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1 Background

In this class, we’ll be investigating drawings of graphs in the plane. For our purposes, a
drawing of a graph G = (V,E) will be an assignment of a point in R2 for every vertex in V ,
as well as a curve in R2 connecting any two vertices that are joined by an edge in E. We will
allow edges to cross each other, though we require that at most two edges meet at any given
point. We will also insist that edges don’t go through vertices other than their endpoints,
and that no edge crosses itself.

Recall that a graph is called planar if it can be drawn in the plane with no crossing
edges. Our main object of study in this class is the crossing number of a graph, which can
be thought of as a refined way of asking the question “is a graph planar?” In essence, it asks
“how non-planar is a graph?”

Definition 1. Given a graph G, its crossing number cr(G) is defined as the minimum number
of edge crossings among all drawings of G in the plane.

Thus, we see that G is planar if and only if cr(G) = 0, since cr(G) = 0 precisely means
that there is a drawing of G with no crossing edges. In general, we should think that the
larger cr(G) is, the “more non-planar” G is.

Despite the simple definition, there is a lot we don’t know about crossing numbers. We
only know the precise value of cr(G) for special graphs G, and even among the simplest
families of graphs, we don’t know the value of the crossing number except for small cases.
For instance, given that the two simplest non-planar graphs are K3,3 and K5, it is natural to
ask about the crossing numbers of the complete bipartite graphs Km,n and of the complete
graphs Kn.
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Conjecture 3 (Hill).
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In both cases, the conjectured values come from specific drawings. Namely, we know how
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crossings, respectively. Therefore, all that remains to prove these conjectures is to prove a
matching lower bound, but this appears difficult in general, and we only know how to do it
for small values of m and n, where some casework can be done by hand or by computer. In
general, it’s not really clear what to do: how do you prove that a graph cannot be drawn in
the plane with a small number of crossings? A priori, it seems like the only thing to do is to
try all the drawings, which is impossible in general.

In this class, we’ll see a way of doing this, which is called the crossing number lemma. It
establishes a lower bound on cr(G) that depends only on the number of vertices and edges
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of G. While it is not precise enough to establish either of the above conjectures, it turns out
to be enormously useful in a number of applications, as we will also see.

Before doing so, though, let me mention one final beautiful conjecture about crossing
numbers. Recall that χ(G) denotes the chromatic number ofG, namely the minimum number
of colors one needs to color the vertices of G so that adjacent vertices receive different colors.

Conjecture 4 (Albertson). If χ(G) = k, then cr(G) ≥ cr(Kk).

In other words, Albertson’s conjecture says that Kk has the smallest crossing number
among all graphs of chromatic number k. Despite its simple statement, it contains within
it some interesting content. For instance, the k = 5 version asserts that if a graph has
chromatic number 5, then its crossing number is at least cr(K5), which is 1. Thus, the
k = 5 case of Albertson’s conjecture is precisely the four-color theorem! Because this case is
already so hard, one might expect the conjecture to just get increasingly harder for larger k,
but this is not really the case; certain tools, such as the crossing number lemma, allow one to
reduce higher cases of Albertson’s conjecture to specific finite checks, and with computers,
Albertson’s conjecture has now been verified for k ≤ 18.

2 The basics

Before we can prove the crossing number lemma, we will begin by proving a number of
simpler and weaker facts about planar graphs and about crossing numbers. Eventually, we’ll
be able to boost these weaker results into the stronger result we’re looking for. From this
point onwards, the letter v will always indicate the number of vertices of a graph G, and the
letter e will always indicate the number of edges of G. If G is not clear from context, we’ll
write v(G), e(G), respectively.

Theorem 5. If G is a planar graph, then e < 3v.

Proof. If v = 1 then G has no edges, and we’re done. Similarly, if v = 2, then G has at most
one edge, and we’re again done. So we may assume from now on that v ≥ 3.

Fix a drawing of G in the plane with no crossing edges. Recall that the faces of this
drawing are the regions surrounded by the vertices and edges, as well as the one infinite
region outside the graph. If any face is not a triangle, we may add some edges to G to
divide it into triangles; note that this will increase e and not change v, so if we prove the
desired bound for this “triangulated” graph, it will imply the bound for our original graph.
Therefore, we will assume from now on that every face of G (including the infinite face) is a
triangle. Let f denote the number of faces.

We will now import an important fact from topology, Euler’s formula, which tells us that
v − e + f = 2. As it turns out, this is the only time during this class where we will use
anything specific about the structure of the plane. We won’t prove Euler’s formula, though
you can find a proof on the homework.

