1 You probably know that the exponential function $f(z)=e^{z}$ has no roots anywhere in \mathbb{C}. But have you seen a proof of this? Using the Argument Principle, show that this is indeed the case.
[Also, if you know of a less stupid proof, come tell me about it!]
2 In this problem, we will see how to use Rouché's Theorem to conclude powerful results about roots of polynomials.
(a) The polynomial $p(z)=z^{5}-z-1$ is a famous example of a quintic polynomial that has no solutions by radicals. However, by writing

$$
f(z)=z^{5} \quad g(z)=-z-1
$$

prove that every root of p has absolute value at most 2 . What's the best bound you can get on the absolute value of the roots of p ?
(b) Consider the polynomial $p(z)=z^{5}+15 z+1$. Prove that four of its five roots lie in the annulus

$$
\left\{z: \frac{3}{2}<|z|<2\right\}
$$

by applying Rouché's Theorem twice in two different ways.
(c) Write down other polynomials and see what you can prove about their roots in this way.

3 Prove the Fundamental Theorem of Algebra, which states that every polynomial $P(z)$ of degree n has exactly n roots (counted with multiplicity) in \mathbb{C}.
Hint: Write your polynomial as

$$
P(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

Then apply Rouché's Theorem by writing

$$
f(z)=a_{n} z^{n} \quad g(z)=a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}
$$

and picking a very big circle.
4* In this problem, we will explore the complex logarithm and its relation to the Argument Principle.
(a) Recall that every non-zero complex number can be written as $z=r e^{i \theta}$, where $r>0$ and $\theta \in \mathbb{R} ; \theta$ is called the argument of z. If this were to have a well-defined logarithm, we'd want it to be

$$
\log z=\log r+i \theta
$$

where $\log r$ is the usual logarithm of the positive number r. However, this is not well-defined, since θ is only defined up to adding $2 \pi n$, where $n \in \mathbb{Z}$. Because of this, we say that the complex logarithm has "multiple branches" (and if you're in Riemann Surfaces, you'll learn more about what this means). However, if we declare a value for θ at some point, e.g. by setting it to be $\pi / 2$ at the number i, then we can try to extend this definition to other points in \mathbb{C}. Prove that we can do this so long as we don't "go around" the origin.
(b) On the other hand, prove that if we do go around the origin k times, then our value of the logarithm will be different by $2 \pi i k$ once we come back to where we started.
(c) Prove that, assuming log is well-defined, we have that

$$
(\log f(z))^{\prime}=\frac{f^{\prime}(z)}{f(z)}
$$

(d) Conclude that

$$
\frac{1}{2 \pi i} \int_{C} \frac{f^{\prime}(z)}{f(z)} \mathrm{d} z
$$

should be counting how many times we go around roots of f inside C, and thus that the Argument Principle is at least plausible.

1 Prove the Fundamental Theorem of Algebra again, in a different way.
Hint: Assume that a polynomial P has no roots, and apply the Maximum Modulus Principle to the analytic function $1 / P(z)$ on some big circle.

2 In class, we pointed out that if C is a simple closed curve containing a region U, and if f is analytic on U and C, then f attains its maximum on C, rather than in U.
One must be very careful to apply this statement correctly. For instance, consider the function $f(z)=$ $e^{i z^{2}}$, and let U be the first quadrant of the plane (namely all points with positive real and imaginary parts). Prove that on the boundary of U (namely the positive real and imaginary axes), $|f|$ is exactly 1 , despite the fact that $|f|$ is unbounded on U. Why does this not contradict the Maximum Modulus Principle?

3 Prove the following strengthening of the Maximum Modulus Principle, which was mentioned in class: if f is analytic in an open set U, then $|f|$ never attains a local maximum inside U (note that what was proved in class was for a global maximum).
Hint: Apply the Maximum Modulus Principle to a small subset of U.
4^{*} In this problem, we'll try to understand the angle-preserving property of analytic functions that was mentioned in class. This problem will require a bit of linear algebra to do.
(a) A matrix of the form

$$
R=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

is called a rotation matrix. Prove that if $v=\binom{x}{y}$ is a vector in \mathbb{R}^{2}, then $R v$ is just the result of rotating v by the angle θ.
(b) Prove that any matrix of the form

