New constructions in Ramsey theory

Yuval Wigderson

Thesis defense
May 6, 2022

My philosophy on Ramsey theory

My philosophy on Ramsey theory

Theorem ("Folklore")
Given N points, if half are colored red, then there are N/2 red points.

My philosophy on Ramsey theory

Given an $N \times N$ grid, if half the points are colored red, how large of a red subgrid can we find?

My philosophy on Ramsey theory

Given an $N \times N$ grid, if half the points are colored red, how large of a red subgrid can we find?

My philosophy on Ramsey theory

Theorem ("Folklore")
Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

My philosophy on Ramsey theory

Given N points, if half are colored red, how many evenly spaced red points can we find?

My philosophy on Ramsey theory

Given N points, if half are colored red, how many evenly spaced red points can we find?

My philosophy on Ramsey theory

Theorem ("Folklore")
Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are $\log \log \log \log \log N$ evenly spaced red points.

My philosophy on Ramsey theory

Given an $N \times N$ grid, if half the points are colored red, how large of an evenly spaced red subgrid can we find?

My philosophy on Ramsey theory

Given an $N \times N$ grid, if half the points are colored red, how large of an evenly spaced red subgrid can we find?

My philosophy on Ramsey theory

Theorem ("Folklore")

Given N points, if half are colored red, then there are $N / 2$ red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are $\log \log \log \log \log N$ evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.

My philosophy on Ramsey theory

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are $\log \log \log \log \log N$ evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.
Any large object contains a large structured subobject.

My philosophy on Ramsey theory

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are $\log \log \log \log \log N$ evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.
Any large object contains a large structured subobject. How large?

My philosophy on Ramsey theory

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid. This is tight.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are log log $\log \log \log N$ evenly spaced red points. Is this tight?
Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid. Is this tight?
Any large object contains a large structured subobject. How large?

My philosophy on Ramsey theory

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.
Theorem (Kővári-Sós-Turán 1954)
Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid. This is tight.
Theorem (Szemerédi 1975, Gowers 2001)
Given N points, if half the points are colored red, then there are log log $\log \log \log N$ evenly spaced red points. Is this tight?
Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid. Is this tight?
Any large object contains a large structured subobject. How large? Constructions are crucial for understanding such questions.

Graph Ramsey theory

Graph Ramsey theory

There is a 2 -coloring of the edges of K_{5} with no monochromatic triangle

Graph Ramsey theory

There is a 2-coloring of the edges of K_{5} with no monochromatic triangle

...but every 2 -coloring of the edges of K_{6} does have a monochromatic triangle.

Graph Ramsey theory

There is a 2-coloring of the edges of K_{5} with no monochromatic triangle

... but every 2-coloring of the edges of K_{6} does have a monochromatic triangle.

Graph Ramsey theory

There is a 2-coloring of the edges of K_{5} with no monochromatic triangle

... but every 2-coloring of the edges of K_{6} does have a monochromatic triangle.

Graph Ramsey theory

There is a 2-coloring of the edges of K_{5} with no monochromatic triangle

... but every 2-coloring of the edges of K_{6} does have a monochromatic triangle.

Graph Ramsey theory

There is a 2-coloring of the edges of K_{5} with no monochromatic triangle

... but every 2-coloring of the edges of K_{6} does have a monochromatic triangle.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935) $r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.

For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.
$\mathbb{E}\left[\#\right.$ monochromatic $\left.K_{t}\right]$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\left(\frac{t}{2}\right)}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}<N^{t} 2^{-\frac{1}{2} t^{2}}
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}<N^{t} 2^{-\frac{1}{2} t^{2}}=1
$$

Ramsey numbers

$r(t)=$ minimum N so that every 2-coloring of the edges of K_{N} has a monochromatic K_{t}.

Theorem (Ramsey 1930, Erdős-Szekeres 1935)
$r(t)$ exists (i.e. is finite). In fact, $r(t)<4^{t}$.
For a lower bound we need a construction: a coloring of K_{N} with no monochromatic K_{t}.

