A SHORT PROOF OF THE CANONICAL POLYNOMIAL VAN DER WAERDEN THEOREM

JACOB FOX, YUVAL WIGDERSON, AND YUFEI ZHAO

Abstract

We present a short new proof of the canonical polynomial van der Waerden theorem, recently established by Girão.

Girão [3] recently proved the following canonical version of the polynomial van der Waerden theorem. Here a set is rainbow if all elements have distinct colors. We write $[N]:=\{1, \ldots, N\}$.

Theorem 1 ([3]). Let p_{1}, \ldots, p_{k} be distinct polynomials with integer coefficients and $p_{i}(0)=0$ for each i. For all sufficiently large N, every coloring of $[N]$ contains a sequence $x+p_{1}(y), \ldots, x+p_{k}(y)$ (for some $x, y \in \mathbb{N}$) that is monochromatic or rainbow.

Girão's proof uses a color-focusing argument. Here we give a new short proof of Theorem 1, deducing it from the polynomial Szemerédi's theorem of Bergelson and Leibman [1].

Theorem 2 ([1]). Let p_{1}, \ldots, p_{k} be distinct polynomials with integer coefficients and $p_{i}(0)=0$ for each i. Let $\varepsilon>0$. For all N sufficiently large, every $A \subset[N]$ with $|A| \geq \varepsilon N$ contains $x+p_{1}(y), \ldots, x+p_{k}(y)$ for some $x, y \in \mathbb{N}$.

Our proof of Theorem 1 follows the strategy of Erdős and Graham [2], who deduced a canonical van der Waerden theorem (i.e., for arithmetic progressions) using Szemerédi's theorem [6].

We quote the following result, proved by Linnik [5] in his elementary solution of Waring's problem (see [4, Theorem 19.7.2]). Note the left-hand side below counts the number of solutions $f\left(x_{1}\right)+$ $\cdots+f\left(x_{s / 2}\right)=f\left(x_{s / 2+1}\right)+\cdots+f\left(x_{s}\right)$ with $x_{1}, \ldots, x_{s} \in[n]$.

Theorem 3 ([5]). Fix a polynomial f of degree $d \geq 2$ with integer coefficients. Let $s=8^{d-1}$. Then

$$
\int_{0}^{1}\left|\sum_{x=1}^{n} e^{2 \pi i \theta f(x)}\right|^{s} \mathrm{~d} \theta=O\left(n^{s-d}\right) .
$$

Lemma 4. Fix a polynomial f of degree $d \geq 2$ with integer coefficients. For every $A \subset \mathbb{Z}$ and $n \in \mathbb{N}$, the number of pairs $(x, y) \in A \times[n]$ with $x+f(y) \in A$ is $O\left(|A|^{1+\frac{1}{s}} n^{1-\frac{d}{s}}\right)$, where $s=8^{d-1}$.

Proof. We write

$$
\widehat{1}_{A}(\theta)=\sum_{x \in A} e^{2 \pi i \theta x} \quad \text { and } \quad F(\theta)=\sum_{y=1}^{n} e^{2 \pi i \theta f(y)} .
$$

[^0]Then the number of solutions to $z=x+f(y)$ with $x, z \in A$ and $y \in[n]$ is

$$
\begin{aligned}
\int_{0}^{1}\left|\widehat{1}_{A}(\theta)\right|^{2} F(\theta) \mathrm{d} \theta & \leq\left(\int_{0}^{1}\left|\widehat{1}_{A}(\theta)\right|^{\frac{2 s}{s-1}} \mathrm{~d} \theta\right)^{1-\frac{1}{s}}\left(\int_{0}^{1}|F(\theta)|^{s} \mathrm{~d} \theta\right)^{\frac{1}{s}} & & {[\text { Hölder }] } \\
& \leq\left(|A|^{\frac{2}{s-1}} \int_{0}^{1}\left|\widehat{1}_{A}(\theta)\right|^{2} \mathrm{~d} \theta\right)^{1-\frac{1}{s}} \cdot O\left(n^{1-\frac{d}{s}}\right) & & {\left[\left|\widehat{1}_{A}(\theta)\right| \leq|A|\right. \text { and Theorem 3] }} \\
& =\left(|A|^{\frac{2}{s-1}}|A|\right)^{1-\frac{1}{s}} \cdot O\left(n^{1-\frac{d}{s}}\right) & & {[\text { Parseval }] } \\
& =O\left(|A|^{1+\frac{1}{s}} n^{1-\frac{d}{s}}\right) . & &
\end{aligned}
$$

Lemma 5. Fix a polynomial f of degree $d \geq 1$ with integer coefficients. Let $A \subset \mathbb{Z}$. Suppose that $|A \cap[x, x+L)| \leq \varepsilon L$ for every $L \geq n^{d}$ and x. Then the number of pairs $(x, y) \in A \times[n]$ with $x+f(y) \in A$ is $O\left(\varepsilon^{1 / s}|A| n\right)$, where $s=8^{d-1}$.