Note that every edge lies on exactly two faces. Moreover, since we assumed that all faces
were triangles, we have that every face contains three edges. Therefore, we can conclude that
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3f = 2e: this is because 3f counts the three edges from each face, and doing so double-counts
the number of edges, since every edge appears on exactly two faces. Plugging this equality
into Euler’s formula v − e + f = 2, we get that

2 = v − e + f = v − e +
2

3
e = v − e

3
.

Rearranging this shows that e = 3v − 6, and in particular that e < 3v, as claimed.

Using this fact, we can obtain our first general lower bound on cr(G).

Corollary 6. For any graph G,
cr(G) > e− 3v.

Proof. Fix a drawing of G in the plane with the minimum number of crossings, namely
with exactly cr(G) crossings. For each crossing, we (arbitrarily) pick one of the edges that
participates in it, and delete it. Doing so gives us a new graph G′. Note that v(G′) = v(G)
and that e(G′) ≥ e(G) − cr(G), since we delete at most one1 edge for each crossing of G.
Moreover, we now have a drawing of G′ with no crossings, which implies that G′ is planar.
By the previous theorem, this tells us that e(G′) < 3v(G′), and so

cr(G) ≥ e(G)− e(G′) > e(G)− 3v(G′) = e(G)− 3v(G),

as claimed.

3 The crossing number lemma

We will now prove the crossing number lemma, which will give us a much stronger lower
bound on cr(G) than the one given above.

Theorem 7 (Crossing number lemma). If G is a graph with e ≥ 4v, then

cr(G) ≥ e3

64v2
.

Before we prove this, there are a few remarks to make. First, don’t worry too much
about the constant 64. It is the constant that comes out of the proof, and more involved
proofs give better constants (the current record is around 29). However, as we will see, the
constant just doesn’t really matter: if we think of our graph G as enormous, then the only
thing that really matters are the exponents on v and e: if these numbers are both in the
trillions, then a number like 64 is totally insignificant relative to another factor of a trillion.

1We may delete strictly fewer edges if some of the edges participate in more than one crossing, but in
either case we get the claimed inequality.

3



Mathcamp 2020 Crossing numbers Yuval

The crossing number lemma was proven independently by Ajtai–Chvátal–Newborn–
Szemerédi and by Leighton in the early 1980s. Their original proofs were somewhat compli-
cated; however, we’re about to see a much simpler proof that was discovered somewhat later
by a number of people2.

The basic idea in the proof is to again leverage a weaker result by cleverly deleting
something. Earlier, we applied this idea by first proving the (weak) result that if G is
planar then e(G) < 3v(G), and then extending this to the (stronger) result that cr(G) >
e(G) − 3v(G) by cleverly deleting edges. To obtain the even stronger bound on cr(G), we
will delete vertices, and then apply the weaker bound. However, we run into a problem,
which is that earlier we had a natural choice of which edges to delete, namely the ones
that participated in the crossings. Here, it is not clear which vertices to delete—if we delete
vertices whose edges participate in lots of crossings, we may accidentally end up also deleting
a bunch of inoffensive edges, and it’s not clear how to gain anything from this argument.

As it turns out, the right way to deal with this conundrum is to not make these choices
ourselves. Instead, we will delete some of the vertices at random. This seems totally crazy at
first—the whole point is to pick something cleverly, and how on earth will doing it randomly
help us? However, as it turns out, it is often the case in mathematics that random choices
are better-behaved than “clever” non-random choices, and this is an instance of that.

Before seeing the proof, recall that if X is a random quantity3, then its expectation (or
average) E[X] is the sum

E[X] =
∑
x

x · Pr(X = x).

Thus, for instance, if X denotes the outcome of a fair die roll, then

E[X] =
∑

x∈{1,2,3,4,5,6}

x · Pr(X = x) =
∑

x∈{1,2,3,4,5,6}

x · 1

6
=

7

2
.

The crucial fact that we will need about expectation is that it is linear : if X and Y are two
random quantities, then E[X + Y ] = E[X] +E[Y ]. Note that this holds even if X and Y are
dependent (e.g. even if the same randomness determines both of them); if you’ve never seen
a proof of this, you should check the homework.

Proof of the crossing number lemma. We fix a parameter p ∈ [0, 1], which we will select
later. Given our graph G, let us also fix a drawing of it in the plane with exactly cr(G)
crossings. Now, we form a random induced subgraph of G, which we denote Gp, by keeping
each vertex with probability p, independently of all the other vertices. In other words, we
go vertex by vertex, and for each vertex we flip a p-biased coin to determine whether or not
we keep that vertex: we keep it with probability p, and delete it with probability 1 − p. If

2This proof is attributed to Lovász, Matoušek, Pach, and sometimes others. I’ve heard a story that there
was an email chain involving some of these people, and that this proof was discovered through this email
chain, but I’m not sure if this story is true.

