
Homework 1 Advanced Complex Analysis Mathcamp 2017

1 You probably know that the exponential function f(z) = ez has no roots anywhere in C. But have you
seen a proof of this? Using the Argument Principle, show that this is indeed the case.

[Also, if you know of a less stupid proof, come tell me about it!]

2 In this problem, we will see how to use Rouché’s Theorem to conclude powerful results about roots of
polynomials.

(a) The polynomial p(z) = z5�z�1 is a famous example of a quintic polynomial that has no solutions
by radicals. However, by writing

f(z) = z5 g(z) = �z � 1

prove that every root of p has absolute value at most 2. What’s the best bound you can get on
the absolute value of the roots of p?

(b) Consider the polynomial p(z) = z5 + 15z + 1. Prove that four of its five roots lie in the annulus
⇢
z :

3

2
< |z| < 2

�

by applying Rouché’s Theorem twice in two di↵erent ways.

(c) Write down other polynomials and see what you can prove about their roots in this way.

3 Prove the Fundamental Theorem of Algebra, which states that every polynomial P (z) of degree n has
exactly n roots (counted with multiplicity) in C.
Hint: Write your polynomial as

P (z) = anz
n + an�1z

n�1 + · · ·+ a1z + a0

Then apply Rouché’s Theorem by writing

f(z) = anz
n g(z) = an�1z

n�1 + · · ·+ a1z + a0

and picking a very big circle.

4* In this problem, we will explore the complex logarithm and its relation to the Argument Principle.

(a) Recall that every non-zero complex number can be written as z = rei✓, where r > 0 and ✓ 2 R; ✓
is called the argument of z. If this were to have a well-defined logarithm, we’d want it to be

log z = log r + i✓

where log r is the usual logarithm of the positive number r. However, this is not well-defined,
since ✓ is only defined up to adding 2⇡n, where n 2 Z. Because of this, we say that the complex
logarithm has “multiple branches” (and if you’re in Riemann Surfaces, you’ll learn more about
what this means). However, if we declare a value for ✓ at some point, e.g. by setting it to be ⇡/2
at the number i, then we can try to extend this definition to other points in C. Prove that we
can do this so long as we don’t “go around” the origin.

(b) On the other hand, prove that if we do go around the origin k times, then our value of the
logarithm will be di↵erent by 2⇡ik once we come back to where we started.

(c) Prove that, assuming log is well-defined, we have that

(log f(z))0 =
f 0(z)

f(z)

(d) Conclude that
1

2⇡i

Z

C

f 0(z)

f(z)
dz

should be counting how many times we go around roots of f inside C, and thus that the Argument
Principle is at least plausible.
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1 Prove the Fundamental Theorem of Algebra again, in a di↵erent way.

Hint: Assume that a polynomial P has no roots, and apply the Maximum Modulus Principle to the
analytic function 1/P (z) on some big circle.

2 In class, we pointed out that if C is a simple closed curve containing a region U , and if f is analytic
on U and C, then f attains its maximum on C, rather than in U .

One must be very careful to apply this statement correctly. For instance, consider the function f(z) =

eiz
2

, and let U be the first quadrant of the plane (namely all points with positive real and imaginary
parts). Prove that on the boundary of U (namely the positive real and imaginary axes), |f | is exactly
1, despite the fact that |f | is unbounded on U . Why does this not contradict the Maximum Modulus
Principle?

3 Prove the following strengthening of the Maximum Modulus Principle, which was mentioned in class:
if f is analytic in an open set U , then |f | never attains a local maximum inside U (note that what was
proved in class was for a global maximum).

Hint: Apply the Maximum Modulus Principle to a small subset of U .

4* In this problem, we’ll try to understand the angle-preserving property of analytic functions that was
mentioned in class. This problem will require a bit of linear algebra to do.

(a) A matrix of the form

R =

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆

is called a rotation matrix. Prove that if v =

✓
x
y

◆
is a vector in R2, then Rv is just the result of

rotating v by the angle ✓.

(b) Prove that any matrix of the form ✓
a b
�b a

◆

where a, b 2 R can be written as the product of a rotation matrix and some multiple of the identity
matrix. Conclude that such a matrix acts by rotating and scaling.

(c) In case you’ve forgotten or haven’t learned it, here’s an important version of the multivariate
chain rule: if � : R ! R2 is a di↵erentiable function, and F : R2 ! R2 is another di↵erentiable
function, and they’re given by

�(t) = (�1(t), �2(t)) F (x, y) = (u(x, y), v(x, y))

then
d

dt
F (�(t)) =

✓
@u/@x @u/@y
@v/@x @v/@y

◆✓
�0
1(t)

�0
2(t)

◆

This first matrix, consisting of the partial derivatives of u and v, is called the Jacobian matrix of
F , or the total derivative of F .

Using the Cauchy-Riemann equations, prove that if F is actually an analytic function of z = x+iy,
then its Jacobian matrix is of the form in part (b).

(d) Now suppose that �, ⌘ : R ! R2 are two curves (namely di↵erentiable functions), and suppose
that �(t0) = ⌘(t0) = (x0, y0), meaning that the two curves intersect at some point. Then the
angle they form is defined to be the angle between the vectors �0(t0) and ⌘0(t0). Prove that if
F : R2 ! R2 is an analytic function of z = x + iy and if the Jacobian of F at (x0, y0) is not
the zero matrix, then the angle between � and ⌘ is equal to the angle between F (�) and F (⌘).
Convince yourself that this is precisely the angle-preserving property we discussed in class.

(e)* Try to understand what part (d) actually means.
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1 The Brouwer Fixed-Point Theorem is a famous result in topology. A special case of it states that if D

is the closed unit disk, then any continuous function f : D ! D has a fixed point, namely some z 2 D

with f(z) = z.

Prove that the use of the closed unit disk is necessary. Namely, exhibit a continuous (in fact, analytic)

map f : D ! D that has no fixed point.

Hint: First, construct an analytic map H ! H that has no fixed point, then use the conformal

equivalence between H and D.

2 Given some ↵ 2 D, we define a map  ↵, sometimes called a Blaschke factor, as follows:

 ↵(z) =
↵� z

1� ↵z

(a) Prove that  ↵ is analytic on D.

(b) Prove that  ↵ is a map D ! D, namely check that | ↵(z)| < 1 for any z 2 D.

Hint: Use the Maximum Modulus Principle.

(c) Prove that  ↵(0) = ↵ and  ↵(↵) = 0.

(d) Prove that  ↵ �  ↵ = idD, and thus conclude that  ↵ is a conformal equivalence between D and

itself.

3 Suppose f : D ! D is analytic and has two distinct fixed points. Prove that f must be the identity

map.

Hint: If one of the fixed points is ↵ 2 D, consider  ↵ � f �  ↵. Then apply the Schwarz Lemma.

4 Do you expect there to be a conformal equivalence between a square and a rectangle that is not a

square? For intuition, think about whether or not such a map would be able to send small circles to

small circles, namely stretch both the x and y axes by the same amount. Try to prove your conjecture.

5* In class, we proved that if f, g are both analytic and are inverses of one another, then the derivatives

of both never vanish. This is a very strong assumption, and we can get away with less. It turns out

that if f : U ! C is an injective analytic map, then its derivative never vanishes on U , which implies

that its inverse is also analytic. Prove this.

Hint: Suppose the derivative vanishes at some point, and then apply Rouché’s Theorem in a neigh-

borhood of that point to contradict injectivity.


