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UPPER BOUNDS ON DIAGONAL RAMSEY NUMBERS
[after Campos, Griffiths, Morris, and Sahasrabudhe]

by Yuval Wigderson

1. Introduction

Ramsey theory is a branch of combinatorics that studies order and disorder. The
underlying mantra of the field, as articulated by Theodore Motzkin, is that “com-
plete disorder is impossible”—any sufficiently large system must have a large, highly
structured subsystem. The prototypical example of a Ramsey-theoretic statement is
Ramsey’s theorem, from which the field derives its name.

Theorem 1.1 (Ramsey, 1929). — For every integer k ⩾ 2, there exists some positive
integer N such that any two-coloring of the edges of the complete graph(1) KN contains
a monochromatic Kk.

In other words, no matter how we assign the edges of KN a color, say red or blue,
we can always find k vertices such that all edges between them receive the same color.
That is, any such coloring, no matter how unstructured, contains a highly structured
subcoloring. Even this simple statement has some remarkable consequences. For exam-
ple, Schur (1917) used Theorem 1.1(2) to prove that for all sufficiently large primes p,
there exist non-trivial solutions to the equation xn + yn ≡ zn (mod p), that is, that one
cannot prove Fermat’s last theorem via a local-global argument.

Connections and applications to other fields of mathematics have been an important
feature of Ramsey theory from the very beginning. Ramsey himself had an application
in mathematical logic in mind when he proved Theorem 1.1 (indeed, his paper is titled
“On a problem of formal logic”). The influential paper of Erdős and Szekeres (1935),
which helped establish Ramsey theory as a central branch of combinatorics, is titled
“A combinatorial problem in geometry”; in it, they reproved Theorem 1.1 in order to
deduce a result on convex polygons among sets of points in Euclidean space.

(1)Recall that the complete graph KN has N vertices, and all of the
(

N
2
)

possible edges are present.
(2)Alert readers may note that Schur’s result precedes Ramsey’s by more than a decade. In fact, Schur
proved a closely related lemma, which one can now recognize as a consequence of Theorem 1.1, and
derived his theorem from that lemma.
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Today, Ramsey-theoretic theorems and techniques are of fundamental importance in
many different fields, including additive number theory, Banach space theory, discrete
geometry, ergodic theory, group theory, and theoretical computer science. These are
deep and rich connections, and are difficult to adequately summarize, so we refer to
the book of Graham, Rothschild, and Spencer (1990), to the survey of Conlon, Fox,
and Sudakov (2015), and to the lecture notes of Wigderson (2024) for more in-depth
introductions to the field.

For many applications, such as those of Schur (1917) in number theory, Ramsey
(1929) in logic, and Erdős and Szekeres (1935) in geometry mentioned above, qualitative
statements such as Theorem 1.1 suffice. However, much of the modern research in
Ramsey theory is concerned with quantitative statements: how large is the integer N

in Theorem 1.1 as a function of k? Formally, we make the following definition.

Definition 1.2. — The Ramsey number r(k) is the least integer N such that every
two-coloring of the edges of KN contains a monochromatic Kk.

Before continuing with the discussion of what is known about the function r(k), let
us pause and ask why we should study such quantitative questions, when qualitative
statements like Theorem 1.1 are elegant and already suffice for many applications.
There are several answers to this question. One answer is that for certain applications,
especially in fields such as theoretical computer science (e.g. the lower bound of Razborov
(1985) on monotone circuit complexity), qualitative statements are not sufficient, as
the application itself is quantitative. A second answer is that a better quantitative
understanding of Ramsey-theoretic results can yield new insights and new proofs of
existing theorems. For example, recent breakthroughs on the quantitative aspects of the
Ramsey-theoretic theorem of Roth (1953), due to Bloom and Sisask (2020) and Kelley
and Meka (2023) (see also the exposé of Peluse (2022)), imply that the primes contain
infinitely many three-term arithmetic progressions. This result was first proved by van
der Corput (1939), and is a special case of the landmark result of Green and Tao (2008).
However, in contrast to these earlier proofs, we now know that the primes contain
infinitely many three-term arithmetic progressions simply because there are many prime
numbers. That is, the quantitative improvements yielded a new proof of this theorem,
using essentially no properties of the primes other than their density. Finally, and no
less importantly, a third reason for studying such quantitative questions is that doing
so can reveal a world of deep and beautiful mathematics.

With that said, let us turn to the quantitative aspects of Theorem 1.1, that is, to
the determination of the function r(k) from Definition 1.2. The exact value of r(k)
is only known for k ⩽ 4, and it currently seems completely hopeless(3) to obtain an

(3)The following famous anecdote was reported by Spencer (1994): “Erdős asks us to imagine an
alien force, vastly more powerful than us, landing on Earth and demanding the value of r(5) or they
will destroy our planet. In that case, he claims, we should marshal all our computers and all our
mathematicians and attempt to find the value. But suppose, instead, that they ask for r(6). In
that case, he believes, we should attempt to destroy the aliens.” Indeed, results of Exoo (1989) and
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exact formula for r(k), so let us content ourselves with asymptotic bounds as k → ∞.
Essentially every proof of Theorem 1.1 yields (at least implicitly) an upper bound on
r(k), by proving the existence of some integer N . The original proof of Ramsey (1929)
gave a bound of r(k) ⩽ k!, but Ramsey wrote “I have little doubt that [this upper
bound is] far larger than is necessary”. Indeed, a few years later, Erdős and Szekeres
(1935) proved the following stronger bound.

Theorem 1.3 (Erdős and Szekeres, 1935). — r(k) ⩽ 4k for every k ⩾ 2.

For about a decade, it was believed that this bound was also far larger than is
necessary, namely that r(k) should grow subexponentially as a function of k. However,
Erdős (1947) dispelled this belief by proving(4) an exponential lower bound.

Theorem 1.4 (Erdős, 1947). — r(k) ⩾
√

2 k for every k ⩾ 2.

After this breakthrough, progress stalled for 75 years. There were a number of
improvements to these bounds over the years, including important results of Spencer
(1975), Graham and Rödl (1987), Thomason (1988), Conlon (2009), and Sah (2023), but
all of these improvements only affected the lower-order terms, and did not improve either
of the exponential constants

√
2 and 4. This impasse finally ended with a breakthrough

of Campos, Griffiths, Morris, and Sahasrabudhe (2023).

Theorem 1.5 (Campos, Griffiths, Morris, and Sahasrabudhe, 2023)
There exists a constant δ > 0 such that r(k) ⩽ (4 − δ)k for all k ⩾ 2. Concretely,

r(k) ⩽ 3.993k for all sufficiently large k.

The exact constant 3.993 is not particularly important, and a more careful analysis of
the same proof yields a slightly better bound(5). The important thing about this result
is that it is the first result, after almost 90 years of intense study, to break the barrier
of 4k.

The new tool introduced by Campos, Griffiths, Morris, and Sahasrabudhe (2023) is the
so-called book algorithm, an elementary but ingenious technique for finding monochro-
matic book graphs in colorings of KN . As we will shortly discuss, a book graph is a
basic graph-theoretic object, whose study turns out to be closely connected to the study
of Ramsey numbers. Every known proof of Theorem 1.1 uses, implicitly or explicitly,
monochromatic book graphs.

Angeltveit and McKay (2024) show that r(5) lies takes on one of the four values {43, 44, 45, 46}, but
we remain very far from knowing the value of r(6).
(4)Lower bounds on Ramsey numbers are somewhat beyond the scope of this exposé, so we will not
discuss the proof of Theorem 1.4 in detail. However, it would be remiss not to mention that this
beautiful proof is extraordinarily influential, and is the origin of the probabilistic method, an extremely
powerful technique in modern combinatorics.
(5)More recently, Gupta, Ndiaye, Norin, and Wei (2024) recast the proof of Theorem 1.5 in a different
language, which allowed them to optimize the technique and obtain a much stronger bound of r(k) ⩽
3.8k for sufficiently large k.
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As we will see, the proof of Campos, Griffiths, Morris, and Sahasrabudhe (2023) is
fairly ad hoc, and relies on the verification of certain complicated numerical inequalities.
More recently, however, a new, more conceptual proof of Theorem 1.5(6) was found by
Balister et al. (2024). They introduced a modification of the book algorithm, but their
crucial new input is a purely geometric lemma, concerning the correlations of probability
distributions in high-dimensional Euclidean space. While the proof of Campos, Griffiths,
Morris, and Sahasrabudhe (2023) and Balister et al. (2024) have many features in
common, they differ in key ways, and we will sketch both proofs.

The rest of this exposé is dedicated to discussing these two proofs of Theorem 1.5,
and is organized as follows. We begin in Section 2 with a proof of Theorem 1.3, in the
course of which we introduce book graphs as well as several of the key ideas that go into
the proof of Theorem 1.5. In Section 3, we introduce and analyze the book algorithm
of Campos, Griffiths, Morris, and Sahasrabudhe (2023), and will then fail to prove
Theorem 1.5. Luckily, we will rescue the argument and complete the proof in Section 4
by introducing two additional ingredients. In Section 5 we introduce and analyze the
symmetric book algorithm of Balister et al. (2024), and use it to give another proof of
Theorem 1.5. The key new lemma introduced by Balister et al. (2024), and its geometric
proof, are discussed in Section 6. We end in Section 7 with an epilogue, discussing
the use of book graphs in the original proof of Ramsey (1929) of Theorem 1.1, as well
as how our understanding of book graphs and Ramsey theory has developed over the
subsequent 95 years.

Acknowledgments. — An early version of this exposé was written for the lecture notes of
a Ramsey theory course that I taught at ETH in Spring 2024; I am grateful to all of the
students in the course for their interest and insights. I would also like to thank Nicolas
Bourbaki, Marcelo Campos, Xiaoyu He, Zach Hunter, Eoin Hurley, Greg Kuperberg,
Vivian Kuperberg, and Wojciech Samotij for many helpful discussions and comments
on earlier drafts. I am supported by Dr. Max Rössler, the Walter Haefner Foundation,
and the ETH Zürich Foundation.

2. The Erdős–Szekeres theorem and algorithm

In this section, we prove Theorem 1.3 (and thus Theorem 1.1). This proof is elegant
and interesting in its own right, and additionally it contains within it several of the
important ideas used in the proof of Theorem 1.5. We will actually see three different
proofs (or, more precisely, three different ways of viewing the same proof) of Theorem 1.3,
in each of the next three subsections. Each proof will help introduce some of the key
ideas that go into the proof of Theorem 1.5.

(6)Moreover, Balister et al. (2024) were able to prove a more general theorem, which gives a new upper
bound on Ramsey numbers in any number of colors. For simplicity, however, we remain with the
two-color version of the problem throughout this exposé.
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2.1. Off-diagonal Ramsey numbers

We begin with the original proof of Erdős and Szekeres (1935). Before proceeding with
the proof, we generalize the notion of Ramsey numbers from Definition 1.2. Here and
throughout, we denote by V (KN) and E(KN) the vertex set and edge set, respectively,
of the complete graph KN .

Definition 2.1. — Given integers k, ℓ ⩾ 2, the off-diagonal Ramsey number r(k, ℓ) is
the least integer N such that every two-coloring of E(KN) with colors red and blue
contains a red Kk or a blue Kℓ.

Note that r(k, ℓ) = r(ℓ, k) as the colors play symmetric roles, and that r(k) = r(k, k).
The quantity r(k) is often called the diagonal Ramsey number.

With this terminology, we can prove Theorem 1.3. In fact, we will prove the following
more precise result.

Theorem 2.2 (Erdős and Szekeres, 1935). — For all integers k, ℓ ⩾ 2, we have

r(k, ℓ) ⩽
(

k + ℓ − 2
k − 1

)
.

In particular,

r(k) ⩽
(

2k − 2
k − 1

)
< 4k.

Proof. — We proceed by induction on k + ℓ, with the base case min{k, ℓ} = 2 being
trivial. For the inductive step, the key claim is that the following inequality holds:

(2.1) r(k, ℓ) ⩽ r(k − 1, ℓ) + r(k, ℓ − 1).

To prove (2.1), fix a red/blue coloring of E(KN), where N = r(k − 1, ℓ) + r(k, ℓ − 1),
and fix some vertex v ∈ V (KN). Suppose for the moment that v is incident to at least
r(k − 1, ℓ) red edges, and let R denote the set of endpoints of these red edges. By
definition, as |R| ⩾ r(k − 1, ℓ), we know that R contains a red Kk−1 or a blue Kℓ. In
the latter case we have found a blue Kℓ (so we are done), and in the former case we can
add v to this red Kk−1 to obtain a red Kk (and we are again done).

So we may assume that v is incident to fewer than r(k − 1, ℓ) red edges. By the
exact same argument, just interchanging the roles of the colors, we may assume that
v is incident to fewer than r(k, ℓ − 1) blue edges. But then the total number of edges
incident to v is at most

(r(k − 1, ℓ) − 1) + (r(k, ℓ − 1) − 1) = N − 2,

which is impossible, as v is adjacent to all N − 1 other vertices. This is a contradiction,
proving (2.1).
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We can now complete the induction. By (2.1) and the inductive hypothesis, we find
that

r(k, ℓ) ⩽ r(k − 1, ℓ) + r(k, ℓ − 1)

⩽

(
(k − 1) + ℓ − 2

(k − 1) − 1

)
+
(

k + (ℓ − 1) − 2
k − 1

)

=
(

k + ℓ − 2
k − 1

)
,

where the final equality is Pascal’s identity for binomial coefficients.

2.2. Enter the book
Definition 2.3. — Let t, m be positive integers. The book graph Bt,m consists of a copy
of Kt, plus m additional vertices which are adjacent to all vertices of the Kt, but not
adjacent to one another. Equivalently, Bt,m is obtained from the complete bipartite
graph Kt,m by adding in all the

(
t
2

)
possible edges in the side of size t. Equivalently,

Bt,m consists of m copies of Kt+1 which are glued along a common Kt.

Note that two important special cases are m = 1, where Bt,1 is simply the complete
graph Kt+1, and t = 1, where B1,m is simply the star graph K1,m, consisting of one
vertex joined to m others (and no other edges). The “book” terminology comes from
the case t = 2, in which case B2,m consists of m triangles sharing an edge, which looks,
to some extent, like a book with m triangular pages. Continuing this analogy, the Kt in
Bt,m is called the spine, and the m additional vertices of Bt,m are called the pages. We
will often denote a book as a pair of sets (A, Y ), where A is the spine and Y comprises
the pages.