Theorem (Erdős 1947)

$$
r(t)>2^{t / 2}
$$

Proof: Let $N=2^{t / 2}$. Consider a random two-coloring of $E\left(K_{N}\right)$.

$$
\mathbb{E}\left[\# \text { monochromatic } K_{t}\right]=\binom{N}{t} 2^{1-\binom{t}{2}}<N^{t} 2^{-\frac{1}{2} t^{2}}=1
$$

So there exists a coloring of $E\left(K_{N}\right)$ with <1 monochromatic K_{t}.

Multicolor Ramsey numbers

$r(t)=\min . N$ so that any 2-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{2}^{t}<r(t)<2^{2 t}
$$

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{2}^{t}<r(t)<2^{2 t}
$$

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2}\right)^{\frac{t}{2}}} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2}\right)^{\frac{t}{2}}} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2}\right\rfloor \frac{t}{2}} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2}\right\rfloor \frac{t}{2}} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

Conlon-Ferber (2021): $r(t ; q)>\left(2 \frac{7 q}{24}+C\right)^{t}$.

Multicolor Ramsey numbers

$r(t ; q)=\min . N$ so that any q-coloring of $E\left(K_{N}\right)$ has monochromatic K_{t} Erdős-Szekeres (1935), Erdős (1947):

$$
\sqrt{q}^{t}<r(t ; q)<q^{q t}
$$

Product coloring trick: $r(t ; q)>2^{\left\lfloor\frac{q}{2}\right\rfloor \frac{t}{2}} \approx\left(2^{\frac{q}{4}}\right)^{t}$.

Conlon-Ferber (2021): $r(t ; q)>\left(2 \frac{7 q}{24}+C\right)^{t}$.
W. (2021): $r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t}$.

The Conlon-Ferber construction

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows. Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$. For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.

Let $p \approx 2^{-\frac{1}{8} t}$, and keep each vertex of G_{t} with probability p.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2^{\frac{5}{8} t^{2}}$
independent sets of size t.
We color the edges of G_{t} green.

Let $p \approx 2^{-\frac{1}{8} t}$, and keep each vertex of G_{t} with probability p.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2^{\frac{5}{8} t^{2}}$
independent sets of size t.
We color the edges of G_{t} green.

Let $p \approx 2^{-\frac{1}{8} t}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2^{\frac{5}{8} t^{2}}$
independent sets of size t.
We color the edges of G_{t} green.

Let $p \approx 2^{-\frac{1}{8} t}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2^{\frac{5}{8} t^{2}}$
independent sets of size t.
We color the edges of G_{t} green.

Let $p \approx 2^{-\frac{1}{8} t}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \leq p^{t} \cdot 2^{\frac{5}{8} t^{2}} \cdot 2^{1-\binom{t}{2}} \approx\left(2^{-\frac{1}{8} t} \cdot 2^{\frac{5}{8} t} \cdot 2^{-\frac{1}{2} t}\right)^{t}=1
$$

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2^{\frac{5}{8} t^{2}}$
independent sets of size t.
We color the edges of G_{t} green.

Let $p \approx 2^{-\frac{1}{8} t}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\text { \#red or blue } K_{t}\right] \leq p^{t} \cdot 2^{\frac{5}{8} t^{2}} \cdot 2^{1-\binom{t}{2}} \approx\left(2^{-\frac{1}{8} t} \cdot 2^{\frac{5}{8} t} \cdot 2^{-\frac{1}{2} t}\right)^{t}=1
$$

No green K_{t} by Fact 1 , so $r(t ; 3)>N \approx p\left|V_{t}\right| \approx 2^{\frac{7}{8} t}$.

The Conlon-Ferber construction

For $x, y \in \mathbb{F}_{2}^{t}$, let $x \cdot y=\sum_{i=1}^{t} x_{i} y_{i}$. We define a graph G_{t} as follows.
Let $V_{t}=\left\{x \in \mathbb{F}_{2}^{t}: x\right.$ has an even number of 1 s$\}=\left\{x \in \mathbb{F}_{2}^{t}: x \cdot x=0\right\}$.
For $x, y \in V_{t}$, make $x y$ adjacent if $x \cdot y=1$.
Fact 1: G_{t} contains no K_{t} (for t even).
Fact 2: G_{t} has at most $2^{\frac{5}{8} t^{2}}$
independent sets of size t.
We color the edges of G_{t} green.

