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My philosophy on Ramsey theory
Theorem (“Folklore”)
Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári–Sós–Turán 1954)
Given an N × N grid, if half the points are colored red, then there is a
logN × logN red subgrid. This is tight.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are
log log log log logN evenly spaced red points. Is this tight?
Theorem (Furstenberg–Katznelson 1978,
Nagle–Rödl–Schacht–Skokan 2005, Gowers 2007)
Given an N × N grid, if half the points are colored red, then there is a√
A−1(N) ×

√
A−1(N) evenly spaced red subgrid. Is this tight?

Any large object contains a large structured subobject. How large?
Constructions are crucial for understanding such questions.
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Graph Ramsey theory

There is a 2-coloring of the edges of K5 with no monochromatic
triangle

…but every 2-coloring of the edges of K6 does have a
monochromatic triangle.
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Ramsey numbers
r(t) =minimum N so that every 2-coloring of the edges of KN has a
monochromatic Kt.

Theorem (Ramsey 1930, Erdős–Szekeres 1935)
r(t) exists (i.e. is finite). In fact, r(t) < 4t.

For a lower bound we need a construction: a coloring of KN with no
monochromatic Kt.

Theorem (Erdős 1947)
r(t) > 2t/2.

Proof: Let N = 2t/2. Consider a random two-coloring of E(KN).

𝔼[#monochromatic Kt] =
(N
t

)
21−( t2) < Nt2− 1

2 t2 = 1.

So there exists a coloring of E(KN) with < 1 monochromatic Kt.
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Multicolor Ramsey numbers
r(t;q) =min.N so that any q-coloring of E(KN) has monochromatic Kt
Erdős–Szekeres (1935), Erdős (1947):

√q t < r(t;q) < qqt

Product coloring trick: r(t;q) > 2⌊ q
2 ⌋ t

2 ≈
(
2 q

4
)t
.

Conlon–Ferber (2021): r(t;q) >
(
2 7q

24+C
)t
.

W. (2021): r(t;q) >
(
2 3q

8 − 1
4
)t
.
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The Conlon–Ferber construction
For x, y ∈ 𝔽t

2, let x · y = ∑t
i=1 xiyi. We define a graph Gt as follows.

Let Vt = {x ∈ 𝔽t
2 : x has an even number of 1s} = {x ∈ 𝔽t

2 : x · x = 0}.
For x, y ∈ Vt, make xy adjacent if x · y = 1.

Fact 1: Gt contains no Kt (for t even).
Fact 2: Gt has at most 2 5

8 t2

independent sets of size t.
We color the edges of Gt green.

0000

1100

1010

1001

0110

0101

0011

1111

Let p ≈ 2− 1
8 t, and keep each vertex of Gt with probability p.

Color all remaining pairs red or blue at random.
𝔼[#red or blue Kt] ≤ pt · 2 5

8 t2 · 21−( t2) ≈
(
2− 1

8 t · 2 5
8 t · 2− 1

2 t
)t

= 1.

No green Kt by Fact 1, so r(t;3) > N ≈ p|Vt| ≈ 2 7
8 t.

This works over larger fields, but the bounds aren’t very good.
Conlon–Ferber use the product coloring for q > 4.
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A new approach for more colors

Overlay two random copies of Gt in green
and yellow.
The number of sets of size t independent in
both copies is ≤ 2 1

4 t2

(because a t-set is independent in either
copy with probability ≤ 2− 3

8 t2 ).
Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

𝔼[#red or blue Kt] ≤ pt · 2 1
4 t2 · 21−( t2) ≈

(
p · 2 1

4 t · 2− 1
2 t

)t
.

Pick p ≈ 2 1
4 t to obtain r(t;4) > N ≈ p|Vt| ≈ 2 5

4 t.

How are we picking p > 1???
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Random homomorphisms to the rescue
Let p be any positive real number, and let N = p|Vt|.
Pick a uniformly random function f : [N] → Vt.