The reason book graphs are important in the study of Ramsey numbers comes down
to the following simple observation.

Lemma 2.4. — Suppose that a two-coloring of E(KN) contains a monochromatic red
copy of Bt,m, where m ⩾ r(k − t, ℓ). Then this coloring contains a red Kk or a blue Kℓ.

Proof. — Let A be the spine of the book, and let Y be its pages. By assumption,
|Y | = m ⩾ r(k − t, ℓ), so Y contains a blue Kℓ or a red Kk−t. In the former case we are
done, and in the latter case, we may add A to the red Kk−t to obtain a red Kk.

This proof should look familiar—we have already encountered the same idea in the
proof of Theorem 2.2, where we implicitly used the t = 1 case of Lemma 2.4. Indeed, in
that proof, we showed that if a coloring contains a red star with r(k − 1, ℓ) leaves, then
it contains a red Kk or a blue Kℓ. The only new idea in Lemma 2.4 is that we don’t
need to consider a single vertex (i.e. the case t = 1), but may take an arbitrary book.

Although the idea of Lemma 2.4 basically goes back to the work of Erdős and Szekeres
(1935), it was first formulated in essentially this language by Thomason (1982), who
used Lemma 2.4 to propose a natural approach to improving the upper bounds on r(k).
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Namely, if one can show that every two-coloring of E(KN) contains a monochromatic
Bt,m, for some appropriate parameters t and m ⩾ r(k − t, k), then one can plug this
into Lemma 2.4 and conclude that r(k) ⩽ N . Again, this is essentially the approach
we used in the proof of Theorem 2.2, where a simple argument based on the pigeonhole
principle showed that any coloring of E(KN) contains a large monochromatic star, that
is, a monochromatic book with many pages and a spine of size t = 1. The idea behind
Thomason’s program is that perhaps for larger values of t, more sophisticated arguments
than the pigeonhole principle could yield stronger results, and improve the upper bounds
on r(k).

Thomason’s idea has been quite successful. The three prior asymptotic improvements
to Theorem 2.2, due to Thomason (1988), Conlon (2009), and Sah (2023), all used
this idea, roughly showing that if some two-coloring of E(KN) does not contain a
monochromatic Bt,m (for some fixed t, m), then its structure must be such that the
proof of Theorem 2.2 can be made more efficient. A more precise structural result along
these lines is given by Conlon, Fox, and Wigderson (2022). However, for fundamental
technical reasons, none of these techniques seems capable of finding books with spine
larger than t = O(log k), whereas in order to prove a result like Theorem 1.5 in this
way, one would want to take (say) t = k

1000 . This was where the matter stood for a few
years, until the work of Campos, Griffiths, Morris, and Sahasrabudhe (2023).

2.3. The Erdős–Szekeres algorithm

One of the many new ingredients introduced by Campos, Griffiths, Morris, and
Sahasrabudhe (2023) is the following simple idea: rather than searching for some specific
book Bt,m, they define an exploration algorithm for finding some book, and then prove
that regardless of which book is found, the parameters involved are good enough to plug
into Lemma 2.4. Although this idea is almost a triviality, this change of perspective is
crucial for the proof of Theorem 1.5.

Before we define this exploration algorithm—which they termed the book algorithm—
let us first rephrase the proof of Theorem 1.3 as an exploration algorithm, the Erdős–
Szekeres algorithm. Let us fix a two-coloring of E(KN). We assume that this coloring
has no monochromatic Kk, and our goal is to eventually obtain a contradiction if N is
sufficiently large. For the moment we only seek to get a contradiction if N > 4k, and
thus reprove Theorem 1.3.

For a vertex v ∈ V (KN), we write NR(v) for the red neighborhood of v, that is, the set
of vertices w ∈ V (KN) such that the edge vw is colored red. Similarly, NB(v) denotes
the blue neighborhood of v.

In the Erdős–Szekeres algorithm, we maintain three disjoint sets A, B, X ⊆ V (KN);
the sets A and B will grow throughout the process, whereas X will shrink. The key
property we maintain is that (A, X) is a red book, and (B, X) is a blue book; that is,
A is completely red, B is completely blue, all edges between A and X are red, and all



1230–08

edges between B and X are blue. To initialize the process, we set A = B = ∅ and
X = V (KN). We now repeatedly run the following steps.

Algorithm 2.5 (Erdős–Szekeres algorithm)
1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ k, stop the process.
2. Pick a vertex v ∈ X, and check whether v has at least 1

2(|X| − 1) red neighbors
in X.

3. If yes, move v to A and shrink X to the red neighborhood of v. That is, update
A → A ∪ {v} and X → X ∩ NR(v), and keep B the same. Call this a red step.

4. If not, then v has at least 1
2(|X|−1) blue neighbors in X. We now move v to B,

and shrink X to the blue neighborhood of v. That is, we update B → B ∪ {v}
and X → X ∩ NB(v), and keep A the same. Call this a blue step.

5. Return to step 1.

By the way we update the sets, we certainly maintain the key property that (A, X)
and (B, X) are red and blue books, respectively, throughout the entire process, since
every time we add a vertex v to A (resp. B), we shrink X to the red (resp. blue)
neighborhood of v.

Using Algorithm 2.5, we can give an alternative proof of Theorem 1.3.
“Algorithmic” proof of Theorem 1.3. — Let N = 4k, and fix a two-coloring of E(KN).
Assume for contradiction that this coloring contains no monochromatic Kk. We now
run Algorithm 2.5 until it terminates.

Suppose first that the algorithm terminated because |A| ⩾ k. Throughout the process,
we maintain the property that all edges inside A are red. Therefore, if |A| ⩾ k at the
end of the process, we have found a monochromatic red Kk, a contradiction. Similarly,
if |B| ⩾ k at the end of the process, we have found a blue Kk, another contradiction.
We may thus assume that at the end of the process, we have |A| < k and |B| < k.

Therefore, the process can only end when |X| ⩽ 1. The key observation now is that
at every step of the process, we have

(2.2) |X| ⩾ 2−|A|−|B|N.

Indeed, this certainly holds when the process begins, for then we have |A| = |B| = 0
and |X| = N . We can now check that it holds by induction: every time we do a red
step, we increase |A| by 1, and decrease |X| to at least(†) 1

2 |X|, thus preserving the
validity of (2.2). Similarly, in a blue step, we increase |B| by 1 and decrease |X| to at
least 1

2 |X|, again preserving (2.2). By induction, we conclude that (2.2) also holds at
the end of the process.

(†)Strictly speaking, we should write here 1
2 (|X| − 1), although the claimed bound (2.2) can also be

proved inductively by judicious use of ceiling signs. However, from now on, we will start ignoring such
additive ±1 terms. Of course they need to be carefully dealt with to obtain a correct proof, but they
will always contribute a negligible error, which we will ignore. We will add the symbol (†) to mark the
places where we omit such additive errors.
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At the end of the process, we thus have

N ⩽ 2|A|+|B||X| < 2k+k · 1 = 4k,

where we plug in our upper bounds |A| < k, |B| < k, |X| ⩽ 1. This contradiction
completes the proof.

It is worth noting that, as presented, this argument only proves Theorem 1.3—that
is, the bound r(k) ⩽ 4k—rather than the sharper estimate given in Theorem 2.2. It
is an interesting and instructive exercise to figure out how to modify Algorithm 2.5 to
obtain the stronger bound proved in Theorem 2.2 via a similar “algorithmic” proof.

For future reference (and as a hint to solving the exercise above), it is good to observe
that the off-diagonal Erdős–Szekeres bound r(k, ℓ) ⩽

(
k+ℓ

ℓ

)
can also be obtained in this

way. To do so, set γ = ℓ
k+ℓ

. Then we can modify the Erdős–Szekeres algorithm as
follows.

Algorithm 2.6 (Off-diagonal Erdős–Szekeres algorithm)
1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ ℓ, stop the process.
2. Pick a vertex v ∈ X, and check whether v has at least (1 − γ)|X| red neighbors

in X.
3. If yes, move v to A and shrink X to the red neighborhood of v. That is, update

A → A ∪ {v} and X → X ∩ NR(v), and keep B the same. Call this a red step.
4. If not, then v has at least(†) γ|X| blue neighbors in X. We now move v to B,

and shrink X to the blue neighborhood of v. That is, we update B → B ∪ {v}
and X → X ∩ NB(v), and keep A the same. Call this a blue step.

5. Return to step 1.

The point now is that we obtain the red Kk or blue Kℓ if |A| ⩾ k or |B| ⩾ ℓ, and
thus we may assume that we do fewer than k red steps and fewer than ℓ blue steps. X

shrinks by a factor of 1 − γ at every red step, and by a factor of γ at every blue step,
so throughout the process we have

|X| ⩾ (1 − γ)|A|γ|B|N.

On the other hand, the process only terminates if |X| ⩽ 1, so this implies N <

(1 − γ)−kγ−ℓ. One can check, by Stirling’s approximation, that(
k + ℓ

ℓ

)
= 2o(k)γ−ℓ(1 − γ)−k

for all ℓ ⩽ k, and hence this gives a contradiction if we choose N of the form 2o(k)
(

k+ℓ
ℓ

)
.

This recovers Theorem 2.2 up to the subexponential error term.
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3. The book algorithm

We are now ready to describe the book algorithm of Campos, Griffiths, Morris, and
Sahasrabudhe (2023). As before, we fix a two-coloring of E(KN), and assume that there
is no monochromatic Kk; our goal is to obtain a contradiction if N is sufficiently large.
Throughout the process, we maintain four disjoint sets A, B, X, Y , with the following
properties: (A, X) is a red book, (B, X) is a blue book, and (A, Y ) is another red
book(7). Thus, the only difference from the Erdős–Szekeres algorithm is the presence
of the new set Y . At the end of the process, our goal is to output the pair (A, Y ),
and to prove that t := |A| and m := |Y | satisfy m ⩾ r(k − t, k), so that we can apply
Lemma 2.4 to obtain a contradiction. We initialize the process with A = B = ∅, and
X ⊔ Y an arbitrary partition of V (KN) with(†) |X| = |Y |. By permuting the colors if
necessary, we may assume that at the beginning of the process, at least half the edges
between X and Y are red.

A

B

X Y

As in the Erdős–Szekeres algorithm, we will iteratively build this picture by moving
vertices from X to A or B, and then shrinking X and Y . A move from X to A will be
called a red step, and a move from X to B will be called a blue step.

What is the advantage of maintaining such a picture? Recall that in the Erdős–
Szekeres algorithm, |X| shrinks by a factor of two whenever we do a red or a blue
step, hence we end up with |X| ⩾ 2−|A|−|B|N as in (2.2), yielding the bound r(k) < 4k.
However, it is reasonable to hope that since we are imposing “half as many constraints”
on Y as on X—that is, we are only maintaining that the edges between A and Y are
red, and not that any edges incident to Y are blue—we may be able to obtain better
control on |Y |. Indeed, we might hope that every blue step does not shrink Y at all,
while every red step shrinks Y by only a factor of two, as before, yielding(8) a bound of
|Y | ≳ 2−|A|N .

(7)Equivalently, we could say that (B, X) is a blue book and (A, X ∪ Y ) is a red book.
(8)If we could really obtain such strong control on |Y |, we would show that r(k) ≲ 2k, a dramatic
improvement over Theorem 1.3. Unfortunately, and unsurprisingly, the devil is in the details, and a lot
of work is needed to make such an approach work, and the extra complications yield a substantially
weaker bound.



1230–11

In other words, our goal will be to “sacrifice” the vertices in X, and use them as the
fuel we use to build the large red book (A, Y ). This approach comes with a fundamental
asymmetry between the colors, in marked contrast to the Erdős–Szekeres proof. We
will really insist on finding a red book (A, Y ), and will do our best to build it. Only
when doing so is really impossible will we take blue steps.

Because of this, our preferred move would be taking a red step. That is, we would like
to pick a vertex v ∈ X, move v to A, and update X → X ∩ NR(v). Moreover, since we
need to maintain that (A, Y ) is a red book, we will also need to update Y → Y ∩ NR(v).
In particular, when deciding whether to add a vertex v ∈ X to A, we need to check not
only that v has many red neighbors in X—so that X doesn’t shrink too much—but also
that v has many red neighbors in Y , so that Y doesn’t shrink too much. In particular,
we see that in addition to tracking the sizes of A, B, X, and Y , we will also need to
track a fifth parameter, the red edge density between X and Y . We denote this density
by

p := dR(X, Y ) = eR(X, Y )
|X||Y |

,

where eR(X, Y ) denotes the number of red edges with one endpoint in X and the other
in Y . Recall that, by assumption, we have p ⩾ 1

2 at the beginning of the process.
Note that every time we add a vertex to A or to B (and thus have to shrink X and
potentially Y ), this red density p might change. For our simplified exposition of the
proof of Theorem 1.5, we will make the following (completely unjustified) assumption.

Assumption 3.1. — At every step of the process, every vertex in X has exactly p|Y |
red neighbors in Y , and every vertex in Y has exactly p|X| red neighbors in X. In other
words, the bipartite graph of red edges between X and Y is bi-regular.

We stress again that X, Y, and p change throughout the process, but Assumption 3.1
asserts that whenever such a change happens, we magically end up back with the same
bi-regularity.

While Assumption 3.1 is clearly a bogus assumption, it is actually possible to (essen-
tially) make it rigorous. Indeed, the definition of p implies that the vertices in X have,
on average, p|Y | red neighbors in Y . A basic but important observation, used frequently
in extremal combinatorics, is that one can often convert such average degree conditions
to minimum or maximum degree conditions, by deleting a few “outlier” vertices. In
the rigorous proof of Theorem 1.5, one must repeatedly “clean” X by removing such
outliers, and thus one can indeed maintain an approximate version of Assumption 3.1,
at least ensuring that all vertices in X have roughly the same red degree(9). However, for
our exposition, we ignore these important technicalities, and stick with Assumption 3.1.