Let $p \approx 2^{-\frac{1}{8} t}$, and keep each vertex of G_{t} with probability p.
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \leq p^{t} \cdot 2^{\frac{5}{8} t^{2}} \cdot 2^{1-\binom{t}{2}} \approx\left(2^{-\frac{1}{8} t} \cdot 2^{\frac{5}{8} t} \cdot 2^{-\frac{1}{2} t}\right)^{t}=1
$$

No green K_{t} by Fact 1 , so $r(t ; 3)>N \approx p\left|V_{t}\right| \approx 2^{\frac{7}{8} t}$.
This works over larger fields, but the bounds aren't very good.
Conlon-Ferber use the product coloring for $q>4$.

A new approach for more colors

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4} t^{2}}$ (because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}}$).

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4} t^{2}}$ (because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}}$).
Keep each vertex with probability p (chosen later).

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4} t^{2}}$ (because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}}$).

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4} t^{2}}$
(because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}}$).

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \leq p^{t} \cdot 2^{\frac{1}{4} t^{2}} \cdot 2^{1-\left(\frac{t}{2}\right)} \approx\left(p \cdot 2^{\frac{1}{4} t} \cdot 2^{-\frac{1}{2} t}\right)^{t} .
$$

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4} t^{2}}$
(because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}}$).

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \leq p^{t} \cdot 2^{\frac{1}{4} t^{2}} \cdot 2^{1-\left(\frac{t}{2}\right)} \approx\left(p \cdot 2^{\frac{1}{4} t} \cdot 2^{-\frac{1}{2} t}\right)^{t} \text {. }
$$

Pick $p \approx 2^{\frac{1}{4} t}$ to obtain $r(t ; 4)>N \approx p\left|V_{t}\right| \approx 2^{\frac{5}{4} t}$.

A new approach for more colors

Overlay two random copies of G_{t} in green and yellow.
The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4} t^{2}}$
(because a t-set is independent in either copy with probability $\leq 2^{-\frac{3}{8} t^{2}}$).

Keep each vertex with probability p (chosen later).
Color all remaining pairs red or blue at random.

$$
\mathbb{E}\left[\# \text { red or blue } K_{t}\right] \leq p^{t} \cdot 2^{\frac{1}{4} t^{2}} \cdot 2^{1-\left(\frac{t}{2}\right)} \approx\left(p \cdot 2^{\frac{1}{4} t} \cdot 2^{-\frac{1}{2} t}\right)^{t} .
$$

Pick $p \approx 2^{\frac{1}{4} t}$ to obtain $r(t ; 4)>N \approx p\left|V_{t}\right| \approx 2^{\frac{5}{4} t}$.
How are we picking $p>1$???

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$. If $p \ll 1, \widetilde{G_{t}}$ looks like keeping vertices from G_{t} with probability p. If $p \gg 1$, it looks like a random blowup.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$. If $p \ll 1, \widetilde{G_{t}}$ looks like keeping vertices from G_{t} with probability p. If $p \gg 1$, it looks like a random blowup.
Fact 1: $\widetilde{G_{t}}$ contains no K_{t}.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$. If $p \ll 1, \widetilde{G_{t}}$ looks like keeping vertices from G_{t} with probability p.
If $p \gg 1$, it looks like a random blowup.
Fact 1: $\widetilde{G_{t}}$ contains no K_{t}.
Fact 2: The number of independent sets of size t in $\widetilde{G_{t}}$ is $\lesssim p^{t} \cdot 2^{\frac{5}{8} t^{2}}$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N=p\left|V_{t}\right|$.
Pick a uniformly random function $f:[N] \rightarrow V_{t}$.