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)
$$

where $a, b \in \mathbb{R}$ can be written as the product of a rotation matrix and some multiple of the identity matrix. Conclude that such a matrix acts by rotating and scaling.
(c) In case you've forgotten or haven't learned it, here's an important version of the multivariate chain rule: if $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is a differentiable function, and $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is another differentiable function, and they're given by

$$
\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right) \quad F(x, y)=(u(x, y), v(x, y))
$$

then

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(\gamma(t))=\left(\begin{array}{ll}
\partial u / \partial x & \partial u / \partial y \\
\partial v / \partial x & \partial v / \partial y
\end{array}\right)\binom{\gamma_{1}^{\prime}(t)}{\gamma_{2}^{\prime}(t)}
$$

This first matrix, consisting of the partial derivatives of u and v, is called the Jacobian matrix of F, or the total derivative of F.
Using the Cauchy-Riemann equations, prove that if F is actually an analytic function of $z=x+i y$, then its Jacobian matrix is of the form in part (b).
(d) Now suppose that $\gamma, \eta: \mathbb{R} \rightarrow \mathbb{R}^{2}$ are two curves (namely differentiable functions), and suppose that $\gamma\left(t_{0}\right)=\eta\left(t_{0}\right)=\left(x_{0}, y_{0}\right)$, meaning that the two curves intersect at some point. Then the angle they form is defined to be the angle between the vectors $\gamma^{\prime}\left(t_{0}\right)$ and $\eta^{\prime}\left(t_{0}\right)$. Prove that if $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is an analytic function of $z=x+i y$ and if the Jacobian of F at $\left(x_{0}, y_{0}\right)$ is not the zero matrix, then the angle between γ and η is equal to the angle between $F(\gamma)$ and $F(\eta)$. Convince yourself that this is precisely the angle-preserving property we discussed in class.
(e)* Try to understand what part (d) actually means.

1 The Brouwer Fixed-Point Theorem is a famous result in topology. A special case of it states that if $\overline{\mathbb{D}}$ is the closed unit disk, then any continuous function $f: \overline{\mathbb{D}} \rightarrow \overline{\mathbb{D}}$ has a fixed point, namely some $z \in \overline{\mathbb{D}}$ with $f(z)=z$.
Prove that the use of the closed unit disk is necessary. Namely, exhibit a continuous (in fact, analytic) $\operatorname{map} f: \mathbb{D} \rightarrow \mathbb{D}$ that has no fixed point.
Hint: First, construct an analytic map $\mathbb{H} \rightarrow \mathbb{H}$ that has no fixed point, then use the conformal equivalence between \mathbb{H} and \mathbb{D}.

2 Given some $\alpha \in \mathbb{D}$, we define a map ψ_{α}, sometimes called a Blaschke factor, as follows:

$$
\psi_{\alpha}(z)=\frac{\alpha-z}{1-\bar{\alpha} z}
$$

(a) Prove that ψ_{α} is analytic on \mathbb{D}.
(b) Prove that ψ_{α} is a map $\mathbb{D} \rightarrow \mathbb{D}$, namely check that $\left|\psi_{\alpha}(z)\right|<1$ for any $z \in \mathbb{D}$. Hint: Use the Maximum Modulus Principle.
(c) Prove that $\psi_{\alpha}(0)=\alpha$ and $\psi_{\alpha}(\alpha)=0$.
(d) Prove that $\psi_{\alpha} \circ \psi_{\alpha}=\operatorname{id}_{\mathbb{D}}$, and thus conclude that ψ_{α} is a conformal equivalence between \mathbb{D} and itself.

3 Suppose $f: \mathbb{D} \rightarrow \mathbb{D}$ is analytic and has two distinct fixed points. Prove that f must be the identity map.
Hint: If one of the fixed points is $\alpha \in \mathbb{D}$, consider $\psi_{\alpha} \circ f \circ \psi_{\alpha}$. Then apply the Schwarz Lemma.
4 Do you expect there to be a conformal equivalence between a square and a rectangle that is not a square? For intuition, think about whether or not such a map would be able to send small circles to small circles, namely stretch both the x and y axes by the same amount. Try to prove your conjecture.
5^{*} In class, we proved that if f, g are both analytic and are inverses of one another, then the derivatives of both never vanish. This is a very strong assumption, and we can get away with less. It turns out that if $f: U \rightarrow \mathbb{C}$ is an injective analytic map, then its derivative never vanishes on U, which implies that its inverse is also analytic. Prove this.
Hint: Suppose the derivative vanishes at some point, and then apply Rouché's Theorem in a neighborhood of that point to contradict injectivity.