(9)It is much harder to ensure degree-regularity in both X and Y simultaneously. Luckily, it turns out
that degree-regularity in Y is substantially less important in the argument, and in the formal proof
one doesn’t even ensure an approximate version of it. In its place, one uses a judicious choice of the
vertex v.



1230–12

3.1. The steps of the book algorithm

The two basic steps in the book algorithm will again be red steps and blue steps,
as in the Erdős–Szekeres algorithm. Note that when we perform a blue step (moving
v ∈ X to B and updating X → X ∩ NB(v)), we do not need to update Y at all, since
these changes do not affect the fact that (A, Y ) is a red book. In particular, thanks
to Assumption 3.1, the red density between X and Y remains unchanged during a
blue step, since all the remaining vertices in X still have exactly p|Y | red neighbors
in Y . However, as discussed above, red steps can affect p, since in a red step we update
X → X ∩ NR(v) and Y → Y ∩ NR(v), and thus our value of p is updated to

p′ := dR(X ∩ NR(v), Y ∩ NR(v)).

Let us call a vertex prosperous if p′ ⩾ p−α, for some parameter α we will shortly choose.
We will then perform a red step only if there is a vertex v ∈ X which is prosperous,
and which has at least 1

2 |X| red neighbors in X. In such a step, we increase |A| by 1,
decrease |X| by a factor of 2, decrease Y by a factor of p (since v has p|Y | red neighbors
in Y , by Assumption 3.1), and update p to at least p − α.

In Algorithm 2.5, we were always able to do either a red or a blue step, since every
vertex in X has at least 1

2 |X| neighbors in X in one of the colors(†). However, if we
require that our red vertex v be prosperous, then we may be in a position where neither
a red nor a blue step is possible. Namely, we get stuck if all vertices in X have at least
1
2 |X| red neighbors in X, but none of them is prosperous.

In this case, we implement a density-boost step, which is one of the other main
innovations of Campos, Griffiths, Morris, and Sahasrabudhe (2023). Pick a vertex
v ∈ X, and consider the following picture.

U

X Y

v

T

S

red density

< p − α

Since v is not prosperous, the red edge density between T := NR(v) ∩ X and U :=
NR(v) ∩ Y must be less than p − α. However, by Assumption 3.1, every vertex in U has
p|X| red neighbors in X. Therefore, setting S := NB(v) ∩ X, we find that(†)

p|X||U | = eR(X, U) = eR(T, U) + eR(S, U) < (p − α)|T ||U | + eR(S, U).
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Rearranging, we conclude that

eR(S, U) > |U | (p|X| − (p − α)|T |) .

Let β := |S|
|X| , so that β records what fraction of the edges from v to the rest of X are

blue. Then |S| = β|X| and(†) |T | = (1 − β)|X|, and the above can be rewritten as

eR(S, U) > |U ||S|
(

p

β
− (p − α)(1 − β)

β

)
= |S||U |

(
p + α

1 − β

β

)
,

which implies

(3.1) dR(S, U) > p + α
1 − β

β
.

Note too that since we cannot do a blue step, we must have β ⩽ 1
2 , implying that

dR(S, U) > p + α. In other words, in the bad situation where we cannot perform
a red or a blue step, we can perform a density-boost step, where we replace X by
S = NB(v) ∩ X, replace Y by U = NR(v) ∩ Y , and thus boost the density from p to at
least p + α 1−β

β
⩾ p + α.

Note that density-boost steps are expensive, in that they shrink X and Y , but don’t
actually make progress by increasing |A| or |B|. In particular, we don’t a priori have
any control on how many density-boost steps we perform. Luckily, there is a simple fix
to this problem: since we are in any case updating X → X ∩ NB(v) in a density-boost
step, we may add v to B for free, while maintaining the property that (B, X) is a blue
book. That is, a density-boost step can also be made a type of blue step, and thus we
necessarily perform at most k density-boost steps without creating a blue Kk.

The final piece we need before formally defining the book algorithm is to choose α,
which determines the threshold above which a vertex is considered prosperous. Note
that every red step may decrease p by α, so if we end up doing up to k red steps, we
may decrease p from its initial value of 1

2 to 1
2 − αk. Moreover, whenever we do a red

step, we also shrink Y by a factor of (the current value of) p. In particular, if p ever
drops below (say) 1

4 , we are in big trouble: then Y shrinks by a factor of 4 at every
step, and we have no real hope of proving a bound stronger than r(k) ⩽ 4k. As such,
we want to pick α ⩽ ε

k
, so that even after doing k red steps, we have not meaningfully

decreased p below its initial value. Here, one can think of ε as a tiny absolute constant,
although in the final analysis we will actually pick ε to tend to 0 slowly with k.

Unfortunately, there is a trade-off. Recall that we have very little control over the
effect of the density-boost steps, because these are the steps we do as a last resort.
In fact, essentially our only way of bounding their total effect is the observation that
p ⩽ 1 throughout the entire process, which should imply that we cannot do too many
density-boost steps, as that would drive the red density up too high. The problem is
that a density-boost step only increases p by roughly α, so if we pick α ⩽ ε

k
, then even

if we do k density-boost steps (the maximum possible number), we will only increase
the density by ε. In particular, we have no hope of reaching the threshold of p = 1,
where we finally gain some control over the density-boost steps.
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The way to resolve this apparent contradiction is to pick α adaptively. Indeed, suppose
that at some point in the process, we have reached a red density of, say, p = 0.51. At
this point, it doesn’t make sense to have the cutoff be α = ε

k
; we wouldn’t even mind

losing an absolute constant of 1/100 in the density, since that will only bring us back to
our original value of p! So we will instead pick α to be dependent on our current value
of p; namely, we set

(3.2) α(p) :=


ε
k

if p ⩽ 1
2 + 1

k
,

ε(p − 1
2) otherwise.

Again, the point of this is that, if we are at some step of the process where p > 1
2 , then

we can afford to lose more in the density without every dropping p into the “danger zone”
of being substantially smaller than 1

2 . The advantage of this is that the amount we win
in a density-boost step is itself proportional to α = α(p). So if we have already done
some number of density-boost steps, such that p > 1

2 , each subsequent density-boost
boosts the density even further, at an exponential rate, thus rapidly bringing us closer
to the threshold p = 1.

3.2. Formal definition of the book algorithm
With all of these preliminaries, we are finally able to define the book algorithm.

Algorithm 3.2 (Book algorithm)
1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ k, stop the process.
2. Let p = dR(X, Y ) be the current red density between X and Y . Define α = α(p)

as in (3.2), where ε is some fixed parameter throughout the process.
3. Check whether some vertex v ∈ X has at least 1

2 |X| blue neighbors in X. If
yes, perform a blue step, by updating

A → A, B → B ∪ {v}, X → X ∩ NB(v), Y → Y,

and return to step 1.
4. Check whether some vertex v ∈ X is prosperous, meaning that dR(NR(v) ∩

X, NR(v) ∩ Y ) ⩾ p − α. If yes, perform a red step, by updating
A → A ∪ {v}, B → B, X → X ∩ NR(v), Y → Y ∩ NR(v),

and return to step 1.
5. In the remaining case, pick some vertex v ∈ X. It is not prosperous, and has

β|X| blue neighbors in X, for some β ⩽ 1
2 . We now perform a density-boost

step, by updating
A → A, B → B ∪ {v}, X → X ∩ NB(v), Y → Y ∩ NR(v),

and return to step 1.

For future reference, the following table records how the key parameters change during
the execution of the book algorithm, following the discussion above.
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3.3. Analysis of the book algorithm

Suppose that, when the book algorithm ends, we have done t red steps, s density-
boost steps, and b blue steps. We may assume that t < k and that s + b < k, since
otherwise we have found a monochromatic Kk. We now collect a number of estimates
on the various parameters associated with the process.

Lemma 3.3. — We have p ⩾ 1
2 − ε throughout the entire process.

Proof. — As discussed above, every blue step keeps p constant (by Assumption 3.1),
every density-boost step can only increase p, and every red step decreases p by at most
α(p). Additionally, the choice of α(p) shows that p − α(p) ⩾ 1

2 whenever p > 1
2 + 1

k
,

whereas α(p) = ε
k

whenever p ⩽ 1
2 + 1

k
. Since we do t ⩽ k red steps, p can never drop

below 1
2 − t · ε

k
⩾ 1

2 − ε.

It will now be convenient to pick ε = k−1/4, although we note that this choice is not
particularly important; many functions of k which tend to 0 neither too slowly or too
quickly would work.

Lemma 3.4. — At the end of the process, we have |Y | ⩾ 2−t−s−o(k)N .

Proof. — Y is unchanged by every blue step. On the other hand, during each red or
density-boost step, we decrease Y by a factor of p, by Assumption 3.1. By Lemma 3.3,
we have that p ⩾ 1

2 − ε at every such step, hence

|Y | ⩾
(1

2 − ε
)t+s

· N

2 = 2−t−s−o(k)N,

where we plug in our choice of ε and recall that we start the process with(†) |Y | = N
2 .

We next turn to bounding |X| at the end of the process. Just as in the Erdős–Szekeres
algorithm, the main point of this is to estimate how many steps we do, since we recall
that the process terminates when |X| ⩽ 1.

Recall that at each density-boost step, we shrink X by a factor of β, where β is defined
as the fraction |NB(v) ∩ X|/|X| of blue neighbors of the currently chosen vertex v. Let

|A| |B| |X| |Y | p

blue step – +1 ×1
2 – –

red step +1 – ×1
2 ×p −α

density-boost step – +1 ×β ×p +α 1−β
β

Table 3.1. How the various parameters evolve during Algorithm 3.2. Dashes
denote quantities that are unchanged. In general, the entries in the table are
lower bounds, e.g. a density-boost step may increase p by more than α1−β

β , and
a red step may shrink X to more than half of its previous size.
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β1, . . . , βs be the sequence of values of β for each of the s blue steps. Let β be the
harmonic mean of β1, . . . , βs, that is, define β by

1
β

= 1
s

s∑
i=1

1
βi

.

Lemma 3.5. — At the end of the process, we have

|X| ⩾ 2−t−b−o(k)βsN.

Proof. — Every red or blue step shrinks X by at most a factor(†) of 2, hence the factor
of 2−t−b. On the other hand, the ith density-boost step decreases |X| by a factor of βi.
The inequality of arithmetic and geometric means implies that

1
β

= 1
s

s∑
i=1

1
βi

⩾

(
s∏

i=1

1
βi

)1/s

,

hence the contribution of the density-boost steps is
s∏

i=1
βi ⩾ βs.

Together with the fact that we begin the process with(†) |X| = N
2 , this yields the claimed

bound.

The final, and perhaps most important, result we need is an estimate on the number
of density-boost steps. As discussed above, we can get a good estimate on this quantity
because of the “dynamic” choice of α; this is the content of the next lemma, which is
called the zig-zag lemma by Campos, Griffiths, Morris, and Sahasrabudhe (2023).

Lemma 3.6 (Zig-zag lemma). — We have
s∑

i=1

1 − βi

βi

⩽ t + o(k).

We won’t give a full proof of Lemma 3.6, but the following sketch captures the main
ideas.
Proof sketch for Lemma 3.6. — For the moment, let us assume that we stay in the
regime p ⩾ 1

2 + 1
k
. It will be more convenient to reparametrize p, by defining q := p − 1

2 .
By our choice of α in (3.2), we have that α(p) = εq.

Suppose we do one step of the book algorithm, and thus update p to some new
value p′ (and update q to q′ = p′ − 1

2). If the step we do is a blue step, then by
Assumption 3.1, the density p does not change, hence p′ = p and q′ = q. If, instead,
we do a red step, then v is prosperous, and hence p′ ⩾ p − α(p). This implies that
q′ ⩾ q − α(p) = q − εq = (1 − ε)q. Finally, if this step is the ith density-boost step,
then by (3.1) we have that

p′ ⩾ p + α(p)1 − βi

βi
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and thus
q′ ⩾ q + α(p)1 − βi

βi

= q

(
1 + ε

1 − βi

βi

)
.

Putting this all together, we conclude that at each step of the algorithm, we have

(3.3) q′

q
⩾


1 when we do a blue step,
1 − ε when we do a red step,
1 + ε1−βi

βi
when we do the ith density-boost step.

Let qfinal denote the value of q at the end of the algorithm, and let qinitial be the value
of q at the beginning of the algorithm. Multiplying (3.3) over all steps of the algorithm,
we find that

qfinal

qinitial
⩾ (1 − ε)t

s∏
i=1

(
1 + ε

1 − βi

βi

)
,

since we get a contribution of 1 − ε from each of the t red steps and a contribution
of 1 + ε1−βi

βi
from the ith density-boost step. Combining this inequality with the

approximation 1 + x ≈ ex, an approximation that is valid for sufficiently small(10) |x|,
we find that

(3.4) qfinal

qinitial
≳ e−εt exp

(
ε

s∑
i=1

1 − βi

βi

)
= exp

(
ε

(
−t +

s∑
i=1

1 − βi

βi

))
.

We have that qfinal ⩽ 1
2 , since p ⩽ 1 throughout the whole process. On the other hand,

since we are assuming that p ⩾ 1
2 + 1

k
throughout, we have that qinitial ⩾ 1

k
. Therefore,

qfinal

qinitial
⩽ k

2 ⩽ k. Plugging this into (3.4) and taking logarithms, we find that

log k ⩾ log
(

qfinal

qinitial

)
≳ ε

(
−t +

s∑
i=1

1 − βi

βi

)
,

implying that
s∑

i=1

1 − βi

βi

≲ t + log k

ε
= t + o(k),

where we plug in our choice of ε = k−1/4 in the final equality.
This proof worked under the assumption that we remain throughout in the range

p ⩾ 1
2 + 1

k
. Let us now work in the complementary regime, where p < 1

2 + 1
k

throughout
the whole process. In this case, recalling the definition of α(p) from (3.2), we have

(3.5) p′ − p ⩾


0 when we do a blue step,
− ε

k
when we do a red step,

+ ε
k

· 1−βi

βi
when we do the ith density-boost step.

