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1 Introduction

The goal of this talk is to discuss the recent breakthrough of Campos, Griffiths, Morris,
and Sahasrabudhe on upper bounds for diagonal Ramsey numbers (as well as a few of the
follow-up results). I will not go into their proof in any level of detail; my hope is simply to
explain what sorts of ideas they use, as well as where their new insights are most important.

Ramsey theory is a branch of combinatorics that studies order and disorder. The under-
lying mantra of the field, as articulated by Theodore Motzkin, is that “complete disorder is
impossible”—any sufficiently large system must have a large, highly structured subsystem.
The prototypical example of a Ramsey-theoretic statement is Ramsey’s theorem, from which
the field derives its name.

Theorem 1 (Ramsey, 1929). For every integer k ⩾ 2, there exists some positive integer N
such that any two-coloring of the edges of the complete graph1 KN contains a monochromatic
Kk.

In other words, no matter how we assign the edges of KN a color, say red or blue, we
can always find k vertices such that all edges between them receive the same color. That is,
any such coloring, no matter how unstructured, contains a highly structured subcoloring.

Much of the modern research in Ramsey theory is concerned with the quantitative aspects
of such statements: how large is the integer N in Theorem 1 as a function of k? Formally,
we make the following definition.

Definition 2. The Ramsey number r(k) is the least integer N such that every two-coloring
of the edges of KN contains a monochromatic Kk.

With that said, let us turn to the quantitative aspects of Theorem 1, that is, to the
determination of the function r(k) from Definition 2. The exact value of r(k) is only known
for k ⩽ 4, and it currently seems completely hopeless to obtain an exact formula for r(k),
so let us content ourselves with asymptotic bounds as k → ∞. Essentially every proof of
Theorem 1 yields (at least implicitly) an upper bound on r(k), by proving the existence of
some integer N . The original proof of Ramsey gave a bound of r(k) ⩽ k!, but Ramsey wrote
“I have little doubt that [this upper bound is] far larger than is necessary”. Indeed, a few
years later, Erdős and Szekeres proved the following stronger bound.

Theorem 3 (Erdős and Szekeres, 1935). r(k) ⩽ 4k for every k ⩾ 2.

For about a decade, it was believed that this bound was also far larger than is necessary,
namely that r(k) should grow subexponentially as a function of k. However, Erdős dispelled
this belief by proving an exponential lower bound.

Theorem 4 (Erdős, 1947). r(k) ⩾
√
2
k
for every k ⩾ 2.

1Recall that the complete graph KN has N vertices, and all of the
(
N
2

)
possible edges are present.
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After this breakthrough, progress stalled for 75 years. There were a number of im-
provements to these bounds over the years, including important results of Graham–Rödl,
Thomason, Conlon, and Sah, but all of these improvements only affected the lower-order
terms, and did not improve either of the exponential constants

√
2 and 4. This impasse

finally ended with a breakthrough of Campos, Griffiths, Morris, and Sahasrabudhe.

Theorem 5 (Campos, Griffiths, Morris, and Sahasrabudhe, 2023). There exists a constant
δ > 0 such that r(k) ⩽ (4 − δ)k for all k ⩾ 2. Concretely, r(k) ⩽ 3.993k for all sufficiently
large k.

In the year and a half since their paper appeared on the arXiv, there have been some
two major follow-up results. Firstly, Gupta, Ndiaye, Norin, and Wei improved the constant
appearing in Theorem 5, proving that r(k) ⩽ 3.8k for all sufficiently large k. Although their
proof is closely related to that of Campos et al., they also introduced some important new
ideas. In particular, they recast the entire analysis in a different language, which is both
somewhat simpler conceptually and which lends itself to easier numerical optimization.

Secondly, and very recently, a new proof of Theorem 5 was given by Balister, Bollobás,
Campos, Griffiths, Hurley, Morris, Sahasrabudhe, and Tiba. Their proof is much more con-
ceptual, and also has the advantage of working for any number of colors2. Rather remarkably,
the key lemma underlying their new proof is purely geometric, concerning the self-correlation
properties of probability distributions on high-dimensional spheres.