3The technical name for X is a random variable, but I’m intentionally avoiding this terminology because
I don’t want to get caught up in technicalities about what exactly X is.
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we delete a vertex, then we also delete all the edges coming off of it; thus, we keep an edge
if and only if both of its endpoints are kept.

Note that v(Gp), e(Gp), and cr(Gp) are all random quantities, and they are quite difficult
to understand. However, it turns out that the expectations of these random quantities are
actually quite simple to determine (or at least to bound). For instance, we have that

E[v(Gp)] = pv(G).

Indeed, since every vertex is kept with probability p, we can add up over all vertices by
linearity of expectation and get this bound. Similarly, since an edge is kept if and only if
both its endpoints are kept, we see that each edge survives in Gp with probability p2. Thus,
again by linearity of expectation,

E[e(Gp)] = p2e(G).

Finally, let’s consider cr(Gp). In our drawing of G in the plane, every crossing will survive
with probability p4, since a crossing will survive if and only if both edges which participate
in it survive, and each of these edges survives with probability p2. Thus, our drawing of G
yields a drawing of Gp which has, on average, p4 cr(G) crossings. This drawing may not be
the best drawing of Gp, but it is a drawing, and this implies that

E[cr(Gp)] ≤ p4 cr(G).

Finally, we apply Corollary 6 to Gp. It tells us that

cr(Gp) ≥ e(Gp)− 3v(Gp).

Taking expectations of both sides, we find that

E[cr(Gp)] ≥ E[e(Gp)]− 3E[v(Gp)],

and plugging in our values above, we find that

p4 cr(G) ≥ p2e(G)− 3pv(G), or equivalently cr(G) ≥ p−2e− 3p−3v.

Note that this bound holds for all p ∈ [0, 1], so it makes sense to pick the best choice of p,
namely the choice of p that yields the strongest lower bound on cr(G). Finding this best
p can be done with calculus, but let’s skip that; it turns out that a pretty good choice is
p = 4v/e. Note that by our assumption that e ≥ 4v, this quantity is indeed in [0, 1], which is
good: our probabilistic argument only works if p is a valid probability. Plugging in p = 4v/e,
we find that

cr(G) ≥ p−2e− 3p−3v =
e3

16v2
− 3e3

64v2
=

e3

64v2
.
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4 Applications of the crossing number lemma

For a long time after its proof in the early 1980s, many mathematicians didn’t know or care
about the crossing number lemma. However, this all changed with a paper of Székely from
1997. This is one of my favorite math papers of all time. In it, he shows how a wide array of
different theorems in discrete geometry4 can all be solved using a simple application of the
crossing number lemma. Though most of the theorems he proves had been known before,
their earlier proofs were usually very involved. Since this paper, the crossing number lemma
has become a standard and important tool in discrete geometry.

At its core, the method that Székely came up with is extremely simple. One wishes to
prove some statement about, say, a collection of points in the plane. One then usually defines
a graph with these points as vertices, and the geometric nature of the problem also means
that we get a drawing of this graph in the plane. We then find upper and lower bounds
for the crossing number of this graph; the lower bound will come from the crossing number
lemma, while the upper bound will come from the specific drawing that we have, together
with the geometric assumptions about the problem. If we’ve done everything well, we can
put these bounds together and derive an interesting result.

4.1 Erdős’s unit distance problem

One of my favorite applications of the crossing number lemma is to Erdős’s unit distance
problem, which is one of my favorite open questions in all of math. The question asks for
the maximum number of unit distances that can be found among a set of n points in the
plane. More precisely, given a finite set S ⊂ R2, let

u(S) = |{{x, y} ⊂ S : ‖x− y‖ = 1}|

denote the number of (unordered) pairs of points in S whose Euclidean distance is exactly
1. Next, we define

u(n) = max
|S|=n

u(S);

thus, u(n) is exactly the maximum number of unit distances we can see among n points in
the plane. In 1946, Erdős asked to determine u(n), or at least to find good upper and lower
bounds for it.

Let us begin with lower bounds. To find a lower bound for u(n), it suffices to find a
configuration S ⊂ R2 of n points that span many unit distances. Perhaps the simplest thing
to try is to let S be a square lattice, namely a

√
n ×
√
n grid of points (let’s assume for

simplicity that n is a perfect square). Then every point in S (except for a few exceptions
near the boundary) are at a unit distance from exactly 4 other points. Note that if we add
this up over all points, we’ll double-count all the unit distances, and we find that u(S) ≈ 2n,
where the ≈ again comes from the exceptions near the boundary, which are insignificant if
n is large. Thus, we find that u(n) & 2n. Can we do better?