(10)This approximation can be made rigorous, but we’re still cheating in this derivation of (3.4). We
have no guarantee that ε 1−βi

βi
is small, since we have no control over βi, and thus no guarantee that

the approximation is valid. A correct proof of this lemma would need to separate out the contribution
from the steps where βi is very small, and thus where such an approximation is not accurate.
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Adding up (3.5) over all steps of the process, we conclude that

(3.6) pfinal − pinitial ⩾ − ε

k
t + ε

k

s∑
i=1

1 − βi

βi

= ε

k

(
−t +

s∑
i=1

1 − βi

βi

)
.

Recall that we had pinitial ⩾ 1
2 , and we are now assuming that we remain in the regime

p < 1
2 + 1

k
throughout, hence in particular pfinal < 1

2 + 1
k
. Therefore pfinal − pinitial ⩽ 1

k
.

Plugging this in to (3.6) and rearranging, we conclude that
s∑

i=1

1 − βi

βi

⩽ t + 1
ε

= t + o(k),

again by our choice of ε.
We have thus proved the desired inequality in the two extreme cases, namely when

p ⩾ 1
2 + 1

k
throughout the process, and when p < 1

2 + 1
k

throughout the process. Of
course, in reality, we may move between these two regimes multiple times during the
execution of Algorithm 3.2. However, by breaking the execution of the algorithm into
intervals in which we remain in one regime or the other, it is not too difficult to combine
the arguments above and conclude that the claimed inequality always holds.

As an immediate consequence of Lemma 3.6, we obtain an upper bound on the number
s of density-boost steps.

Lemma 3.7. — We have

s ⩽

(
β

1 − β

)
t + o(k).

Equivalently,

(3.7) β ⩾ (1 + o(1)) s

s + t
.

Proof. — By the definition of β, we have that
1
s

s∑
i=1

1 − βi

βi

= 1 − β

β
.

Plugging this into Lemma 3.6 shows that

s =
(

β

1 − β

)
s∑

i=1

1 − βi

βi

⩽

(
β

1 − β

)
(t + o(k)).

Moreover, since each βi is at most 1
2 , we find that β

1−β
⩽ 1, yielding the first claimed

bound. The second bound follows by solving for(11) β.

(11)Again, there is some cheating going on here—one can only obtain the claimed estimate if s is not
too small as a function of k, in order to absorb the error terms. In the formal proof, one has to separate
into cases: the bound (3.7) is valid if s is not too small, whereas if s is very small one can complete
the proof of Theorem 1.5 via a simpler analysis.



1230–19

3.4. Proof attempt for Theorem 1.5
We are now ready to put everything together. Let C be a constant, which we will

optimize later, and let N = 2(1+C)k. Our plan is to show that if C is chosen appropriately,
then r(k) ⩽ N = 2(1+C)k. Since our goal is to prove Theorem 1.5, we thus hope to
be able to prove this for some fixed C < 1, but for the moment, let us leave C as an
unspecified constant.

We proceed by contradiction, so let us assume that there is a two-coloring of E(KN)
with no monochromatic Kk. We now run Algorithm 3.2 on this coloring. We certainly
obtain the desired contradiction if the algorithm finds a red or blue Kk, so let us assume
that this does not happen. Therefore, the process only ends when |X| ⩽ 1, which by
Lemma 3.5 implies that

N ⩽ β−s2t+b+o(k) ⩽ β−s2t+(k−s)+o(k),

where we plug in the bound b + s ⩽ k, arising from the fact that B never becomes a
blue Kk. We now plug in the lower bound on β from Lemma 3.7 to find that

(3.8) N ⩽
(

t + s

s

)s

2k+t−s+o(k).

At this point everything is in terms of the parameters s and t, which we expect to
scale linearly in k, so it is more convenient to reparametrize everything in terms of
x := t

k
, y := s

k
. In terms of these parameters, and recalling that N = 2(1+C)k, we can

rewrite (3.8) as

C − o(1) ⩽ (x − y) + y log2

(
x + y

y

)
=: G(x, y).

Recall that our goal is to obtain a contradiction, and the only thing we have not
yet specified is the value of C we choose. In particular, if we pick C to be larger
than the maximum value of G(x, y) over the square [0, 1]2, then we certainly obtain
a contradiction. As our goal is to eventually obtain a contradiction with some fixed
C < 1, we would be happy if this maximum value were less than 1. However, this is not
true, as shown on the following contour plot; the maximum value of G is roughly 1.33.
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Of course, if we recall our original strategy, it is way too much to hope for that the
maximum of G is less than 1. Indeed, the whole point of the book algorithm was to
output the book (A, Y ), and to ensure that its parameters are good enough to apply
Lemma 2.4.

What are the parameters of this book? Well, we have that |A| = t by definition, and

m := |Y | ⩾ 2−t−s−o(k)N

by Lemma 3.4. By Lemma 2.4, we know that if m ⩾ r(k−t, k), we find a monochromatic
Kk, yielding our desired contradiction. Thus, we may assume that m < r(k − t, k),
implying that

(3.9) N ⩽ 2t+s+o(k)m < 2t+s+o(k)r(k − t, k).

By Theorem 2.2, we know that

r(k − t, k) ⩽
(

2k − t

k − t

)
.

A useful upper bound on binomial coefficients is that
(

a
b

)
⩽ 2aH(b/a), where H(z) :=

−z log2 z − (1 − z) log2(1 − z) is the binary entropy function. Plugging this in, we find
that

log2 r(k − t, k) ⩽ log2

(
2k − t

k − t

)
⩽ (2k − t)H

(
k − t

2k − t

)
= k

[
(2 − x)H

(1 − x

2 − x

)]
.

Taking logarithms of (3.9) and dividing by k shows that

C − o(1) ⩽ −1 + (x + y) + (2 − x)H
(1 − x

2 − x

)
=: F (x, y).

Putting all of this together, we have shown that either we derive the claimed contradic-
tion, or C − o(1) ⩽ min{F (x, y), G(x, y)}. Again, we have the freedom to choose C, so
we can obtain the desired contradiction if we set C to be larger than the maximum of
min{F (x, y), G(x, y)} on the square [0, 1]2. In particular, as our goal is to pick C < 1,
we are done if min{F (x, y), G(x, y)} < 1 for all x, y ∈ [0, 1]. Here is a contour plot of F :
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This looks great! The areas where F is large seem to be different from the areas where
G is large, so there should be no problem to show that their maximum is always strictly
less than 1. In fact, here are the regions where F > 1 and G > 1.

Bad news! There’s a big red region where both functions are greater than 1, and our
whole proof strategy fails. In fact, one can check that min{F (x, y), G(x, y)} attains
a maximum value of roughly 1.054. That is, in order to obtain a contradiction, the
smallest value of C we could pick is 1.054, and thus this whole complex proof is only
able to show that r(k) ⩽ 22.054k ≈ 4.15k, which is worse than the bound of Theorem 1.3.

4. Rescuing the argument

The fact that min{F (x, y), G(x, y)} > 1 for some (x, y) ∈ [0, 1]2 is a fundamental
obstruction to this approach. In order to overcome it, we will use two tricks, both of
which involve tweaking the book algorithm.

4.1. Changing the cutoff

The first new idea is to examine our criterion for deciding whether to do red or blue
steps. Recall that, as in Algorithm 2.5, we do a blue step if some vertex in X has at
least 1

2 |X| blue neighbors in X, and otherwise we do a red or density-boost step. In the
Erdős–Szekeres setting, this is the optimal choice: since the argument is symmetric in
the two colors, it would be strictly worse to use any other cutoff.

However, the book algorithm is highly asymmetric, so we should re-examine this
assumption. Recall that at the end of the process, we output the red book (A, Y ),
where |A| = t and |Y | ⩾ 2−t−s−o(k)N by Lemma 3.4. The fact that |Y | decays like 2−tN

is unavoidable, but the fact that |Y | decays exponentially in s shows that density-boost
steps are very expensive, in terms of making this trade-off very bad. As such, we
should try to minimize the number s of density-boost steps we do, in terms of t. Since
Lemma 3.7 tells us that s ⩽ β

1−β
t + o(k), the natural way to decrease s is to decrease β.
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To achieve this, we do the following. We pick a number µ ∈ [0, 1], which will be fixed
throughout the argument. In step 3 of Algorithm 3.2, we now perform a blue step if
some vertex in X has at least µ|X| blue neighbors in X; otherwise, we proceed to the
subsequent steps of the algorithm unchanged. An important effect of this choice is that
now, when we perform the ith density-boost step, the parameter βi is constrained to
be at most µ, and thus also β ⩽ µ at the end of the process. In particular, if we pick
µ < 1

2 , we will have accomplished our goal of decreasing s relative to t. This suggests
we should pick µ very small, but of course there is a trade-off—if µ is very small then
every blue step decreases |X| by a lot, and thus the process will terminate quickly. To
balance these two effects, we want to pick µ to be neither too large nor too small. For
completeness, here is the description of our modified book algorithm.

Algorithm 4.1 (Book algorithm with cutoff µ)
1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ k, stop the process.
2. Let p = dR(X, Y ) be the current red density between X and Y . Define α = α(p)

as in (3.2), where ε is some fixed parameter throughout the process.
3. Check whether some vertex v ∈ X has at least µ|X| blue neighbors in X. If

yes, perform a blue step, by updating
A → A, B → B ∪ {v}, X → X ∩ NB(v), Y → Y,

and return to step 1.
4. Check whether some vertex v ∈ X is prosperous, meaning that dR(NR(v) ∩

X, NR(v) ∩ Y ) ⩾ p − α. If yes, perform a red step, by updating
A → A ∪ {v}, B → B, X → X ∩ NR(v), Y → Y ∩ NR(v),

and return to step 1.
5. In the remaining case, pick some vertex v ∈ X. It is not prosperous, and has

β|X| blue neighbors in X, for some β ⩽ µ. We now perform a density-boost
step, by updating
A → A, B → B ∪ {v}, X → X ∩ NB(v), Y → Y ∩ NR(v),

and return to step 1.

|A| |B| |X| |Y | p

blue step – +1 ×µ – –
red step +1 – ×(1 − µ) ×p −α

density-boost step – +1 ×β ×p +α 1−β
β

Table 4.1. How the various parameters evolve during Algorithm 4.1. The
only difference from Table 3.1 is that blue and red steps shrink X by factors
of µ and 1 − µ, respectively.
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In this modified book algorithm, Lemmas 3.3, 3.4, 3.6 and 3.7 remain true; the only
change is that Lemma 3.5 needs to be modified to the following statement, reflecting
the fact that each blue (resp. red) step shrinks X by a factor(†) of µ (resp. 1 − µ) in the
worst case. The proof is otherwise identical to that of Lemma 3.5.

Lemma 4.2 (Modified Lemma 3.5). — At the end of the process, we have

|X| ⩾ 2−o(k)(1 − µ)tµbβsN.

In particular, since b + s ⩽ k, we have

|X| ⩾ 2−o(k)(1 − µ)tµk−sβsN.

Since the process terminates when |X| ⩽ 1, we conclude from Lemma 4.2 that

(4.1) N ⩽ 2o(k)(1 − µ)−tµ−(k−s)β−s ⩽ 2o(k)(1 − µ)−tµ−(k−s)
(

s + t

s

)s

,

where the final inequality follows from the lower bound on β in Lemma 3.7. Taking
logarithms and dividing by k, we conclude that

C − o(1) ⩽ −1 + x log2

(
1

1 − µ

)
+ (1 − y) log2

1
µ

+ y log2

(
x + y

y

)
=: Gµ(x, y).

Note that in the case µ = 1
2 , we precisely recover the previous function G, which of

course makes sense as we are then recovering Algorithm 3.2. Here are contour plots of
Gµ for µ ∈ { 1

10 , 2
10 , 3

10 , 4
10}.

And here are pictures of the regions where F > 1 and Gµ > 1, for µ ∈ { 1
10 , 2

10 , 3
10 , 4

10}.

It looks like we’re already done at µ = 4
10 = 2

5 , but unfortunately we’re not: one can
check that min{F (x, y), G 2

5
(x, y)} attains a maximum value of 1.0017, hence we only

obtain a bound of r(k) ⩽ 4.006k. Here is a closer view of what happens at µ = 2
5 :



1230–24

But we’re definitely making progress! The bad red region is extremely small now, and
our maximum value of min{F, Gµ} is extraordinarily close to 1. Unfortunately, one
can check that no choice of µ will actually decrease this value below 1—which would
complete the proof—so another idea is needed.

4.2. Off-diagonal Ramsey numbers

So far, we have played with the parameter µ in order to vary the region where Gµ > 1,
and have almost succeeded in making it disjoint from the region where F > 1. We
will now try to tweak F , in order to move this latter region. Recall that the way we
defined F was in terms of an upper bound on r(k − t, k). If we can obtain a better
upper bound on r(k − t, k), then F will decrease, and we may be in business. In fact, we
don’t need to improve the upper bound on r(k − t, k) in all cases; it suffices to improve
this upper bound for pairs (k − t, k) near the problematic region where both F and G 2

5
are greater than 1. Since this problematic region is near x ≈ 0.75, we could hope to
improve the upper bound on r(k − t, k) where k − t ≈ 0.75k, or equivalently on r(k, ℓ)
where ℓ ≈ k

4 .
There is actually a good reason to expect this to work. Recall Algorithm 2.6, which

yields an upper bound on such off-diagonal Ramsey numbers. In that algorithm, we
choose whether to do red or blue steps based on the cutoff γ = ℓ

k+ℓ
. If we just blindly

import the same idea into the book algorithm, it makes sense to set µ ≈ ℓ
k+ℓ

in order
to upper-bound r(k, ℓ). In case ℓ ≈ k

4 , we have µ ≈ 1
5 . In our argument above, we

saw that it is good to take µ small, except for the trade-off that now X shrinks by a
factor of µ for every blue step. However, in this regime, we will do at most ℓ blue steps,
and µℓ ≈ (1

5) k
4 ≈ 0.67k; in contrast, in the argument above, the blue steps shrink X

by (2
5)k = 0.4k, which is a much more significant decrease. Hence we may expect the

trade-offs to work well for us.
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For completeness, here is our final book algorithm, suited for upper-bounding r(k, ℓ).
We set µ = ℓ

k+ℓ
and ε = k−1/4. We initiate A = B = ∅, and X ⊔ Y an arbitrary

partition of V (KN) into two equally-sized parts. Let pinitial = dR(X, Y ) be the density
of red edges between X and Y at the beginning of the process, and define

(4.2) α(p) :=


ε
k

if p ⩽ pinitial + 1
k
,

ε(p − pinitial) otherwise.
The algorithm is then as follows.

