unnecessary.
Theorem (Conlon-Fox-W, 2020)

4
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Conjecture (So6s)

Let N = r(K;) — 1. If a coloring of Ky contains no monochromatic K,
then the red and blue graphs are quasirandom as t — oo.

Conjecture (Nikiforov-Rousseau-Schelp)

Fix k > 2 and let N = 2kn — o(n). If a coloring of Ky contains no
monochromatic BY, then the coloring is quasirandom.

Theorem (Conlon-Fox-W, 2020)
(k)

Fix k > 2. A coloring of Ky with no monochromatic Bz—kN+o(N) is
quasirandom.

A coloring of Ky is quasirandom iff at most o(N¥) monochromatic K
have more than 27N + o(N) extensions to a monochromatic Ki_1.
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For all € > O, there exists M such that for every graph G, there is an
equitable partition V(G) = V1 U --- UV, with m < M, such that each
Vi is e-regular with itself and with at least (1 — )m other V,.

Definition )

A (k, &, 6)-good configuration is a tuple of disjoint v
vertex sets Cy, ..., Cy such that each pair (C;, ) is
e-regular, dr(Cj) > &, and dp(C;, C;) > & fori #.



Key lemma

Definition

A (k, &, 6)-good configuration is a tuple of
disjoint vertex sets Cy, ..., C such that each
pair (C;, C;) is e-regular, dg(C;) > &, and
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Lemma (Conlon 18, Conlon-Fox-W)

Let N = (2K 4+ B)nand e < & < B. If a coloring ‘

of Ky has a (k, g, §)-good configuration, then it )
contains a monochromatic B,(,k) v

Proof sketch:
Let Q be a random monochromatic K, sampled as above.
For a vertex v, let x;(v) be the fraction of edges to C; that are blue.

If Cq,...,Cris a (kg 6)-good configuration,
k

k
Pr(Q U {v} is monochromatic) ~ % <Hx,~( Z (1 —xi(v )

i=1
Fact: > 27k
If e < 1, then e-regularity is "like” randomness.
Adding up over all v shows that Q has 2> 2N monochromatic
extensions on average = monochromatic B,(f).
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Recall: We wish to prove that r(B,(,k)) < 2%n + og(n).

Sketch of Conlon'’s proof.
Let N = (2 + B)n, and consider a two-coloring of E(Ky). Apply
Szemerédi's regularity lemma++ to find that either
® The coloring is nearly monochromatic, or
® |t contains a good configuration.
Then apply the key lemma.

To obtain our stronger bound (without the tower-type
dependence), we need to avoid invoking the regularity lemma.

Instead, we use much weaker partitioning results, and thus have to
work much harder to find a good configuration.
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Recall: A coloring is quasirandom iff it has few monochromatic

(k)
B 2=kN+o(N)"

Proof sketch.
Recall the inequality

k k
1
f(X1, e X)) = > <HX,‘+ EZ (1 —x; k) > D

Fork >3, (3, ..., %) is the unique minimizer of f on [0, 1].
So if some x; is far from cthen f(xq, ..., xx) > 2=k 4 78
Strengthen the key Iemma if some C; is not e-regular to the rest of

the graph, we can find many monochromatic B(2 kN
Inductively apply the previous argument to * nlbble out these

e-regular pieces, and conclude quasirandomness.
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Off-diagonal book Ramsey numbers

Fixk > 2 and c € (0, 1). Instead of the diagonal Ramsey number

r(Bf,k), Bﬁ,k)), we can study the off-diagonal r(Bﬁk), Bg’f,)).

Random lower bound
K

Letp = 1/(c'/% + 1). Then r(B{, BY) > p=*n — ox(n).

Deterministic lower bound }n + k — 1 vertices
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e Book Ramsey numbers are natural and interesting.

e There are many connections between r(B,gk)) and r(K;).

> 1fn = r(K, Ki_y), then r(K;) < r(B).

» Connections to Ramsey goodness and Ramsey multiplicity.

» Extremal colorings are quasirandom; Sés conjectured that the
same holds for r(K;).

How does r(B,(,k), Béf,)) behave forcg < c < ¢1?
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Do there exist C > 0,8 > 0 such that if n > Ck, then
r(BY) < (1 +8)%2%n ?

If this held with 6 < 1/C, it would imply that r(K;) < (4 — €)',
Thomason conjectured that r(Bﬁk)) <2Kn+k—2)+2.