In the rest of the talk, I will try to cover most of the key ideas that go into the proofs of
Campos et al. and Balister et al. However, the easiest way to understand many of these ideas
is to see how they arise naturally in the (much simpler) proof of Theorem 3, so we begin by
discussing this proof in three different ways, introducing three of the key ideas: the use of
off-diagonal Ramsey numbers, the use of book graphs, and the algorithmic perspective.

2 Three ways of looking at Theorem 3

2.1 Off-diagonal Ramsey numbers

Before proceeding with the proof, we generalize the notion of Ramsey numbers from Defini-
tion 2. Here and throughout, we denote by V (KN) and E(KN) the vertex set and edge set,
respectively, of the complete graph KN .

Definition 6. Given integers k, ℓ ⩾ 2, the off-diagonal Ramsey number r(k, ℓ) is the least
integer N such that every two-coloring of E(KN) with colors red and blue contains a red Kk

or a blue Kℓ.

Note that r(k, ℓ) = r(ℓ, k) as the colors play symmetric roles, and that r(k) = r(k, k).
The quantity r(k) is often called the diagonal Ramsey number.

2Theorem 1 remains true even if we color the edges of KN by more than two colors, so it is natural to
study the asymptotics of such multicolor Ramsey numbers. There is a great deal to be said on this topic,
but for simplicity I focus on the case of two colors for the remainder of this talk.
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With this terminology, we can prove Theorem 3. In fact, we will prove the following more
precise result.

Theorem 7 (Erdős and Szekeres, 1935). For all integers k, ℓ ⩾ 2, we have

r(k, ℓ) ⩽

(
k + ℓ− 2

k − 1

)
.

In particular,

r(k) ⩽

(
2k − 2

k − 1

)
< 4k.

Proof. We proceed by induction on k+ ℓ, with the base case min{k, ℓ} = 2 being trivial. For
the inductive step, the key claim is that the following inequality holds:

r(k, ℓ) ⩽ r(k − 1, ℓ) + r(k, ℓ− 1). (1)

To prove (1), fix a red/blue coloring of E(KN), whereN = r(k−1, ℓ)+r(k, ℓ−1), and fix some
vertex v ∈ V (KN). Suppose for the moment that v is incident to at least r(k−1, ℓ) red edges,
and let R denote the set of endpoints of these red edges. By definition, as |R| ⩾ r(k − 1, ℓ),
we know that R contains a red Kk−1 or a blue Kℓ. In the latter case we have found a blue
Kℓ (so we are done), and in the former case we can add v to this red Kk−1 to obtain a red
Kk (and we are again done).

So we may assume that v is incident to fewer than r(k − 1, ℓ) red edges. By the exact
same argument, just interchanging the roles of the colors, we may assume that v is incident
to fewer than r(k, ℓ− 1) blue edges. But then the total number of edges incident to v is at
most

(r(k − 1, ℓ)− 1) + (r(k, ℓ− 1)− 1) = N − 2,

which is impossible, as v is adjacent to all N − 1 other vertices. This is a contradiction,
proving (1).

We can now complete the induction. By (1) and the inductive hypothesis, we find that

r(k, ℓ) ⩽ r(k − 1, ℓ) + r(k, ℓ− 1)

⩽

(
(k − 1) + ℓ− 2

(k − 1)− 1

)
+

(
k + (ℓ− 1)− 2

k − 1

)
=

(
k + ℓ− 2

k − 1

)
,

where the final equality is Pascal’s identity for binomial coefficients.