Algorithm 4.3 (Off-diagonal book algorithm)
1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ ℓ, stop the process.
2. Let p = dR(X, Y ) be the current red density between X and Y . Define α = α(p)

as in (4.2).
3. Check whether some vertex v ∈ X has at least µ|X| blue neighbors in X. If

yes, perform a blue step, by updating
A → A, B → B ∪ {v}, X → X ∩ NB(v), Y → Y,

and return to step 1.
4. Check whether some vertex v ∈ X is prosperous, meaning that dR(NR(v) ∩

X, NR(v) ∩ Y ) ⩾ p − α. If yes, perform a red step, by updating
A → A ∪ {v}, B → B, X → X ∩ NR(v), Y → Y ∩ NR(v),

and return to step 1.
5. In the remaining case, pick some vertex v ∈ X. It is not prosperous, and has

β|X| blue neighbors in X, for some β ⩽ µ. We now perform a density-boost
step, by updating
A → A, B → B ∪ {v}, X → X ∩ NB(v), Y → Y ∩ NR(v),

and return to step 1.

Apart from the choice of µ = ℓ
k+ℓ

, this algorithm is identical to Algorithm 4.1, except
that we now stop when |B| ⩾ ℓ, rather than when |B| ⩾ k as before. In particular,
Table 4.1 still gives the relevant changes in the parameters. Unfortunately, there is an
additional complication introduced by moving to the off-diagonal setting. Before, when
we sought to upper-bound r(k), we could assume that the initial red density pinitial was
at least 1

2 , by simply swapping the roles of the two colors if necessary. However, once
we are in the off-diagonal setting, this is no longer allowed, and we may have no control
on pinitial. Let us make another completely unjustified assumption.

Assumption 4.4. — At the beginning of the process, we have pinitial ⩾ k
k+ℓ

= 1 − µ.

Note that this is a natural assumption, since Algorithm 2.6 “predicts” that k
k+ℓ

is
roughly the correct red density to expect, in the sense that in the analysis of Algo-
rithm 2.6, this red density is the worst-case occurrence. That is, if Assumption 4.4
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is false “robustly”, then Algorithm 2.6 should already prove a stronger bound than
r(k, ℓ) ⩽

(
k+ℓ

ℓ

)
. In fact, one can essentially force Assumption 4.4 to hold because of

such an argument; if we start with pinitial < k
k+ℓ

, we can run a number of steps of the
Erdős–Szekeres algorithm, until we end up with p ⩾ k

k+ℓ
. If this never happens, then

Algorithm 2.6 itself will prove that r(k, ℓ) ≪
(

k+ℓ
ℓ

)
.

Given Assumption 4.4, we can conclude that Lemmas 3.6, 3.7 and 4.2 remain true for
Algorithm 4.3. Moreover, we can prove the following modified version of Lemmas 3.3
and 3.4 (combined into a single statement), whose proof is essentially unchanged.

Lemma 4.5 (Modified Lemmas 3.3 and 3.4). — We have p ⩾ pinitial − ε ⩾ (1 − µ) − ε

throughout the entire process. Therefore, at the end of the process, we have

|Y | ⩾ (1 − µ)t+s+o(k)N.

With all of this setup, we are finally able to prove(12) an exponentially-improved upper
bound on r(k, ℓ).

Theorem 4.6. — We have r(k, ℓ) ⩽ 2− 2
9 ℓ+o(k)

(
k+ℓ

ℓ

)
for all ℓ ⩽ k

4 .

Note that in this theorem, the gain over Theorem 2.2 is exponential in ℓ, and not
in k. This is natural, and the best we could hope for. Indeed, if ℓ = o(k), then the
bound in Theorem 2.2 is already subexponential in k, so it is impossible to improve it
by a factor of 2−δk+o(k) for any fixed δ > 0.
Proof of Theorem 4.6. — Let C be a constant that we will optimize later, and let
N = 2(1+C)k. We fix a two-coloring of E(KN), and assume for contradiction that there
is no red Kk or blue Kℓ in this coloring. We apply Algorithm 4.3, with µ = ℓ

k+ℓ
⩽ 1

5 .
Note that this choice of µ implies that ℓ

k
= µ

1−µ
. If we output that A is a red Kk or B

is a blue Kℓ, then we have obtained a contradiction, hence we can assume this does not
happen. Therefore, the process only terminates when |X| ⩽ 1, and we also have that
b + s ⩽ ℓ. Plugging this into Lemma 4.2, we find that

N ⩽ 2o(k)(1 − µ)−tµ−(ℓ−s)β−s ⩽ 2o(k)(1 − µ)−tµ−(ℓ−s)
(

s + t

s

)s

.

Note that we obtain a better exponent on µ than we had in (4.1), because the assumption
b + s ⩽ ℓ is stronger than what we had before; this is precisely the extra strength gained
by moving to the off-diagonal setting. Taking logarithms and dividing by k shows that

C − o(1) ⩽ −1 + x log2

(
1

1 − µ

)
+
(

µ

1 − µ
− y

)
log2

1
µ

+ y log2

(
x + y

y

)
=: G̃µ(x, y),

(12)One should really write “prove”, since everything here is dependent on the unjustified Assump-
tions 3.1 and 4.4, as well as on the key Lemma 3.6, which we did not rigorously prove. Additionally,
the bound in Theorem 4.6 is stronger than any result proved by Campos, Griffiths, Morris, and Sa-
hasrabudhe (2023), and this too is a consequence of the fact that we are being unrigorous, especially
with the verification of certain numerical inequalities. However, Theorem 4.6 is true; a rigorous proof
of a stronger statement is given by Gupta, Ndiaye, Norin, and Wei (2024, Corollary 6).
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where the only difference between Gµ and G̃µ is the the term µ
1−µ

in the latter, which
is simply 1 in the former. It comes from the ℓ in the exponent; upon dividing by k we
obtain ℓ

k
= µ

1−µ
.

Additionally, by Lemma 4.5, we have

|Y | ⩾ (1 − µ)t+s+o(k)N.

If |Y | ⩾ r(k − t, ℓ), then we obtain a contradiction by Lemma 2.4, so we may assume
that |Y | < r(k − t, ℓ). Taking logarithms and dividing by k again shows that

(4.3) C − o(1) ⩽ −1 + (x + y) log2

(
1

1 − µ

)
+ 1

k
log2 r(k − t, ℓ).

By Theorem 1.3, we have

log2 r(k − t, ℓ) ⩽ log2

(
k − t + ℓ

ℓ

)

⩽ (k − t + ℓ)H
(

ℓ

k − t + ℓ

)

= k ·
(

1 − x + µ

1 − µ

)
H

(
µ/(1 − µ)

1 − x + µ/(1 − µ)

)
.

Plugging this into (4.3) shows that

C − o(1) ⩽ −1 + (x + y) log2

(
1

1 − µ

)
+
(

1 − x + µ

1 − µ

)
H

(
µ/(1 − µ)

1 − x + µ/(1 − µ)

)
=: F̃µ(x, y).

We are no longer trying to beat the bound r(k) ⩽ 4k, so our goal is no longer to obtain
a contradiction for some C < 1. Instead, we are comparing to 1

k
log2

(
k+ℓ

ℓ

)
, which equals

(1 + µ
1−µ

)H(µ) + o(1), and thus our goal is to obtain a contradiction for some fixed
C < (1 + µ

1−µ
)H(µ) − 1. That is, we would like to show is that for all µ ⩽ 1

5 , we have
min{F̃µ(x, y), G̃µ(x, y)} < (1 + µ

1−µ
)H(µ) − 1 for all x, y ∈ [0, 1]. In fact, we hope to

prove this inequality with some slack, so that we gain an improvement in the exponent.
Recall that our goal is to prove a gain over Theorem 2.2 that is exponential in ℓ. As

such, the slack we get in this inequality should scale like ℓ
k

= µ
1−µ

. That is, we would
like to prove an inequality of the form

min{F̃µ(x, y), G̃µ(x, y)} <

(
1 + µ

1 − µ

)
H(µ) − 1 − δ

µ

1 − µ
,

where δ > 0 is some absolute constant; such a bound would prove that r(k, ℓ) ⩽
2−δℓ+o(k)

(
k+ℓ

ℓ

)
.

Such an inequality holds! In fact, one can check that for µ ⩽ 1
5 , we may take δ as

large as 2
9 . Indeed, here is a plot of the regions where F̃µ > (1 + µ

1−µ
)H(µ) − 1 − 2

9
µ

1−µ

and G̃µ > (1 + µ
1−µ

)H(µ) − 1 − 2
9

µ
1−µ

, respectively, for µ = 1
5 . One can verify that the

regions only move further apart as µ decreases, so µ = 1
5 is the worst case.
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This shows that we do indeed get a contradiction if we set C = (1 + µ
1−µ

)H(µ) − 2
9

µ
1−µ

,
proving the bound

r(k, ℓ) ⩽ 2(1+ µ
1−µ

H(µ)− 2
9

µ
1−µ

+o(1))k = 2− 2
9 ℓ+o(k)

(
k + ℓ

ℓ

)

for all ℓ ⩽ k
4 .

4.3. Back to the diagonal

Now that we have an upper bound on r(k, ℓ) for ℓ ⩽ k
4 , we can finally complete the

proof of Theorem 1.5. We will actually prove the following bound, which is a little bit
stronger. The only reason we obtain a stronger bound than Campos, Griffiths, Morris,
and Sahasrabudhe (2023) is the numerical computations: the authors rigorously justify
every numerical inequality, which is often substantially simpler to do if one proves
a slightly weaker bound, whereas we content ourselves with “proving” the numerical
bounds through pictures. As mentioned in Section 1, much stronger bounds were
recently proved by Gupta, Ndiaye, Norin, and Wei (2024) via an alternative analysis.
It follows from their results that Theorem 4.7 is true, even though we do not provide a
rigorous proof.

Theorem 4.7. — We have r(k) ⩽ 2(2− 3
200 +o(1))k ≈ 3.96k.

Proof. — Let C be a constant that we will optimize later. Let N = 2(1+C)k, and fix a
two-coloring of E(KN), which we assume for contradiction has no monochromatic Kk.
We run Algorithm 4.1 with µ = 2

5 . Thanks to Theorem 4.6 (plus Theorem 2.2), we
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know that

r(k − t, k) ⩽



(
2k − t

k − t

)
if t < 3

4k,

2− 2
9 (k−t)+o(k)

(
2k − t

k − t

)
if t ⩾ 3

4k.

Recall that we obtain a contradiction if |Y | ⩾ r(k − t, k) at the end of the process, hence
we may assume that |Y | < r(k − t, k). Combining this with Lemma 3.4(13), we see that
we get a contradiction if

C − o(1) ⩽ −1 + (x + y) + 1
k

log2 r(k − t, k)

⩽

−1 + (x + y) + (2 − x)H(1−x
2−x

) if x < 3
4 ,

−1 + (x + y) − 2
9(1 − x) + (2 − x)H(1−x

2−x
) if x ⩾ 3

4

= F (x, y) − 2
9(1 − x)1x⩾ 3

4

=: F̂ (x, y),

where 1x⩾ 3
4

denotes the indicator function for the event x ⩾ 3
4 . In particular, it suffices

for us to prove that min{F̂ (x, y), G 2
5
(x, y)} ⩽ 1 − δ for all x, y ∈ [0, 1], where δ > 0 is a

constant that will end up in the exponent in N .
This indeed works! Here are the plots of where F̂ and G 2

5
are greater than 1; the

second plot is just zoomed in to show the “dangerous area”, where the two regions no
longer intersect.

In fact, one can check that maxx,y∈[0,1] min{F̂ (x, y), G 2
5
(x, y)} < 0.985. Therefore, we

obtain a contradiction if we set C = 0.985 = 1 − 3
200 , proving that r(k) ⩽ 2(2− 3

200 +o(1))k,
as claimed.

(13)We are back to the diagonal setting, so we may assume that pinitial ⩾ 1
2 . Therefore Lemmas 3.3

and 3.4 are again valid.
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5. The symmetric book algorithm

In this section, we describe the new proof that r(k) ⩽ (4 − δ)k, due to Balister et al.
(2024). The main new ingredient in their proof is a lemma about the self-correlation
of probability distributions in high-dimensional Euclidean space; this lemma can be
used to introduce a new kind of density-boost step, which is much simpler to analyze.
As such, their proof is also more conceptual, and does not rely on the verification of
complicated numerical inequalities. In this section, we discuss their strategy and prove
their bound on r(k), while deferring the geometry, and hence the proof of the key lemma,
to Section 6.

Balister et al. (2024) introduce a modified book algorithm, which removes the asym-
metry that was inherent to Algorithm 4.1. Roughly speaking, the fact that the colors
play symmetric roles is their new approach is the key reason why this argument gen-
eralizes to more than two colors, whereas the earlier one of Campos, Griffiths, Morris,
and Sahasrabudhe, 2023 did not. However, for simplicity, we will continue to only work
with two colors, as before.

5.1. The steps of the symmetric book algorithm

In the symmetric book algorithm of Balister et al. (2024), we maintain five disjoint
sets A, B, X, Y, Z, such that (A, X ∪ Y ) is a red book and (B, X ∪ Z) is a blue book.
Thus, the only difference from the earlier setup is the new set Z, which is a blue analogue
of Y .

A

B

X

Y

Z

We initialize the process with A = B = ∅, and X ⊔ Y ⊔ Z an arbitrary equitable
partition of V (KN). As before, the two main types of steps will be red and blue steps,
wherein we move a vertex v from X to A (resp. B), and shrink X and Y (resp. X and
Z) to their intersection with the red (resp. blue) neighborhood of v.

In our prior analysis of the book algorithm, we had to track four parameters: the
sizes of A, B, and X, and the red density between X and Y . In this new setup, we
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will naturally also track |Z| and the blue density between X and Z, which controls how
much Z shrinks every time we do a blue step. Let us denote the red and blue densities,
respectively, as

pR := dR(X, Y ) = eR(X, Y )
|X||Y |

and pB := dB(X, Z) = eB(X, Z)
|X||Z|

.