Proof. If $d=1$, then for every $x \in A$, the number of $y \in[n]$ so that $x+f(y) \in A$ is $O(\varepsilon n)$ by the local density condition on A. Summing over all $x \in A$ yields the desired bound $O(\varepsilon|A| n)$ on the number of pairs. From now on assume $d \geq 2$.

Let $m=O\left(n^{d}\right)$ so that $|f(y)| \leq m$ for all $y \in[n]$. Let $A_{i}=A \cap[i m,(i+2) m)$. Then $\left|A_{i}\right|=O(\varepsilon m)$. Every pair $x, x+f(y) \in A$ with $y \in[n]$ is contained in some A_{i}, and, by Lemma 4, the number of pairs contained in each A_{i} is $O\left(\left|A_{i}\right|^{1+\frac{1}{s}} n^{1-\frac{d}{s}}\right)=O\left((\varepsilon m)^{\frac{1}{s}}\left|A_{i}\right| n^{1-\frac{d}{s}}\right)=O\left(\varepsilon^{1 / s}\left|A_{i}\right| n\right)$. Summing over all integers i yields the lemma (each element of A lies in precisely two different A_{i} 's).

Proof of Theorem 1. Choose a sufficiently small $\varepsilon>0$ (depending on p_{1}, \ldots, p_{k}). Consider a coloring of $[N]$ without monochromatic progressions $x+p_{1}(y), \ldots, x+p_{k}(y)$. By Theorem 2, every color class has density at most ε on every sufficiently long interval.

Let $D=\max _{i \neq j} \operatorname{deg}\left(p_{i}-p_{j}\right)$. Let n be an integer on the order of $N^{1 / D}$ so that $x+p_{1}(y), \ldots, x+$ $p_{k}(y) \in[N]$ only if $y \in[n]$. For each color class A, applying Lemma 5 to $f=p_{i}-p_{j}$ and summing over all $i \neq j$, we see that the number of pairs $(x, y) \in \mathbb{Z} \times[n]$ where at least two of $x+p_{1}(y), \ldots, x+p_{k}(y)$ lie in A is $O\left(\varepsilon^{1 / 8^{D-1}}|A| n\right)$. Summing over all color classes A, we see that the number of non-rainbow progressions $x+p_{1}(y), \ldots, x+p_{k}(y) \in[N]$ is $O\left(\varepsilon^{1 / 8^{D-1}} N n\right)$. Since the total number of sequences $x+p_{1}(y), \ldots, x+p_{k}(y) \in[N]$ is on the order of $N n$, some such sequence must be rainbow, as long as $\varepsilon>0$ is small enough and N is large enough.

References

[1] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorems, J. Amer. Math. Soc. 9 (1996), 725-753.
[2] P. Erdős and R. L. Graham, Old and new problems and results in combinatorial number theory, vol. 28, Université de Genève, L’Enseignement Mathématique, Geneva, 1980.
[3] A. Girão, A canonical polynomial van der Waerden's theorem, arXiv:2004.07766.
[4] L. K. Hua, Introduction to number theory, Springer-Verlag, Berlin-New York, 1982.
[5] U. V. Linnik, An elementary solution of the problem of Waring by Schnirelman's method, Rec. Math. [Mat. Sbornik] N.S. 12(54) (1943), 225-230.
[6] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245.

Fox, Wigderson: Department of Mathematics, Stanford University, Stanford, CA, USA
Email address: \{jacobfox, yuvalwig\}@stanford.edu
Zhao: Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA Email address: yufeiz@mit.edu

[^0]: Fox is supported by a Packard Fellowship and by NSF award DMS-1855635. Wigderson is supported by NSF GRFP grant DGE-1656518. Zhao is supported by NSF award DMS-1764176, the MIT Solomon Buchsbaum Fund, and a Sloan Research Fellowship.