2.2 Book graphs

Definition 8. Let t,m be positive integers. The book graph Bt,m consists of a copy of Kt,
plus m additional vertices which are adjacent to all vertices of the Kt, but not adjacent
to one another. Equivalently, Bt,m is obtained from the complete bipartite graph Kt,m by
adding in all the

(
t
2

)
possible edges in the side of size t. Equivalently, Bt,m consists of m

copies of Kt+1 which are glued along a common Kt.
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Note that two important special cases are m = 1, where Bt,1 is simply the complete graph
Kt+1, and t = 1, where B1,m is simply the star graph K1,m, consisting of one vertex joined
to m others (and no other edges). The “book” terminology comes from the case t = 2, in
which case B2,m consists of m triangles sharing an edge, which looks, to some extent, like a
book with m triangular pages. Continuing this analogy, the Kt in Bt,m is called the spine,
and the m additional vertices of Bt,m are called the pages. We will often denote a book as a
pair of sets (A, Y ), where A is the spine and Y comprises the pages.

The reason book graphs are important in the study of Ramsey numbers comes down to
the following simple observation.

Lemma 9. Suppose that a two-coloring of E(KN) contains a monochromatic red copy of
Bt,m, where m ⩾ r(k − t, ℓ). Then this coloring contains a red Kk or a blue Kℓ.

Proof. Let A be the spine of the book, and let Y be its pages. By assumption, |Y | = m ⩾
r(k − t, ℓ), so Y contains a blue Kℓ or a red Kk−t. In the former case we are done, and in
the latter case, we may add A to the red Kk−t to obtain a red Kk.

This proof should look familiar—we have already encountered the same idea in the proof
of Theorem 7, where we implicitly used the t = 1 case of Lemma 9. Indeed, in that proof,
we showed that if a coloring contains a red star with r(k− 1, ℓ) leaves, then it contains a red
Kk or a blue Kℓ. The only new idea in Lemma 9 is that we don’t need to consider a single
vertex (i.e. the case t = 1), but may take an arbitrary book.

Although the idea of Lemma 9 basically goes back to the work of Erdős and Szekeres,
it was first formulated in essentially this language by Thomason, who used Lemma 9 to
propose a natural approach to improving the upper bounds on r(k). Namely, if one can
show that every two-coloring of E(KN) contains a monochromatic Bt,m, for some appropriate
parameters t and m ⩾ r(k − t, k), then one can plug this into Lemma 9 and conclude that
r(k) ⩽ N . Again, this is essentially the approach we used in the proof of Theorem 7, where
a simple argument based on the pigeonhole principle showed that any coloring of E(KN)
contains a large monochromatic star, that is, a monochromatic book with many pages and a
spine of size t = 1. The idea behind Thomason’s program is that perhaps for larger values of
t, more sophisticated arguments than the pigeonhole principle could yield stronger results,
and improve the upper bounds on r(k). This general framework has been quite successful,
and the three prior improvements on Theorem 3, before the work of Campos et al., all used
variants of this idea.

2.3 The algorithmic lens

One of the many new ingredients introduced by Campos et al. is the following simple idea:
rather than searching for some specific book Bt,m, they define an exploration algorithm for
finding some book, and then prove that regardless of which book is found, the parameters
involved are good enough to plug into Lemma 9. Although this idea is almost a triviality,
this change of perspective is crucial for the proof of Theorem 5.
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Before we discuss this exploration algorithm—which they termed the book algorithm—let
us first rephrase the proof of Theorem 3 as an exploration algorithm, the Erdős–Szekeres al-
gorithm. Let us fix a two-coloring of E(KN). We assume that this coloring has no monochro-
matic Kk, and our goal is to eventually obtain a contradiction if N is sufficiently large. For
the moment we only seek to get a contradiction if N > 4k, and thus reprove Theorem 3.

For a vertex v ∈ V (KN), we write NR(v) for the red neighborhood of v, that is, the set of
vertices w ∈ V (KN) such that the edge vw is colored red. Similarly, NB(v) denotes the blue
neighborhood of v.

In the Erdős–Szekeres algorithm, we maintain three disjoint sets A,B,X ⊆ V (KN); the
sets A and B will grow throughout the process, whereas X will shrink. The key property we
maintain is that (A,X) is a red book, and (B,X) is a blue book; that is, A is completely red,
B is completely blue, all edges between A and X are red, and all edges between B and X
are blue. To initialize the process, we set A = B = ∅ and X = V (KN). We now repeatedly
run the following steps.