In analogy with Assumptions 3.1 and 4.4, we make the following assumptions about the
red and blue densities. As before, one can remove these assumptions by working harder,
but by imposing them we can simplify the exposition and focus on the key new ideas.

Assumption 5.1. — At every step of the process, every vertex in X has exactly pR|Y |
red neighbors in Y and exactly pB|Z| blue neighbors in Z.

Assumption 5.2. — At the beginning of the process, we have pR ⩾ 1
2 and pB ⩾ 1

2 .

Note that Assumption 5.1 is a weaker assumption than Assumption 3.1, since we do
not assume anything about the degrees of vertices in Y or Z. In our earlier analysis
of the book algorithm, such an assumption was necessary in order to prove (3.1), the
basic inequality governing the contribution of density-boost steps. In what follows, we
will not need this inequality, or indeed any of the earlier analysis of density-boost steps.
In its place, we will use the following key lemma, whose proof we defer to Section 6.

Lemma 5.3 (Refinement lemma). — Let X, Y, Z be disjoint sets of vertices in a coloring
of E(KN), and let αR, αB ∈ (0, 1) be parameters. There exists a vertex v ∈ X, a subset
X ′ ⊆ X, and a real number κ ⩾ 0 with the following properties.
(a) X ′ is not much smaller than X: We have |X ′| ⩾ c2−Cκ|X|, where C = 6 and

c = 1/8 are constants.
(b) No density drop in either color: Letting Y ′ = Y ∩NR(v) and Z ′ = Z ∩NB(v),

we have that

dR(X ′, Y ′) ⩾ dR(X, Y ) − αR and dB(X ′, Z ′) ⩾ dB(X, Z) − αB.

(c) Density boost in one color: We have that

dR(X ′, Y ′) ⩾ dR(X, Y ) + (κ2 − 1)αR or dB(X ′, Z ′) ⩾ dB(X, Z) + (κ2 − 1)αB.

In the symmetric book algorithm, we apply Lemma 5.3 at every iteration, before
deciding whether to take a red, blue, or density-boost step. As before, the quantities
αR, αB determine how much we are willing to lose on the red and blue density, re-
spectively. As such, we see that Lemma 5.3(b) is extremely helpful, and appears to
completely eliminate the need for density-boost steps: every time we take a red or a
blue step, Lemma 5.3(b) guarantees that the relevant density does not drop by more
than our specified amount of αR or αB.
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However, we cannot entirely dispense with density-boost steps. Indeed, every time
we apply Lemma 5.3, we shrink X to X ′, and we have little control over how much
smaller X ′ is than X: note that, crucially, κ is an output of Lemma 5.3, and not an
input, so it may be that X ′ is much smaller than X. This is where Lemma 5.3(c) comes
in: in case κ is very large, so that X ′ is much smaller than X, we gain a great deal on
the density in one of the two colors. We can thus perform a new kind of density-boost
step, replacing X by X ′ and one of Y, Z by Y ′, Z ′. As we will see, the trade-offs in this
density-boost step work out in our favor; it is crucial here that X shrinks by a factor of
exp(−O(κ)), but that the density increases by an amount proportional to κ2. Because
we only do such density-boost steps when κ is large, the amount we gain on the density
is substantially larger than the amount we lose on |X|.

One final difference between the symmetric book algorithm and the book algorithm
studied in Sections 3 and 4 is the stopping condition. We will fix some integers t, m

satisfying the assumptions of Lemma 2.4, and our goal is to produce a monochromatic
Bt,m. As such, we will stop the process if |A| ⩾ t or |B| ⩾ t, and we aim to prove
that at the end of the process, we still have |Y | ⩾ m and |Z| ⩾ m. When the process
terminates, we have thus found our monochromatic Bt,m. Note that this stopping
condition guarantees that we never do more than t red steps or more than t blue steps.

The two things that remain are to define αR, αB, and to specify the cutoff for κ that
determines whether we do a density-boost step or a red or blue step. For the former,
we use the same definition as before, only adjusted to the fact that we now do at most
t red or blue steps, namely we set ε = t−1/4 and define

(5.1) α(p) :=


ε
t

if p ⩽ 1
2 + 1

t
,

ε(p − 1
2) otherwise,

and then set αR := α(pR), αB := α(pB). Finally, the cutoff κcutoff for κ will be a fixed
constant.

5.2. Formal definition of the symmetric book algorithm

We are now ready to define the symmetric book algorithm of Balister et al. (2024).
We begin by fixing various parameters. First, as in Lemma 5.3, we set C = 6 and
c = 1/8. We then define

(5.2) η := 1
8000 and t := ηk,

and set ε = t−1/4, analogously to our choice of ε in Section 3. Finally, we set

(5.3) κcutoff := 400 =
√

20
η

.

We remark that in the proof, the only properties we will use of these constants are that

κcutoff ⩾ 8C, κ2
cutoff ⩾ 8 log2

1
c
, 2

(
log2

1
c

+ Cκcutoff

)
+ 5 <

1
η

, and κ2
cutoff ⩾

20
η

.
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Clearly any sufficiently large κcutoff will satisfy the first two constraints, and additionally
for any sufficiently large κcutoff we can pick an appropriate η to satisfy the latter two.
The final upper bound on r(k) that we will prove (see Theorem 5.11) is r(k) ⩽ 2(2−η2/10)k,
hence we are interested in choosing η as large as possible while satisfying the constraints
above. However, we remark that no real effort was made to optimize any of the constants.

The symmetric book algorithm is then defined as follows, initialized with A = B = ∅
and X ⊔ Y ⊔ Z an arbitrary partition of V (KN) into three sets of size(†) N/3.

Algorithm 5.4 (Symmetric book algorithm)
1. If X ⩽ 1, |A| ⩾ t, or |B| ⩾ t, stop the process.
2. Let pR = dR(X, Y ) and pB = dB(X, Z) be the current red and blue densities.

Define αR = α(pR) and αB = α(pB) according to (5.1).
3. Perform a refinement step: apply Lemma 5.3 to obtain a vertex v ∈ X, a set

X ′ ⊆ X, and a number κ ⩾ 0. Let Y ′ = Y ∩ NR(v) and Z ′ = Z ∩ NB(v).
4. If κ ⩾ κcutoff , perform a density-boost step in one of the two colors.

(a) If dR(X ′, Y ′) ⩾ (κ2 − 1)pR, perform a red density-boost step, by updating
A → A, B → B, X → X ′, Y → Y ′, Z → Z,

and return to step 1.
(b) If dB(X ′, Z ′) ⩾ (κ2 −1)pB, perform a blue density-boost step, by updating

A → A, B → B, X → X ′, Y → Y, Z → Z ′,

and return to step 1.
5. If κ < κcutoff , check whether v has at least 1

2 |X ′| red neighbors in X ′.
(a) If yes, perform a red step, by updating

A → A ∪ {v}, B → B, X → X ′ ∩ NR(v), Y → Y ′, Z → Z,

and return to step 1.
(b) If not, then v has at least(†) 1

2 |X ′| blue neighbors in X ′. In this case,
perform a blue step, by updating

A → A, B → B ∪ {v}, X → X ′ ∩ NB(v), Y → Y, Z → Z ′,

and return to step 1.

Note that by Assumption 5.1, we have that |Y ′| = pR|Y | and |Z ′| = pB|Z|. Addition-
ally, whenever we perform a red step or a red density-boost step, we shrink X to a subset
and do not change Z, hence we do not affect pB; similarly, we do not affect pR when
doing a red step or red density-boost step. Using these facts, we can fill out Table 5.1,
which records how the key parameters change during the execution of Algorithm 5.4.

5.3. Analysis of the symmetric book algorithm

We now collect various lemmas about how the development of the parameters through-
out the execution of Algorithm 5.4. Let sR and sB denote the total number of red and
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|A| |B| |X| |Y | |Z| pR pB

red density-boost – – ×c2−Cκ ×pR – +(κ2 − 1)αR –
blue density-boost – – ×c2−Cκ – ×pB – +(κ2 − 1)αB

red step +1 – ×1
2c2−Cκ ×pR – −αR –

blue step – +1 ×1
2c2−Cκ – ×pB – −αB

Table 5.1. How the various parameters evolve during Algorithm 5.4.

blue density-boost steps done during the process. Recall that by the stopping condition
in step 1, we do at most t red and at most t blue steps.

The first two lemmas are proved identically to Lemmas 3.3 and 3.4, respectively.

Lemma 5.5. — We have pR ⩾ 1
2 − ε and pB ⩾ 1

2 − ε throughout the entire process.

Lemma 5.6. — At the end of the process, we have |Y | ⩾ 2−t−sR−o(k)N and |Z| ⩾
2−t−sB−o(k)N .

Now, let κR,i, κB,i denote the value of κ used during the ith red (resp. blue) density-
boost step. Additionally, let κR, κB denote the average value of these numbers, i.e.

κR := 1
sR

sR∑
i=1

κR,i and κB := 1
sB

sB∑
i=1

κB,i.

The next lemma is analogous to Lemma 3.5.

Lemma 5.7. — At the end of the process, we have

|X| ⩾
(1

2c2−Cκcutoff

)2t+o(k)
csR+sB 2−C(sRκR+sBκB)N.

Proof. — Every red or blue step shrinks X by at most a factor(†) of 1
2c2−Cκcutoff , since

we only do a red or blue step if the current value of κ is at most κcutoff . As we do at
most t red and at most t blue steps, we obtain the factor of (1

2c2−Cκcutoff )2t. Similarly,
the ith red density-boost step shrinks X by at most a factor of c2−CκR,i , hence the total
contribution of the red density-boost steps is

sR∏
i=1

c2−CκR,i = csR2−C
∑sR

i=1 κR,i = csR2−CsRκR ,

by the definition of κR. Adding in the analogous contribution of the blue density-boost
steps yields the claimed result.

Finally, the following lemma is analogous to Lemma 3.6, and is proved identically.
Indeed, the only difference from Lemma 3.6 is that, rather than saying that the ith
density-boost step boosts the red density by 1−βi

βi
α, we say that the ith red density-boost

step increases pR by at least (κ2
R,i − 1)αR, and similarly for the blue density-boost steps.
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Lemma 5.8. — We have
sR∑
i=1

(κ2
R,i − 1) ⩽ t + o(k) and

sB∑
i=1

(κ2
B,i − 1) ⩽ t + o(k).

We remark that in the analysis of the original book algorithm, it was critical to prove
Lemma 3.6 with a main term of t, rather than a weaker bound such as 2t. There is
enough slack in the present argument so that a much weaker bound than Lemma 5.8
would suffice (and indeed Balister et al. (2024, Lemma 4.3) prove such a weaker bound,
with a constant-factor loss).

Using Lemma 5.8, we can prove the following bound on the number of density-boost
steps and on their total contribution to Lemma 5.7, which will play the same role in
the argument as Lemma 3.7.

Lemma 5.9. — For sufficiently large k, we have

sRκR ⩽
4t

κcutoff
and sBκB ⩽

4t

κcutoff
.

Additionally,
sR ⩽

4t

κ2
cutoff

and sB ⩽
4t

κ2
cutoff

.

Proof. — Recall from (5.2) that t = ηk for a fixed constant η. Hence, for sufficiently
large k, the t + o(k) term in Lemma 5.8 is at most 2t. We henceforth assume that k

is sufficiently large for this to hold. Next, we recall by step 4 of Algorithm 5.4 that
κR,i ⩾ κcutoff for all i, and that κcutoff ⩾

√
2 by our choice in (5.3). Therefore,

2t ⩾
sR∑
i=1

(κ2
R,i − 1) ⩾ 1

2

sR∑
i=1

κ2
R,i ⩾

κcutoff

2

sR∑
i=1

κR,i = κcutoff

2 · (sRκR),

where we use Lemma 5.8 in the first inequality, that x2 − 1 ⩾ 1
2x2 for x ⩾

√
2 in the

second, that κR,i ⩾ κcutoff in the third, and the definition of κR in the fourth. This,
together with the analogous result for blue, yields the first claimed result.

The second claimed result then follows immediately if we use once more that κR ⩾
κcutoff , and similarly for blue.

Recall from Lemma 5.7 that the total contribution of the density-boost steps to |X| is
csR+sB e−C(sRκR+sBκB). By Lemma 5.9, both of these exponential terms can be bounded
as exp(O(t/κcutoff)). This means that if κcutoff is sufficiently large in terms of c and
C—and our choice in (5.3) is indeed sufficiently large—then the contribution of the
density-boost steps is negligible compared to the other exponential terms.

It is here that we see why it is crucial to obtain in Lemma 5.3 a density boost which
asymptotically dominates κ. It is thanks to this that the proof of Lemma 5.9 gives us
a κcutoff term in the denominator; thanks to this we can make the density-boost steps
negligible by a sufficiently large choice of κcutoff . That is, if Lemma 5.3 only gave a
density-boost of order κ, this argument would not work. Luckily Lemma 5.3 boosts the
density by a quadratic quantity in κ, which makes the whole argument go through.
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5.4. Proof of the upper bound on r(k)
Given our lemmas above on the evolution of the symmetric book algorithm, it is fairly

straightforward to prove the following result, which implies that Algorithm 5.4 always
outputs a sufficiently large monochromatic book.

Lemma 5.10. — Let k be sufficiently large, and let

N ⩾ max{2t+ηt/4m, 2k}

for some integer m. Then Algorithm 5.4 terminates by finding a monochromatic copy
of Bt,m.

Proof. — It suffices to prove that at the end of the process, we have |X| > 1 and
|Y |, |Z| ⩾ m. Indeed, if this is the case, then Algorithm 5.4 can only terminate when
one of A or B has size t, at which point it forms a monochromatic copy of Bt,m with Y

or Z, respectively.
For the second claim, we have by Lemma 5.6 that |Y | ⩾ 2−t−sR−o(k)N . By Lemma 5.9,

we have that
sR ⩽

4t

κcutoff2
= ηt

5 ,

since κ2
cutoff = 20/η by (5.3). Therefore, for k sufficiently large we have that sR + o(k) ⩽

ηt/4, hence |Y | ⩾ 2−t−ηt/4N ⩾ m. The proof that |Z| ⩾ m at the end of the process
proceeds identically.