4Discrete geometry is a field of math where one studies questions about the geometry of finite collections
of points, lines, etc. in the plane or in Rd.
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Actually, we can, using a beautiful trick discovered by Erdős when he came up with this
problem. Let us define S5 to be another

√
n ×
√
n square grid of points, except that now

we make the distance between adjacent points 1/5, rather than 1, as it was before. In other
words, we get S5 from S by dilating the plane by a factor of 1/5. The reason we picked 1/5
is that 5 is the hypotenuse of a Pythagorean triple: the point (0, 0) is at unit distance from
the 12 points

(±1, 0), (±3
5
,±4

5
), (±4

5
,±3

5
), (0,±1).

We can see this visually: the unit circle around (0, 0) passes through the 12 red points in
the grid S5 below.

This shows that u(S5) ≈ 6n, since we again double-count the unit distances when we add
up 12 over all n points. Thus, u(n) & 6n.

Of course, there’s no reason to stop at S5. Suppose we pick a number k such that k2

can be represented as a sum of two perfect squares in ` different ways. Then if we define Sk
to be a square grid dilated down by a factor of 1/k, then almost every point in Sk will be
at unit distance from ` others, and we will thus get that u(Sk) ≈ `n. However, we have to
make sure that k is not too large relative to n, for otherwise the edge effects will start getting
problematic: for instance, if we take k >

√
2n, then the entire grid Sk will have diagonal

length less than 1, and will have zero unit distances!
But essentially, this all boils down to the question of which number k (which is not too

large relative to n) can be expressed as the sum of two squares in the maximum number of
ways. This is a number theory question, and it was already essentially answered by Fermat
and Lagrange by the 17th century. By using their results, Erdős was able to show that we
can pick such a k for which ` = nc/ log logn, where c > 0 is some absolute constant. By the
using this rescaling trick, he concluded that

u(n) ≥ n1+c/ log logn.
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Note that this function n1+c/ log logn is somewhat strange: it grows faster than any linear
function in n, but slower than any other power of n. More precisely,

lim
n→∞

n1+c/ log logn

n
=∞ but lim

n→∞

n1+c/ log logn

nα
= 0 for any α > 1

Erdős published this result in 1946, and to this day, n1+c/ log logn is the best known lower
bound on u(n); in fact, Erdős conjectured that this lower bound is essentially correct, and
most of the subsequent work has focused on improving the upper bound.

The best upper bound we have on u(n) is u(n) ≤ Cn4/3 for some constant C > 0.
This result was first proved by Spencer, Szemerédi, and Trotter in 1984 using somewhat
complicated techniques; I will present the simple proof of Székely, using the crossing number
lemma. At this point, there are at least three different proofs of this result, all using different
ideas, but no one has been able to improve on it, and getting beyond the 4/3 barrier is a
major open problem.

Theorem 8. u(n) ≤ 8n4/3.

Proof (Székely). Let S ⊂ R2 be an arbitrary set of n points in the plane; it suffices to prove
the desired upper bound on u(S). Following the general strategy, we will construct a graph
whose vertex set is S, whose edges “know something about” the unit distances in S, and
whose crossing number we can understand.

To do this, let us first draw a unit circle around every point in S. Then the number of
unit distances is exactly half of the number of incidences between the points of S and these
unit circles, where an incidence is a pair consisting of a circle and a point lying on it. Note
that we need to take half the incidences because every unit distance defines two incidences.
We define a graph G0 whose vertex set is S, and we connect two points of S by an edge
if they are consecutive points along one of these circles; equivalently, the edges of G0 are
precisely the circular arcs we see when draw this configuration.

Suppose one of the unit circles has m points of S on it. Then this circle contributes
m incidences, and additionally it contributes m edges to G0, since the m points split the
circle into m arcs. Therefore, the total number of incidences is precisely e(G0), and thus
e(G0) = 2u(S).

Additionally, note that we already have a drawing of G0 in the plane, namely the one
where every edge is just drawn as the circular arc that defines it. Note that the set of crossing
points of edges in this graph is exactly the set of points where the n unit circles cross each
other. Since any two circles can cross each other at most twice, we find that this drawing
has at most 2

(
n
2

)
crossings. Thus,

cr(G0) ≤ 2

(
n

2

)
≤ n2.