1. If |X| ⩽ 1, |A| ⩾ k, or |B| ⩾ k, stop the process.

2. Pick a vertex v ∈ X, and check whether v has at least 1
2
(|X| − 1) red neighbors in X.

3. If yes, move v to A and shrink X to the red neighborhood of v. That is, update
A → A ∪ {v} and X → X ∩NR(v), and keep B the same. Call this a red step.

4. If not, then v has at least 1
2
(|X| − 1) blue neighbors in X. We now move v to B,

and shrink X to the blue neighborhood of v. That is, we update B → B ∪ {v} and
X → X ∩NB(v), and keep A the same. Call this a blue step.

5. Return to step 1.

By the way we update the sets, we certainly maintain the key property that (A,X) and
(B,X) are red and blue books, respectively, throughout the entire process, since every time
we add a vertex v to A (resp. B), we shrink X to the red (resp. blue) neighborhood of v.

Using this algorithm, we can give an alternative proof of Theorem 3.

“Algorithmic” proof of Theorem 3. Let N = 4k, and fix a two-coloring of E(KN). Assume
for contradiction that this coloring contains no monochromatic Kk. We now run the Erdős–
Szekeres algorithm until it terminates.

Suppose first that the algorithm terminated because |A| ⩾ k. Throughout the process,
we maintain the property that all edges inside A are red. Therefore, if |A| ⩾ k at the end of
the process, we have found a monochromatic red Kk, a contradiction. Similarly, if |B| ⩾ k
at the end of the process, we have found a blue Kk, another contradiction. We may thus
assume that at the end of the process, we have |A| < k and |B| < k.

Therefore, the process can only end when |X| ⩽ 1. The key observation now is that at
every step of the process, we have

|X| ⩾ 2−|A|−|B|N. (2)
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Indeed, this certainly holds when the process begins, for then we have |A| = |B| = 0 and
|X| = N . We can now check that it holds by induction: every time we do a red step, we
increase |A| by 1, and decrease |X| to at least3 1

2
|X|, thus preserving the validity of (2).

Similarly, in a blue step, we increase |B| by 1 and decrease |X| to at least 1
2
|X|, again

preserving (2). By induction, we conclude that (2) also holds at the end of the process.
At the end of the process, we thus have

N ⩽ 2|A|+|B||X| < 2k+k · 1 = 4k,

where we plug in our upper bounds |A| < k, |B| < k, |X| ⩽ 1. This contradiction completes
the proof.

3 The book algorithm

We now turn the book algorithm of Campos et al. As before, we fix a two-coloring of E(KN),
and assume that there is no monochromatic Kk; our goal is to obtain a contradiction if N
is sufficiently large. Throughout the process, we maintain four disjoint sets A,B,X, Y , with
the following properties: (A,X) is a red book, (B,X) is a blue book, and (A, Y ) is another
red book4. Thus, the only difference from the Erdős–Szekeres algorithm is the presence of
the new set Y . At the end of the process, our goal is to output the pair (A, Y ), and to prove
that t := |A| and m := |Y | satisfy m ⩾ r(k− t, k), so that we can apply Lemma 9 to obtain a
contradiction. We initialize the process with A = B = ∅, and X ⊔ Y an arbitrary partition
of V (KN) with |X| = |Y |. By permuting the colors if necessary, we may assume that at the
beginning of the process, at least half the edges between X and Y are red.

A

B

X Y

As in the Erdős–Szekeres algorithm, we will iteratively build this picture by moving vertices
from X to A or B, and then shrinking X and Y . A move from X to A will be called a red
step, and a move from X to B will be called a blue step.

3Strictly speaking, we should write here 1
2 (|X| − 1), although the claimed bound (2) can also be proved

inductively by judicious use of ceiling signs. However, from now on, we will start ignoring such additive ±1
terms.