It remains to prove the lower bound on |X|, for which we use Lemma 5.7. We estimate
each of the quantities appearing in it in turn. First, recalling the definitions of c, C,
and κcutoff , we see that

1
2c2−Cκcutoff = 2−4 · 2−6·400 = 2−2404.

Therefore, for k sufficiently large, we have that(1
2c2−Cκcutoff

)2t+o(k)
⩾ 2−6000t.

Next, by Lemma 5.9, we have that

csR+sB = 2−3(sR+sB) ⩾ 2−24t/κ2
cutoff ⩾ 2−t,

since 24/κ2
cutoff = 24/4002 ⩽ 1. Finally, again by Lemma 5.9, we have that

C(sRκR + sBκB) ⩽ 8Ct

κcutoff
= 48

400t ⩽ t.

Plugging this all into Lemma 5.7, we conclude that at the end of the process,

|X| ⩾
(1

2c2−Cκcutoff

)2t+o(k)
csR+sB 2−C(sRκR+sBκB)N ⩾ 2−6000t−t−tN > 2−t/ηN = 2−kN,

since 6002 < 1/η and k = ηt. Finally, by our assumption that N ⩾ 2k, we conclude
that |X| > 1 at the end of the process, as claimed.
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Finally, the upper bound on diagonal Ramsey numbers is an immediate consequence
of Lemmas 2.4 and 5.10.

Theorem 5.11 (Balister et al., 2024). — If k is sufficiently large, then

r(k) ⩽ 2(2−η2/10)k.

We stress that, as always, the proof we give is not complete, as it relies on Assump-
tions 5.1 and 5.2, both of which we have not justified. Additionally, we remark that
this is not the strongest bound that can be proved by this technique; in particular, the
choices of η and κcutoff are not fully optimized.
Proof of Theorem 5.11. — Let k be sufficiently large, and let N = 2(2−η2/10)k. Fix a
two-coloring of E(KN), and run Algorithm 5.4. Recalling that t = ηk, let m = r(k−t, k).
By Theorem 2.2, we have that

m ⩽

(
2k − t

k

)
=
(

(2 − η)k
k

)
⩽ 2(2−η)H( 1

2−η
)·k.

Now, we have that (
x + x2

4

)
+ (2 − x)H

( 1
2 − x

)
⩽ 2 − x2

10

for all x ∈ [0, 1]; this can be verified by computing the Taylor series of the difference,
and noting that all coefficients are non-positive. Applying this fact with x = η, we
conclude that

2t+ηt/4m ⩽ 2(η+η2/4)·k · 2(2−η)H( 1
2−η

)·k ⩽ 2(2−η2/10)k = N.

Since we also have N ⩾ 2k, Lemma 5.10 implies that the coloring contains a monochro-
matic Bt,m. By Lemma 2.4, we conclude that the coloring also contains a monochromatic
Kt, as claimed.

6. High-dimensional geometry and the proof of Lemma 5.3

6.1. Reduction to a geometric statement

All that remains now is to prove Lemma 5.3, which is really the heart of the proof
presented above. As previously mentioned, Lemma 5.3 is a consequence of a purely
geometric lemma, about probability distributions in high-dimensional Euclidean space.
Before stating this geometric lemma, however, let us build up to it by stating a proba-
bilistic strengthening of Lemma 5.3.

For a vertex v ∈ X, let us denote by NY (v) the red neighborhood of v in Y , that is,
NY (v) := Y ∩NR(v). Similarly, NZ(v) := Z∩NB(v) will denote the blue neighborhood of
v in Z. With this notation, we now state the probabilistic strengthening of Lemma 5.3.
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Lemma 6.1. — Let X, Y, Z be disjoint sets of vertices in a coloring of E(KN), and
let αR, αB ∈ (0, 1). Let pR = dR(X, Y ) and pB = dB(X, Z). Let v, w be independent,
uniformly random vertices of X. There exists a real number κ ⩾ 0 such that

(6.1) Pr
(
|NY (v) ∩ NY (w)| ⩾ (pR + (κ2 − 1)αR)pR|Y |

and |NZ(v) ∩ NZ(w)| ⩾ (pB − αB)pB|Z|
)
⩾ c2−Cκ,

or else the same holds upon swapping the roles of red and blue and of Y and Z. Here,
c = 1/8 and C = 6 are the same constants as in Lemma 5.3.

Note that Lemma 6.1 is a more symmetric statement than Lemma 5.3: it discusses
the common red and blue neighborhoods of a random pair of vertices in X, as opposed
to isolating a special vertex v ∈ X as well as a special subset X ′ ⊆ X. Nonetheless,
Lemma 5.3 follows from Lemma 6.1 by a simple averaging argument.
Proof of Lemma 5.3, assuming Lemma 6.1. — Let us suppose that (6.1) holds; the
other case, where the roles of the colors are swapped, follows by a symmetric argu-
ment. First, by the law of total probability, there exists some fixed v ∈ X such that

(6.2) Pr
(
|NY (v) ∩ NY (w)| ⩾ (pR + (κ2 − 1)αR)pR|Y |

and |NZ(v) ∩ NZ(w)| ⩾ (pB − αB)pB|Z|
)
⩾ c2−Cκ,

This is the same inequality as (6.1), except that now only w is random. As in the
statement of Lemma 5.3, let Y ′ = NY (v) and Z ′ = NZ(v). Let X ′ ⊆ X denote the set
of all w ∈ X such that

|NY (v) ∩ NY (w)| ⩾ (pR + (κ2 − 1)αR)pR|Y | and |NZ(v) ∩ NZ(w)| ⩾ (pB − αB)pB|Z|.

Then (6.2) is equivalent to the statement that |X ′| ⩾ c2−Cκ|X|, proving Lemma 5.3(a).
Next, we have that

eR(X ′, Y ′) =
∑

w∈X′
|NR(w) ∩ Y ′| =

∑
w∈X′

|NY (v) ∩ NY (w)| ⩾ |X ′| · (pR + (κ2 − 1)αR)pR|Y |,

by the definition of X ′. Recalling that |Y ′| = pR|Y | by Assumption 5.1, we find that

dR(X ′, Y ′) = eR(X ′, Y ′)
|X ′||Y ′|

⩾ pR + (κ2 − 1)αR,

which proves Lemma 5.3(c) and also implies the first bound in Lemma 5.3(b). Similarly,
we can compute that

dB(X ′, Z ′) ⩾ pB − αB,

which completes the proof of Lemma 5.3(b).

It thus only remains to prove Lemma 6.1, which follows from a geometric argument.
In order to convert the statement of Lemma 6.1 to a geometric one, we simply observe
that the size of the intersection of two sets can be encoded in a linear-algebraic way, as
the inner product of their indicator vectors. Namely, let us denote by 1Y (v) ∈ RY the
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indicator vector of the set NY (v); this is the vector whose yth coordinate equals 1 if
y ∈ NY (v), and 0 otherwise. Then we have the identity

⟨1Y (v), 1Y (w)⟩ = |NY (v) ∩ NY (w)|,

since the inner product of two binary vectors is precisely the number of coordinates in
which they both have a 1.

In order to precisely arrive at the setup of Lemma 6.1, we center and rescale the
vectors 1Y (v). Namely, letting 1 denote the all-ones vector, we define

(6.3) σY (v) := 1Y (v) − pR1√
αRpR|Y |

.

Note that by Assumption 5.1, 1Y (v) has exactly pR|Y | entries equal to 1, hence by
subtracting pR1 we ensure that the sum of the entries in σY (v) is zero. Thus, all the
vectors {σY (v) : v ∈ X} lie on a sphere of radius

√
1−pR

αR
centered at the origin in RY .

Additionally, we can compute that for all v, w ∈ X, we have

⟨σY (v), σY (w)⟩ = 1
αRpR|Y |

⟨1Y (v) − pR1, 1Y (w) − pR1⟩

= 1
αRpR|Y |

(
⟨1Y (v), 1Y (w)⟩ − pR⟨1Y (v), 1⟩ − pR⟨1, 1Y (w)⟩ + p2

R⟨1, 1⟩
)

= 1
αRpR|Y |

(
|NY (v) ∩ NY (w)| − p2

R|Y |
)

,

where we used Assumption 5.1 in the final step, to conclude that ⟨1Y (v), 1⟩ =
⟨1, 1Y (w)⟩ = pR|Y |. Note that if NY (v), NY (w) were random subsets of Y , each of
size pR|Y |, then their expected intersection size would be exactly p2

R|Y |, hence the
inner product ⟨σY (v), σY (w)⟩ measures (up to scaling) how much their true intersection
size deviates from this average value. In particular, for any λ ∈ R, we have that
⟨σY (v), σY (w)⟩ ⩾ λ if and only if

1
αRpR|Y |

(
|NY (v) ∩ NY (w)| − p2

R|Y |
)
⩾ λ,

which in turn happens if and only if

|NY (v) ∩ NY (w)| ⩾ (pR + λαR) pR|Y |.

This shows that Lemma 6.1 is a special case of the following geometric result of Balister
et al. (2024).

Theorem 6.2 (Geometric lemma). — Let X, Y, Z be finite sets, and let σY : X → RY

and σZ : X → RZ be arbitrary functions. Let v, w be independent, uniformly random
elements of X. There exists a real number κ ⩾ 0 such that

(6.4) Pr
(
⟨σY (v), σY (w)⟩ ⩾ κ2 − 1 and ⟨σZ(v), σZ(w)⟩ ⩾ −1

)
⩾ c2−Cκ,

or else the same holds upon swapping the roles of Y and Z.
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Indeed, the statement of Lemma 6.1 is precisely that of Theorem 6.2 when one defines
σY as in (6.3) (and analogously for σZ). Hence it only remains to prove Theorem 6.2.

Before turning to the proof, a few remarks about Theorem 6.2 are in order. First,
note that the sets Y and Z play no role in the statement: we could equally well take σY

and σZ to be valued in the same high-dimensional Euclidean space Rn, or alternately in
the infinite-dimensional Hilbert space ℓ2. Second, as we will see, the set X also does not
really matter: the same statement holds for arbitrary coupled probability distributions
on RY × RZ , and not only those distributions that are uniform on a finite support.
Finally, and perhaps most importantly, we stress that the statement of Theorem 6.2 is
not scale-invariant, unlike many other results about inner products. That is, because
the outcome of Theorem 6.2 involves constants like −1, the statement of the lemma
changes if we replace, say, σY by 100σY : we cannot simply take the same value of κ

upon such a rescaling. In fact, this lack of scale-invariance is crucial in the deduction
of Lemma 6.1 and hence Lemma 5.3: recall from (6.3) that we chose a careful scaling
of σY , in order to incorporate the parameter αR.

6.2. The one-color version of Theorem 6.2

Theorem 6.2 is a “two-color” statement, in that it involves two functions σY , σZ , as
is necessary for the application to two-color Ramsey numbers. Balister et al. (2024,
Lemma 3.1) prove a more general result, which gives essentially the same outcome but
for an arbitrary number of functions σ1, . . . , σq; this is, naturally, necessary for their
application to upper bounds on multicolor Ramsey numbers. While we will continue to
work in the two-color setting, the proof of Theorem 6.2 is easier to understand if one
begins by proving a simpler statement, which is the one-color version of this result.

Proposition 6.3 (One-color geometric lemma). — Let X, Y be finite sets, and let
σ : X → RY be an arbitrary function. Let v, w be independent, uniformly random
elements of X. There exists a real number κ ⩾ 0 such that

Pr
(
⟨σ(v), σ(w)⟩ ⩾ κ2 − 1

)
⩾

1
(κ2 + 2)2 .

Note that the quantitative dependencies in the one-color statement are much better:
we obtain a polynomial relationship between the lower bound on the inner products
and the success probability, rather than the exponential relationship appearing in The-
orem 6.2. It remains open whether there is such a polynomial strengthening of Theo-
rem 6.2; if there is, one would obtain a strengthened version of Lemma 5.3, which would
in all likelihood lead to better upper bounds on diagonal Ramsey numbers.

In the proof of Proposition 6.3, we will use two simple and well-known observations.
The first states that the expected inner product of independent, identically distributed
random vectors is non-negative.
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Lemma 6.4. — Let σ, σ′ be independent, identically distributed random vectors in Rn,
sampled from an arbitrary probability distribution. Then

E[⟨σ, σ′⟩] ⩾ 0.

Proof. — By linearity of expectation and the independence of σ and σ′, we have
E[⟨σ, σ′⟩] = ⟨E[σ],E[σ′]⟩.

E[σ] is some fixed vector in Rn, and as σ and σ′ are identically distributed, it equals
E[σ′]. Hence E[⟨σ, σ′⟩] is simply the squared norm of some vector in Rn, which is
non-negative.

The second well-known observation we need is an immediate consequence of Fubini’s
theorem.

Lemma 6.5. — For any random variable V , we have

E[V ] ⩽
∫ ∞

0
Pr(V ⩾ λ) dλ.

Proof. — Let the underlying probability space of V be (Ω, µ). Then Pr(V ⩾ λ) =∫
Ω 1V (ω)⩾λ dµ(ω). Additionally, for any fixed real number V , we have

∫∞
0 1V ⩾λ dλ equals

V if V ⩾ 0, and equals 0 otherwise. In particular, for all V , we have
∫∞

0 1V ⩾λ dλ ⩾ V .
Therefore, by Fubini’s theorem,∫ ∞

0
Pr(V ⩾ λ) dλ =

∫ ∞

0

∫
Ω

1V (ω)⩾λ dµ(ω) dλ

=
∫

Ω

∫ ∞

0
1V (ω)⩾λ dλ dµ(ω)

⩾
∫

Ω
V (ω) dµ(ω)

= E[V ].

Proposition 6.3 is now a simple consequence of these two observations.
Proof of Proposition 6.3. — Let V = ⟨σ(v), σ(w)⟩+1, so that E[V ] ⩾ 1 by Lemma 6.4.
By Lemma 6.5, we find that

1 ⩽ E[V ] ⩽
∫ ∞

0
Pr(V ⩾ λ) dλ =

∫ ∞

−1
Pr(⟨σ(v), σ(w)⟩ ⩾ λ) dλ.

