
Mathcamp 2020 Crossing numbers Homework #1

All the homework is optional, which is one reason why there’s a lot of it: if you’re inter-
ested in doing some problems related to this class, find the ones that seem most interesting
and work on those! In particular, the first two problems are only recommended if you’ve
never seen a proof of Euler’s formula or of linearity of expectation.

Results I mentioned in class but didn’t prove

Problem 1 (Euler’s formula). In class, I mentioned Euler’s formula. Here is the statement
again:

Theorem. Suppose G is a connected graph drawn in the plane with no crossing edges, and
let this drawing have v vertices, e edges, and f faces. Then v − e + f = 2.

In this problem, we will prove Euler’s formula. Feel free to skip any steps of the proof
that you already know; I’m just including all of them for completeness.

(a) Prove that the connectivity assumption on G is necessary. In other words, show that
if a disconnected graph is drawn in the plane, then v − e + f 6= 2. If you know some
topology, can you come up with a topological explanation for what’s going on?

(b) Recall that a tree is a connected graph with no cycles, and a leaf is a vertex with only
one neighbor. Prove that every tree has at least one leaf.

(c) Using (b), prove by induction that if a tree has n vertices, then it has n− 1 edges.

(d) Prove that every tree is planar, and that no matter how we draw a tree in the plane,
it will have one face. Conclude from this and (c) that Euler’s formula holds for trees.

(e) Prove that every connected graph G has a spanning tree, namely a subgraph which is
a tree and which contains all the vertices of G.

(f) Prove Euler’s formula using parts (d) and (e), and by induction on e.

Problem 2 (Linearity of expectation). Recall that the expectation of a random quantity Z
is defined by

E[Z] =
∑
z

z · Pr(Z = z),

where the sum is over all values z which Z might take. Suppose X, Y are random quantities,
and let Z = X + Y . Prove that E[Z] = E[X] + E[Y ].
Hint: By definition, we know that E[Z] =

∑
z z · Pr(Z = z). Prove that we can also write

E[Z] =
∑

x

∑
y(x + y) Pr(X = x, Y = y), where the sums are over all values x, y that X, Y

can take, respectively.
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Variants of the crossing number

Problem 3. The rectilinear crossing number of a graph G, denoted rcr(G), is defined as the
minimum number of crossings in any straight-line drawing of G in the plane.

(a) Prove that cr(G) ≤ rcr(G) for any graph G.

(b) Does equality always hold in (a)?

? (c) Prove that cr(G) = 0 if and only if rcr(G) = 0.

Problem 4. Let us define a stupid drawing of a graph in the plane to be a drawing where
we allow more than two edges to all cross at a single point. Let us also define the stupid
crossing number scr(G) to be the minimum number of crossing points in a stupid drawing of
G. Note that we only count the number of crossing points, not the number of pairs of edges
which cross there.

Prove that

scr(G) =

{
0 if G is planar

1 otherwise.

Conclude that this is not a particularly interesting concept.

Nice drawings of graphs

Problem 5. Let’s find some explicit drawings of graphs with few crossings!

(a) Pick your favorite non-planar graph and try to draw it in the plane with as few crossings
as possible. Can you prove that your drawing uses the minimum number of crossings?

(b) Find a drawing of Km,n in the plane with
⌊
m
2

⌋ ⌊
m−1
2

⌋ ⌊
n
2

⌋ ⌊
n−1
2

⌋
crossings.

(c) Find a drawing of Kn in the plane with 1
4

⌊
n
2

⌋ ⌊
n−1
2

⌋ ⌊
n−2
2

⌋ ⌊
n−3
2

⌋
crossings.

?? (d) Prove matching lower bounds for (b) or (c).

Problem 6? (In memory of John Conway). A thrackle is a drawing of a graph in the plane
such that every pair of edges meets exactly once, either at a common endpoint or at an
internal crossing. For instance, the 5-pointed star is a thrackle drawing of the cycle C5.

(a) Prove that C4 cannot be drawn in the plane as a thrackle.

(b) Prove that every cycle graph Ck other than C4 can be drawn as a thrackle.

(c) A linear thrackle is a thrackle in which all the edges are straight lines. Prove that any
linear thrackle has e ≤ v.

?? (d) Prove that in any thrackle, e ≤ v.
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Problem 1. In class, I mentioned the Szemerédi–Trotter theorem, which was used by Elekes
in his work on the sum-product problem. Here is the precise statement.

Theorem. There exists an absolute constant C > 0 such that the following holds. Let
P ⊂ R2 be a set of n points in the plane, and let L be a set of m lines in the plane. Let
I(P,L) denote the number of incidences of P and L, namely the number of pairs (p, `) ∈ P×L
such that p lies on `. Then

I(P,L) ≤ C(m2/3n2/3 +m+ n).