4Equivalently, we could say that (B,X) is a blue book and (A,X ∪ Y ) is a red book.
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What is the advantage of maintaining such a picture? Recall that in the Erdős–Szekeres
algorithm, |X| shrinks by a factor of two whenever we do a red or a blue step, hence we end
up with |X| ⩾ 2−|A|−|B|N as in (2), yielding the bound r(k) < 4k. However, it is reasonable
to hope that since we are imposing “half as many constraints” on Y as on X—that is, we are
only maintaining that the edges between A and Y are red, and not that any edges incident
to Y are blue—we may be able to obtain better control on |Y |. Indeed, we might hope that
every blue step does not shrink Y at all, while every red step shrinks Y by only a factor of
two, as before, yielding5 a bound of |Y | ≳ 2−|A|N .

In other words, our goal will be to “sacrifice” the vertices in X, and use them as the
fuel we use to build the large red book (A, Y ). This approach comes with a fundamental
asymmetry between the colors, in marked contrast to the Erdős–Szekeres proof. We will
really insist on finding a red book (A, Y ), and will do our best to build it. Only when doing
so is really impossible will we take blue steps.

Because of this, our preferred move would be taking a red step. That is, we would like
to pick a vertex v ∈ X, move v to A, and update X → X ∩ NR(v). Moreover, since we
need to maintain that (A, Y ) is a red book, we will also need to update Y → Y ∩NR(v). In
particular, when deciding whether to add a vertex v ∈ X to A, we need to check not only
that v has many red neighbors in X—so that X doesn’t shrink too much—but also that
v has many red neighbors in Y , so that Y doesn’t shrink too much. In particular, we see
that in addition to tracking the sizes of A,B,X, and Y , we will also need to track a fifth
parameter, the red edge density between X and Y , that is, the fraction of edges in X × Y
that are red. We denote this red edge density by pR. Again, the reason we are tracking pR is
that if it ever gets too small, then the red steps become very costly, as they start shrinking
Y by a larger factor. Hence we would like to ensure that pR stays fairly large throughout
the process.

Unfortunately, when we take a red or a blue step, pR can change, since red and blue steps
shrink X and Y . In order to deal with this, we will refuse to do a red step or a blue step
if doing so decreases pR by an unacceptable amount. This trivially ensures that pR never
becomes too small, but comes with its own major problem: if we are allowed to refuse to do
a blue or a red step, there may be no steps available for us to take!

In order to deal with this issue, Campos et al. introduced another type of step, termed
density-boost steps. The basic picture is as follows:

5If we could really obtain such strong control on |Y |, we would show that r(k) ≲ 2k, a dramatic improve-
ment over Theorem 3. Unfortunately, and unsurprisingly, the devil is in the details, and a lot of work is
needed to make such an approach work, and the extra complications yield a substantially weaker bound.
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U

X Y

v

T

S

red density

too small

In the picture above, we consider whether to take a red step from v, which would entail
shrinking X to T and Y to U . As in the picture above, suppose doing so would decrease pR
unacceptably, meaning that the red edge density between T and U is too small. However,
if we recall that the global density of red edges between X and Y at the moment is pR, this
tells us something: the edges in T × U contain a less than average fraction of red edges.
In particular, in the rest of the picture, there must be a more than average fraction of red
edges. So by restricting X and Y to (roughly) the complements of T and U , we can boost
the red edge density.

Thus, the three basic steps of the book algorithm are red steps, blue steps, and density-
boost steps. The analysis then boils down to understanding how the sizes of the relevant
parameters, namely the sizes of the sets A,B,X, Y , as well as the red density dR, change
during a single step. However, this analysis is extremely complicated. Moreover, naive
applications of the ideas above actually do not work, and cannot prove any bound stronger
than roughly r(k) ⩽ 4.006k. To overcome this, Campos et al. begin by using the book
algorithm to improve the upper bound on off-diagonal Ramsey numbers in a certain regime,
which they can then plug into Lemma 9, which is now quantitatively strong enough to obtain
an improved upper bound on r(k). The details are far too involved to give in this talk, but
see my exposé for a much more detailed, although still far from complete, proof sketch.