If we had that Pr(⟨σ(v), σ(w)⟩ ⩾ λ) ⩽ 1/(λ + 3)2 for all λ ⩾ −1, then we would
conclude that

1 ⩽
∫ ∞

−1
Pr(⟨σ(v), σ(w)⟩ ⩾ λ) dλ ⩽

∫ ∞

−1

1
(λ + 3)2 dλ = 1

2 ,

a contradiction. Therefore, there exists some λ ⩾ −1 for which Pr(⟨σ(v), σ(w)⟩ ⩾ λ) ⩾
1/(λ + 3)2. Substituting κ =

√
λ + 1, we conclude that

Pr(⟨σ(v), σ(w)⟩ ⩾ κ2 − 1) ⩾ 1
(κ2 + 2)2 ,

as claimed.
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6.3. Proof of Theorem 6.2
Although the proof of Proposition 6.3 was very simple, it is helpful to reconsider it

from a high-level view, as a very similar strategy will be used to prove Theorem 6.2. In
the proof of Proposition 6.3, we considered the function f(x) = x + 1, and then defined
a random variable

V := f(⟨σ(v), σ(w)⟩).
The proof of Proposition 6.3 relies on three important properties of this function f ,
although they are all so simple that they were not explicitly noted in the proof. First,
f is non-positive on the region {x : x ⩽ −1}; this was implicitly used to restrict our
attention to λ ⩾ −1, which ends up meaning that we obtain κ ⩾ 0. Second, f does not
grow too fast, which was used to obtain a good trade-off between λ and the probability
Pr(V ⩾ λ). Finally, and most importantly, we had the inequality E[V ] ⩾ 1, which
followed from Lemma 6.4.

In the proof of Theorem 6.2, we will pick a more complicated function f : R2 → R,
and use it to define a random variable V by

(6.5) V := f(⟨σY (v), σY (w)⟩, ⟨σZ(v), σZ(w)⟩).

In addition to requiring f to satisfy analogues of the three properties discussed above,
we also want the choice of f to allow us to relate Pr(V ⩾ λ) to the probability we wish
to estimate in (6.4). The main difficulty, of course, is that we now want to ensure that
two inner products are simultaneously large.

To that end, we define

(6.6) M := max{⟨σY (v), σY (w)⟩, ⟨σZ(v), σZ(w)⟩}

and let E be the event

(6.7) E := {⟨σY (v), σY (w)⟩ ⩾ −1 and ⟨σZ(v), σZ(w)⟩ ⩾ −1} .

Then our first goal is to obtain a lower bound on Pr({M ⩾ κ2 − 1} ∩ E), for some κ;
such a lower bound can be directly converted to a lower bound on the probability in
(6.4) (or on the analogous quantity upon interchanging the roles of Y and Z). As such,
it is natural to try defining the random variable V as M1E , since then the probability
we are interested in is precisely of the form Pr(V ⩾ λ). The problem with this choice
is that it is not clear how to lower-bound E[V ], or indeed why one should expect any
non-trivial lower bound to hold. Indeed, while E[M ] ⩾ 0 by Lemma 6.4, it is possible
that much of the positive contribution to E[M ] is attained on the complement of E .

Thus, in order for V to “know about” the event E , we will ensure that f(y, z) ⩽ 0
if y ⩽ −1 or z ⩽ −1. This ensures that V is non-positive on the complement of E ,
so that bounds on Pr(V ⩾ λ) can be converted to bounds on the quantity we are
interested in, Pr({M ⩾ κ2 − 1} ∩ E). Next, as before, we want a global upper bound
on f(y, z) in terms of y and z, and we would like this upper bound to be “reasonable”:
we will use this bound to convert information of the form V ⩾ λ to information of form
M ⩾ κ2 − 1, and we want good control on the dependencies between κ and λ. Finally,
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and most importantly, we want that E[V ] ⩾ 1, so that we can apply the same argument
as in the proof of Proposition 6.3.

This last condition seems like the most difficult one to satisfy, since we have very
little information about the random variables ⟨σY (v), σY (w)⟩ and ⟨σZ(v), σZ(w)⟩: if f

is some complicated function of these variables, why should we expect E[V ] ⩾ 1?
The way to ensure this is via a very simple but remarkably powerful trick, as follows.

First, we will ensure that f is analytic with f(0, 0) = 1. We then consider the Taylor
series of f , that is, we write f(y, z) = ∑

a,b⩾0 ra,by
azb, and apply analyticity and linearity

of expectation to conclude that

E[V ] =
∞∑

a,b=0
ra,bE[⟨σY (v), σY (w)⟩a⟨σZ(v), σZ(w)⟩b].

The utility of this expansion comes from the following simple lemma, a generalization of
Lemma 6.4, which states that all the expectations appearing in the expression above are
non-negative. Thus, a lower bound on E[V ] follows immediately, as long as we ensure
that f has only non-negative Taylor coefficients.

Lemma 6.6. — Fix any probability distribution on RY × RZ, and let (σY , σZ) and
(σ′

Y , σ′
Z) be independent samples from this distribution. We have

E[⟨σY , σ′
Y ⟩a⟨σZ , σ′

Z⟩b] ⩾ 0

for all non-negative integers a, b.

Proof. — Let σ be a random vector in (RY )⊗a ⊗ (RZ)⊗b defined by

σ = (σY ⊗ · · · ⊗ σY︸ ︷︷ ︸
a times

) ⊗ (σZ ⊗ · · · ⊗ σZ︸ ︷︷ ︸
b times

),

and define σ′ analogously. Note that σ and σ′ are independent and identically dis-
tributed, and that

⟨σ, σ′⟩ = ⟨σY , σ′
Y ⟩a⟨σZ , σ′

Z⟩b,

hence the result follows from Lemma 6.4.

So all that remains is to pick a function f : R2 → R which is non-positive on the set
{(y, z) : y ⩽ −1 or z ⩽ −1}, which does not grow too quickly, and which is analytic
with non-negative Taylor coefficients. The following lemma, whose proof is a simple
calculus exercise that we omit, provides such a function.

Lemma 6.7. — The function f : R2 → R defined by

(6.8) f(y, z) := 1 + y(2 + cosh
√

2z) + z(2 + cosh
√

2y)

is non-positive on the set {(y, z) : y ⩽ −1 or z ⩽ −1}, is analytic with non-negative
Taylor coefficients, has f(0, 0) = 1, and satisfies

(6.9) f(y, z) ⩽ e3
√

max{y,z}+1

for all y, z ⩾ −1.
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With this, we have all of the ingredients in place to prove Theorem 6.2, following the
strategy outlined above.
Proof of Theorem 6.2. — We define

V := f(⟨σY (v), σY (w)⟩, ⟨σZ(v), σZ(w)⟩)

as in (6.5), where f : R2 → R is given by (6.8). By Lemma 6.6, the fact that f is
analytic with non-negative Taylor coefficients, and the fact that f(0, 0) = 1, we conclude
that E[V ] ⩾ 1.

Let E be the event defined in (6.7), and let E be its complement. The fact that f is
non-positive on the set {(y, z) : y ⩽ −1 or z ⩽ −1} implies that on the event E , the
random variable V is non-positive. Therefore E[V 1E ] ⩽ 0, and hence

1 ⩽ E[V ] = E[V 1E ] + E[V 1E ] ⩽ E[V 1E ].

By Lemma 6.5, we now have

1 ⩽ E[V 1E ] ⩽
∫ ∞

0
Pr(V 1E ⩾ λ) dλ =

∫ ∞

0
Pr({V ⩾ λ} ∩ E) dλ.

On the interval [0, 1], the integrand is at most Pr(E), so

1 ⩽ Pr(E) +
∫ ∞

1
Pr({V ⩾ λ} ∩ E) dλ.

We now recall (6.9), which implies that on the event E , we have V ⩽ e3
√

M+1, hence

1 − Pr(E) ⩽
∫ ∞

1
Pr({V ⩾ λ} ∩ E) dλ ⩽

∫ ∞

1
Pr
({

e3
√

M+1 ⩾ λ
}

∩ E
)

dλ.

We now change variables to λ = e3κ, so that e3
√

M+1 ⩾ λ if and only if M ⩾ κ2 − 1,
and conclude that

(6.10) 1 − Pr(E) ⩽
∫ ∞

0
Pr({M ⩾ κ2 − 1} ∩ E) · 3e3κ dκ.

We now claim that for some κ ⩾ 0, we have

(6.11) Pr({M ⩾ κ2 − 1} ∩ E) ⩾ e−4κ

4 .

Indeed, if this does not hold, then continuing (6.10), we conclude that

1 − Pr(E) ⩽
∫ ∞

0

e−4κ

4 · 3e3κ dκ = 3
4

∫ ∞

0
e−κ dκ = 3

4 ,

hence Pr(E) ⩾ 1
4 . But on the event E we have M ⩾ −1, hence (6.11) holds with κ = 0,

a contradiction. We conclude that, as claimed, (6.11) holds for some κ ⩾ 0.
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Fixing such a κ, recalling the definitions of M and E from (6.6) and (6.7), and
applying the union bound, we find that

e−4κ

4 ⩽ Pr({M ⩾ κ2 − 1} ∩ E)

= Pr
(

max{⟨σY (v), σY (w)⟩, ⟨σZ(v), σZ(w)⟩} ⩾ κ2 − 1 and

⟨σY (v), σY (w)⟩ ⩾ −1 and ⟨σZ(v), σZ(w)⟩ ⩾ −1
)

⩽ Pr
(
⟨σY (v), σY (w)⟩ ⩾ κ2 − 1 and ⟨σZ(v), σZ(w)⟩ ⩾ −1

)
+ Pr

(
⟨σZ(v), σZ(w)⟩ ⩾ κ2 − 1 and ⟨σY (v), σY (w)⟩ ⩾ −1

)
.

Therefore, either

Pr
(
⟨σY (v), σY (w)⟩ ⩾ κ2 − 1 and ⟨σZ(v), σZ(w)⟩ ⩾ −1

)
⩾

e−4κ

8
or the same holds upon reversing the roles of Y and Z. This concludes the proof of
Theorem 6.2 upon recalling that c = 1/8 and 2−C = 1/64 ⩽ e−4.

7. Epilogue: Ramsey’s original proof of Theorem 1.1

As mentioned in Section 1, there is no known proof of Theorem 1.1 that does not
use book graphs in some way. As a hopefully fitting end to this exposé, let us see the
original proof of Ramsey (1929), which uses book graphs in a rather different way from
Lemma 2.4, yet whose proof shares certain ideas with the ones we have already seen.

Let us denote by r(Bt,m) the least integer N such that every two-coloring of E(KN)
contains a monochromatic copy of Bt,m. Ramsey (1929) proved the following upper
bound on r(Bt,m).

Theorem 7.1 (Ramsey, 1929). — r(Bt,m) ⩽ (t + 1)! · m for all t, m ⩾ 1.

Note that since Kk = Bk−1,1, this immediately implies the bound r(k) ⩽ k!, and
hence yields a proof of Theorem 1.1.
Proof of Theorem 7.1. — We proceed by induction on t. For the base case t = 1, we
wish to prove that r(B1,m) ⩽ 2m, which is immediate: in any two-coloring of E(K2m),
any vertex is incident to 2m − 1 edges, at least m of which must have the same color
by the pigeonhole principle. This yields a monochromatic copy of B1,m.

For the inductive step, suppose the result has been proved for t − 1, and fix a coloring
of E(KN) where N = (t + 1)! · m = t! · ((t + 1)m). By the inductive hypothesis, this
coloring contains a monochromatic copy of Bt−1,(t+1)m, which we may assume to be
red without loss of generality. That is, there exist disjoint sets A, X ⊆ V (KN) with
|A| = t − 1 and |X| = (t + 1)m, such that all edges inside A and between A and X are
red. If there is a vertex v ∈ X with at least m red neighbors in X, we may perform a
“red step” by updating A → A ∪ {v} and X → X ∩ NR(v), yielding a red Bt,m. So we
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may assume that every vertex in X has at most m − 1 red neighbors in X. Let v1 be an
arbitrary vertex of X, and let X1 = NB(v1) ∩ X, so that |X1| ⩾ |X| − m. Let v2 be an
arbitrary vertex of X1, and let X2 = NB(v2) ∩ X1, so that |X2| ⩾ |X1| − m ⩾ |X| − 2m.
Continuing in this way, we may build a sequence of vertices v1, . . . , vt as well as a set
Xt with |Xt| ⩾ |X| − tm = m, such that each vi is adjacent in blue to all vj with j > i,
as well as to all vertices in Xt. But this precisely means that we have constructed a
blue Bt,m, completing the inductive step.

Given Theorem 7.1, it is natural to wonder what the true value of r(Bt,m) is. This
question was first explicitly raised by Erdős, Faudree, Rousseau, and Schelp (1978) and
Thomason (1982), who independently proved the bounds (2t − o(1))m ⩽ r(Bt,m) ⩽ 4tm.
Thomason in particular was motivated by Lemma 2.4, as discussed in Section 2.2, and
made the following bold conjecture.

Conjecture 7.2 (Thomason, 1982). — r(Bt,m) ⩽ 2t(m + t − 2) + 2 for all m, t ⩾ 1.

This conjecture is known to be true (and optimal) for t ∈ {1, 2}, but it is wide open
for t ⩾ 3 (and may well be false). Moreover, Conjecture 7.2 is likely to be very difficult:
even the m = 1 case would yield r(k) ⩽ 2k+o(k), a bound far stronger than anything
currently known. However, a beautiful result of Conlon (2019) confirms this conjecture
asymptotically for any fixed t.

Theorem 7.3 (Conlon, 2019). — r(Bt,m) = (2t + o(1))m as m → ∞, for any fixed t.

Conlon’s result addresses a question that arguably goes back 90 years to the original
work of Ramsey (1929), yet uses highly sophisticated tools developed in the interim,
such as the regularity lemma of Szemerédi (1978), and this question is also closely
related to a famous conjecture of Burr and Erdős (1975), which was recently resolved
by Lee (2017). In fact, Ramsey theory has seen a number of recent breakthroughs on
old, seemingly intractable problems by the introduction of remarkable new techniques:
three other examples from the past two years are the works of Li (2023) on explicit
constructions, of Mattheus and Verstraete (2024) on off-diagonal Ramsey numbers, and
of Reiher and Rödl (2023) on restricted Ramsey graphs. There is every reason to hope
and expect this trend to continue.
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