0000
1100

1010

1001
0110

0101

0011

1111

1010 0011 0101 0101 0011 0110 0101 1111 1010 0000 0101

Connect vertices in [N] if their labels are adjacent in Gt to get G̃t.
If p ≪ 1, G̃t looks like keeping vertices from Gt with probability p.
If p ≫ 1, it looks like a random blowup.
Fact 1: G̃t contains no Kt.
Fact 2: The number of independent sets of size t in G̃t is ≲ pt · 2 5

8 t2 .
So the above argument works for any p, if interpreted correctly.
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Putting it all together

Theorem (W. 2021)

r(t;q) >
(
2 3q

8 − 1
4
)t
.

Proof: Let p =
(
2 3q

8 − 5
4
)t
, let N = p|Vt|, and pick q − 2 random

functions [N] → Vt. Overlay the resulting graphs G̃t for the first q − 2
colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

r(t;q) >
(
20.383796q−0.267592

)t
.

Proof: No reason to useGt! An appropriately chosen random graph
works better as input to the random homomorphism machinery.
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Ramsey numbers of graphs and digraphs
The Ramsey number r(t) is the
minimum N such that every
2-edge-coloring of KN contains
a monochromatic Kt.

2t/2 < r(t) < 22t.
The Ramsey number r(H) of a
graph H is the minimum N
such that every 2-coloring of
E(KN) contains a
monochromatic copy of H.
Chvátal–Rödl–Szemerédi–
Trotter (1983): If H has t
vertices and maximum degree
Δ, then r(H) = OΔ(t).

The oriented Ramsey number
~r(t) is the minimum N such that
every edge orientation of KN
contains a transitive Kt.

2t/2 < ~r(t) < 2t.
The oriented Ramsey number
~r(H) of an acyclic digraph H is
the minimum N such that
every N-vertex tournament
contains a copy of H.
Bucić–Letzter–Sudakov (2019):
If H has t vertices and maximum
degree Δ, is it true that
~r(H) = OΔ(t)?

Theorem (Fox–He–W. 2022)
No! For any C > 0, there exist bounded-degree H with~r(H) > tC.
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Proof sketch I

Theorem (Fox–He–W. 2022)
There exists a t-vertex acyclic digraph H with bounded maximum
degree and~r(H) > tC.

We need (1) a construction of H, (2) a tournament T on t log2(3)−ε

vertices, and (3) a proof that there is no embedding H ↪→ T.

For (2): We let T be an iterated
blowup of a cyclic triangle.

For (3): Construct H so that in any embedding H ↪→ T, some
subinterval of [t] of length ≥ 0.49t is mapped into a single part.
Ensure that the induced subgraph on this subinterval has the same
property, so we can iterate. At each step, |T| drops by a factor of 3,
but |H| drops by a factor of 2.01.
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Proof sketch II: interval meshes
Want: In any embedding H ↪→ T, some subinterval of [t] of length
≥ 0.49t is mapped into a single part, and this is hereditary.

Definition
H is an interval mesh if

• H has a Hamiltonian path 1 → 2 → · · · → t.
• For all 1 ≤ a < b ≤ c < d ≤ t with c − b ≤ 100min(b − a,d − c),
there is an edge between [a,b] and [c,d].

a b c dc dJ1 J2 J3 J4 J5 J6
Thus, |Ji| > 100min(|Ji−1|, |Ji+1|). So |Ji| ≥ 0.49t for some i.
Greedy algorithm yields an interval mesh with max degree ≤ 1000.
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Size Ramsey numbers
Ks,t is the complete bipartite graph with parts of sizes s ≤ t.

Theorem (Erdős–Faudree–Rousseau–Schelp 1978)
There exists a graph G with O(s2t2s) edges so that

every 2-coloring of E(G) contains a monochromatic Ks,t. (*)

Theorem (Erdős–Rousseau 1993)
Any G with O(st2s) edges does not have property (*).
This is proved by considering a uniformly random coloring.

Theorem (Conlon–Fox–W. 2022+)
Any G with O(s2− s

t t2s) edges does not have property (*).
In particular, if t > Cs log s, then the EFRS theorem is best possible.

New construction: Instead of a uniformly random coloring, use a
“dyadically iterated hypergeometric” random coloring.
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Thank you!


	Introduction
	Multicolor Ramsey numbers
	Oriented Ramsey numbers
	Size Ramsey numbers