4 The second book algorithm and geometry

Now, I want to discuss the new approach of Balister et al., and to explain how high-
dimensional geometry even enters the picture. In their modified book algorithm, they undo
the asymmetry that was inherent to the argument above, and instead work with the following
symmetric picture6. We will maintain five disjoint sets A,B,X, Y, Z, such that (A,X ∪ Y )

6In some sense, the fact that the colors play symmetric roles is the key reason why this argument gener-
alizes to more than two colors, whereas the earlier one did not.
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is a red book and (B,X ∪Z) is a blue book. Thus, the only difference from the setup above
is the new set Z, which is the blue version of the set Y .

A

B

X

Y

Z

We initialize the process with X⊔Y ⊔Z being an arbitrary equitable partition of the vertices,
and with A = B = ∅. As before, a step of the process consists of taking a vertex from X
and moving it to either A or B (a red or blue step, respectively). When we do a red or blue
step, we of course need to shrink X, as well as the corresponding set Y or Z, in order to
maintain the book picture above. This naturally means we now need to track two densities,
namely pR, the red edge density between X and Y , and pB, the blue edge density between
X and Z.

As before, the densities pR and pB control how much Y and Z, respectively, shrink during
red and blue steps, respectively. As such, we want to maintain that pR and pB stay large
throughout the process. This means that, as before, our failure mode is when we cannot take
a red step or a blue step, as this would mean that the red or blue density drops too much.
Suppose, say, that the red density is the problem. This means that for every potential choice
of v ∈ X, the red density between NR(v) ∩X and NR(v) ∩ Y is substantially smaller than
pR.

Let us actually for the moment forget that we need to restrict X to NR(v) ∩ X, and
simply study the red density between X and NR(v) ∩ Y . If we denote UR(v) := NR(v) ∩ Y ,
the fact that this red density is low means that there is “negative correlation” between the
sets UR(v) and UR(w) over different choices of v, w ∈ X. Indeed, the red density between X
and UR(v) is precisely

eR(X,UR(v))

|X||UR(v)|
=

1

|X|
∑
w∈X

|UR(w) ∩ UR(v)|
|UR(v)|

.

Thus, the drop in red density that we need to worry about precisely corresponds to the
pairwise intersections |UR(w) ∩ UR(v)| being unusually small for all choices of w, v.

9



Yuval Wigderson Upper bounds on diagonal Ramsey numbers November 23, 2024

Let us suppose (with essentially no loss of generality) that every vertex in X has pre-
cisely pR|Y | red neighbors in Y , i.e. that |UR(v)| = pR|Y | for all v ∈ X. In this case,
the “negative correlation” discussed above can be naturally encoded as a geometric prop-
erty in |Y |-dimensional Euclidean space. Indeed, let us associate to every v ∈ X a vector
τR(v) ∈ RY , which is simply the indicator vector of its neighborhood UR(v): the yth coordi-
nate of τR(v) is 1 if v is adjacent to y in red, and zero otherwise. By assumption τR(v) has
exactly pR|Y | entries equal to 1, and all other entries equal to 0. Moreover, we have that

|UR(v) ∩ UR(w)| = ⟨τR(v), τR(w)⟩,

since the inner product of τR(v) and τR(w) precisely equals the number of 1 coordinates they
have in common, which is exactly the number of y ∈ Y that are adjacent in red to both u
and w.

It will be more convenient to “center” these vectors so that the average value of their
entries is 0, so let us define σR(v) := τR(v) − pR1, where 1 is the all-ones vector. By our
assumption that τR(v) has exactly pR|Y | entries equal to 1, we see that the average value of
the entries of σR(v) is indeed zero. Moreover,

⟨σR(v), σR(w)⟩ = ⟨τR(v)− pR1, τR(w)− pR1⟩
= ⟨τR(v), τR(w)⟩ − ⟨τR(v), pR1⟩ − ⟨pR1, τR(w)⟩+ ⟨pR1, pR1⟩
= |UR(v) ∩ UR(w)| − pR|UR(v)| − pR|UR(w)|+ p2R|Y |
= |UR(v) ∩ UR(w)| − p2R|Y |.