Prove the Szmerédi–Trotter theorem, using the crossing number lemma.
Hint: Base your proof on our upper bound for the unit distance problem. When choosing
which graph to apply the crossing number lemma, think about what graph you’d see if you
just drew a bunch of points and a bunch of lines in the plane!

Problem 2? (Unit distances in higher dimensions). Given a finite set S ⊂ Rd, define

u(S) = |{{x, y} ⊂ S : ‖x− y‖ = 1}|,

where ‖ · ‖ denotes the usual Euclidean distance in Rd. Then, as we did with the plane,
define

ud(n) = max
S⊂Rd

|S|=n

u(S)

to be the maximum number of unit distances among n points in Rd.

(a) Prove that u1(n) = n− 1.

? (b) The first new interesting case is d = 3, which appears to be roughly as hard as the
case d = 2 that we discussed. The best known bounds are

cn4/3 log log n ≤ u3(n) ≤ Cn3/2

for some absolute constants c, C > 0. Prove either of these bounds.

Hint: The lower bound is due to Erdős, and uses similar ideas to the lower bound I
sketched in class; to obtain this bound, you’ll probably have to look up some results in
number theory. The upper bound is much harder, and I’ve never actually seen a full
proof of it.

?? (c) Improve either of the bounds from (b).

(d) Weirdly, things get a lot easier for d ≥ 4. Prove that

ud(n) ≥
⌊n

2

⌋ ⌈n
2

⌉
≈ n2

4

for all d ≥ 4 and all n. Since we also have an upper bound ud(n) ≤
(
n
2

)
≈ n2

2
, this

determines ud(n) up to the constant factor for all d ≥ 4.

Hint: Consider two orthogonal 2-dimensional planes in Rd, and a circle in each of
them.
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(e) Modify your construction from (d) to prove that

ud(n) &
1

2

(
1− 1

bd/2c

)
n2,

where the & denotes that this holds up to a lower-order term.

Hint: Why restrict yourself to only two orthogonal circles?

? (f) Prove a matching upper bound to (e), namely

ud(n) .
1

2

(
1− 1

bd/2c

)
n2.

Thus, up to the lower-order terms, the problem is fully solved for d ≥ 4! (excitement,
not factorial)

Hint: Apply the Erdős–Stone–Simonovits theorem from extremal graph theory; if you
don’t know what that is, consider skipping this part.

(g) Actually, there is no reason to restrict our attention to Rd. For any metric space X,
one can define uX(n) to denote the maximum number of unit distances among n points
in X. Can you say interesting things about uX(n) for your favorite metric spaces?

Problem 3. I mentioned in class that the upper bound u(n) ≤ Cn4/3 hasn’t budged in
nearly 40 years. There is actually a good reason why, which is the following construction
due to Valtr.

? (a) Feel free to skip this part because it’s not very interesting, but make sure you understand
the metric constructed here before moving on to the next parts.

Let
C = {(x, y) ∈ R2 : |y| = 1− x2} ⊂ R2.

We can define a metric ρ on R2 such that the unit circle around every point is a
translate of C, i.e. a metric so that the points at distance 1 from (x0, y0) are the points

C + (x0, y0) = {(x, y) : |y − y0| = 1− (x− x0)2}.

Concretely, we define the distance ρ((x0, y0), (x1, y1)) between distinct points (x0, y0)
and (x1, y1) to be the unique real number α > 0 such that

|y1 − y0|
α

= 1− (x1 − x0)2

α2
.

Prove that ρ is a metric on R2.

Remark: This actually has nothing to do with the specifics of C: given any convex,
centrally symmetric shape around the origin, it defines a metric on R2 in this way.
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(b) Let uρ(n) be the maximum number of ρ-unit distances among n points in the plane,
where by a ρ-unit distance I mean two points (x0, y0), (x1, y1) with ρ((x0, y0), (x1, y1)) =
1. Verify that our proof in class that u(n) ≤ 8n4/3 also implies uρ(n) ≤ 8n4/3.

Remark: Again, there is nothing special about C here: as you’ll find when doing this
proof, the only property we need is that C can intersect any translate of it in at most
two points. This holds for any “strictly convex metric” on R2.

(c) Suppose for simplicity that n = (2k + 1)(2k2 + 1) for some integer k. Consider the
n-point set

S =

{(
i

k
,
j

k2

)
: |i| ≤ k, |j| ≤ k2

}
.

Prove that every point in S is at ρ-unit distance away from at least k other points of
S.

(d) Conclude from (c) that

uρ(n) ≥ uρ(S) ≥ kn

2
>
n4/3

4
.

Thus, up to the constant factor, we see that our upper bound for uρ(n) is basically
correct.

(e) Conclude that no proof like the one we saw in class could ever prove a bound better
than u(n) ≤ Cn4/3. In fact, the metric ρ is very similar to the Euclidean metric on R2,
and no one really knows what properties of the Euclidean metric might be needed to
prove a better upper bound. Can you think of any “nice” differences between ρ and
the Euclidean metric?
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