Note that G0 is not quite an “ordinary” graph, since two vertices may be joined by more
than one edge in G0. This can happen for two reasons. First, if one of the unit circles
has only two points on it, then those two points will be joined by two arcs from this circle,
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and thus by two edges in G0. Additionally, two different circles may pass through the same
two points, which may again give us up to two additional edges between these two points.
However, this is it: given two points in the plane, there are at most two unit circles that pass
through them. Thus, we find that any pair of vertices in G0 is joined by at most 4 edges.

We define a new graph G by keeping exactly one of these edges for every pair of vertices
in G0. Thus, G is a subgraph of G0, and G is a simple graph, in the sense that every pair
of vertices is joined by at most one edge. G, like G0, has n vertices. Moreover, since every
pair in G0 was joined by at most 4 edges, we find that e(G) ≥ e(G0)/4. Finally, since G is a
subgraph of G0, we find that cr(G) ≤ cr(G0) ≤ n2. We can now apply the crossing number
lemma, which tells us that

n2 ≥ cr(G) ≥ e(G)3

64v(G)2
≥ e(G0)

3

4096n2
=
u(S)3

512n2
.

Rearranging, we find that u(S) ≤ 8n4/3, as claimed.
However, we can only apply the crossing number lemma if e(G) > 4v(G). But if not,

then

u(S) =
e(G0)

2
≤ 2e(G) ≤ 8v(G) = 8n ≤ 8n4/3,

and we get the same result.

4.2 The sum-product phenomenon

Given a finite set A ⊂ R, we define

A+ A = {a+ b : a, b ∈ A} and A · A = {ab : a, b ∈ A}

to be the sets of pairwise sums and differences in A, respectively. By considering the sum
or product with a single fixed element of A, we can see that |A + A|, |A · A| ≥ |A|. On
the other hand, since we are taking pairs of elements, we also get the simple upper bounds
|A + A|, |A · A| ≤ |A|2. In general, both of these bounds might be more or less tight: the
sizes of A+ A and A · A can be anywhere between linear in |A| and quadratic in |A|.

However, if the lower bound is nearly tight, then we expect strong additive or multiplica-
tive structure. For instance, one can prove that in fact |A+A| ≥ 2|A|− 1, and that equality
holds if and only if A is an arithmetic progression. Similarly, |A ·A| ≥ 2|A|−1, with equality
if and only if A is a geometric progression.

However, there is a general philosophical notion, backed up by many disparate theorems,
which essentially says that the additive and multiplicative structure of R (or in fact any
field) must be totally incompatible. In particular, it is impossible for a set to simultaneously
have a lot of additive and a lot of multiplicative structure. One instance of this philosophy
is the following conjecture, which is a major open problem.

Conjecture 9 (Erdős–Szemerédi). For every ε > 0 there exists some n0 ∈ N such that the
following holds. If A ⊂ R is a finite set with |A| ≥ n0, then

max{|A+ A|, |A · A|} ≥ |A|2−ε.
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In other words, this conjecture says that for large sets A ⊂ R, either |A + A| or |A · A|
must be arbitrarily close to its maximal possible size of |A|2. In other words, it is impossible
for A to simultaneously have any “appreciable” additive and multiplicative structure.

Despite many years of intensive work, the Erdős–Szemerédi sum-product conjecture re-
mains wide open. The current record (from just two months ago!) is due to Rudnev and
Stevens, who proved that

max{|A+ A|, |A · A|} ≥ |A|1558/1167

for sufficiently large sets A ⊂ R.
Elekes previously proved a weaker bound, whose proof uses techniques like the ones we’ve

discussed above.

Theorem 10 (Elekes). For any set A ⊂ R,

max{|A+ A|, |A · A|} ≥ 1

10
|A|5/4.

Elekes’s brilliant insight was that this problem, which deals with sets of real numbers,
really corresponds to a geometry problem, which means that geometric techniques like the
crossing number lemma can be applied to it. Without going into too many details, what
Elekes does is look at the set

P = {(x, y) ∈ R2 : x ∈ A+B, y ∈ A ·B} ⊂ R2.

Additionally, he considers lines of the form y = a(x−b) for all pairs a, b ∈ A. Then the point
is that every such line goes through many of the points in P , namely all points of the form
(b + c, ac) ∈ P , for any c ∈ A. This shows that we have built a configuration of points and
lines in the plane with many incidences. Earlier, we proved that a collection of points and
unit circles in the plane can’t have too many incidences, and the same holds for points and
lines; this fact is known as the Szemerédi–Trotter theorem, and it can be proven in the same
way as our proof above, using the crossing number lemma. Using it, one can show that the
only way for there to be so many incidences between P and these lines is if |P | ≥ 1

100
|A|5/2.

But since |P | = |A+ A||A · A|, we conclude the claimed bound.
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