Note that if UR(v) and UR(w) were randomly chosen subsets of Y , each of size pR|Y |,
then their expected intersection size would be exactly p2R|Y |. Hence, the inner product
⟨σR(v), σR(w)⟩ records how much the true intersection size differs from this expected amount;
the negative correlation behavior we were worried about earlier is precisely the statement
that all (or most) of these inner products are “quite negative”.

An obvious way to get many such pairs of negatively correlated vectors is to split the
set X into two halves, and then have the vectors associated to one half lying close to the
north pole of the sphere in RY , and the other half lying close to the south pole. However,
if the situation looks like this, we win for another reason: we can throw away half the set,
and obtain a lot of positive correlation. The striking geometric lemma proved by Balister
et al. essentially states that such an operation is always possible in one of the two colors,
without completely messing up the other color. Their actual result is somewhat more general
in a number of respects; I am simply stating a consequence that suffices for the framework
discussed above.

Lemma 10 (Balister, Bollobás, Campos, Griffiths, Hurley, Morris, Sahasrabudhe, and Tiba,
2024). There exist constants C, c > 0 such that the following holds. Let X, Y be finite sets,
and let σR, σB : X → RY be arbitrary functions. There exist v ∈ X and X ′ ⊆ X, as well as
a number µ ⩾ 0, such that |X ′| ⩾ ce−C

√
µ|X| and for all w ∈ X ′, we have

⟨σR(v), σR(w)⟩ ⩾ −1 + µ and ⟨σB(v), σB(w)⟩ ⩾ −1

(or the same statement holds after reversing the roles of red and blue).
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There are a few remarks to make about this statement. First, note that it essentially
agrees with the intuition we were discussing above: we gain some positive correlation in red,
without affecting too much the correlation in blue (because µ ⩾ 0). Second, we don’t get
to control how much positive correlation we obtain (since µ is an output of the statement,
not an input), but we do have some information on it: the amount that we shrink X also
depends on µ, so that if we obtain fairly weak positive correlation, we also don’t shrink X too
much. It is crucial—although the reason why is a bit too technical to explain here—that the
loss in the size of X is subexponential in µ; the proof could not go through if we could only
guarantee |X ′| ⩾ ce−Cµ|X|, say. Finally, we remark that this lemma is not scale-invariant:
if we multiply each vector σR(v) by 10, we cannot simply output the same v,X ′, and µ. In
fact, this lack of scale-invariance is crucial in the way this lemma is used; it is necessary to
rescale σR and σB by appropriate factors depending on the current values of pR and pB.

The proof of Lemma 10 is actually quite simple, although it feels like a magic trick.
The first observation is that, if we let v, w be independent, uniformly random elements of
X, then all the moments E[⟨σR(v), σR(w)⟩a⟨σB(v), σB(w)⟩b] are non-negative, for all non-
negative integers a, b. This is a generalization of (and in fact follows from) the well-known
fact that the expected inner product of two iid random vectors is non-negative.

The second step, which is more involved but still quite simple, is to come up with a
function f : R2 → R all of whose Taylor coefficients are non-negative, which is positive on
the positive quadrant but bounded from above away from it, and which does not grow too
fast at infinity. It turns out that a good choice of such a function is

f(x, y) := x(2 + cosh
√
y) + y(2 + cosh

√
x).

The point is that, since all the Taylor coefficients of f are non-negative, and by the non-
negativity of moments discussed above, we have that E[f(⟨σR(v), σR(w)⟩, ⟨σB(v), σB(w)⟩)] ⩾
0. On the other hand, since f is bounded from above away from the positive quadrant, we can
effectively bound the (negative) contributions to this expectation arising from very negative
inner products. We then conclude that there must be a fair amount of probability mass
which contributes positively to this expectation, which, after some rearrangements and after
using the bounds on the growth rate of f , proves the lemma.
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