Connect vertices in $[N]$ if their labels are adjacent in G_{t} to get $\widetilde{G_{t}}$. If $p \ll 1, \widetilde{G_{t}}$ looks like keeping vertices from G_{t} with probability p.
If $p \gg 1$, it looks like a random blowup.
Fact 1: \widetilde{G}_{t} contains no K_{t}.
Fact 2: The number of independent sets of size t in $\widetilde{G_{t}}$ is $\lesssim p^{t} \cdot 2 \frac{5}{8} t^{2}$. So the above argument works for any p, if interpreted correctly.

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t} .
$$

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t}
$$

Proof: Let $p=\left(2^{\frac{3 q}{8}-\frac{5}{4}}\right)^{t}$, let $N=p\left|V_{t}\right|$, and pick $q-2$ random
functions $[N] \rightarrow V_{t}$. Overlay the resulting graphs $\widetilde{G_{t}}$ for the first $q-2$ colors, then color the remaining pairs red or blue at random.

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t}
$$

Proof: Let $p=\left(2^{\frac{3 q}{8}-\frac{5}{4}}\right)^{t}$, let $N=p\left|V_{t}\right|$, and pick $q-2$ random
functions $[N] \rightarrow V_{t}$. Overlay the resulting graphs $\widetilde{G_{t}}$ for the first $q-2$ colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

$$
r(t ; q)>\left(2^{0.383796 q-0.267592}\right)^{t}
$$

Putting it all together

Theorem (W. 2021)

$$
r(t ; q)>\left(2^{\frac{3 q}{8}-\frac{1}{4}}\right)^{t}
$$

Proof: Let $p=\left(2^{\frac{3 q}{8}-\frac{5}{4}}\right)^{t}$, let $N=p\left|V_{t}\right|$, and pick $q-2$ random functions $[N] \rightarrow V_{t}$. Overlay the resulting graphs $\widetilde{G_{t}}$ for the first $q-2$ colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

$$
r(t ; q)>\left(2^{0.383796 q-0.267592}\right)^{t}
$$

Proof: No reason to use G_{t} ! An appropriately chosen random graph works better as input to the random homomorphism machinery.

Ramsey numbers of graphs and digraphs

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t} .
$$

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t}
$$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every edge orientation of K_{N} contains a transitive K_{t}.

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t} .
$$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t}
$$

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t} .
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2-coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t} .
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2 -coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N -vertex tournament contains a copy of H.

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t}
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2 -coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

Chvátal-Rödl-SzemerédiTrotter (1983): If H has t vertices and maximum degree Δ, then $r(H)=O_{\Delta}(t)$.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N -vertex tournament contains a copy of H.

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every 2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t}
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2 -coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

Chvátal-Rödl-SzemerédiTrotter (1983): If H has t vertices and maximum degree Δ, then $r(H)=O_{\Delta}(t)$.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N -vertex tournament contains a copy of H.

Bucić-Letzter-Sudakov (2019): If H has t vertices and maximum degree Δ, is it true that
$\vec{r}(H)=O_{\Delta}(t)$?

Ramsey numbers of graphs and digraphs

The Ramsey number $r(t)$ is the minimum N such that every
2-edge-coloring of K_{N} contains a monochromatic K_{t}.

$$
2^{t / 2}<r(t)<2^{2 t} .
$$

The Ramsey number $r(H)$ of a graph H is the minimum N such that every 2 -coloring of $E\left(K_{N}\right)$ contains a monochromatic copy of H.

Chvátal-Rödl-SzemerédiTrotter (1983): If H has t vertices and maximum degree Δ, then $r(H)=O_{\Delta}(t)$.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_{t}.

$$
2^{t / 2}<\vec{r}(t)<2^{t} .
$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N -vertex tournament contains a copy of H.

Bucić-Letzter-Sudakov (2019): If H has t vertices and maximum degree Δ, is it true that $\vec{r}(H)=O_{\Delta}(t)$?

Theorem (Fox-He-W. 2022)
No! For any $C>0$, there exist bounded-degree H with $\vec{r}(H)>t^{C}$.

Proof sketch I

Theorem (Fox-He-W. 2022)
There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{C}$.

Proof sketch I

Theorem (Fox-He-W. 2022)
There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

Proof sketch I

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Proof sketch I

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

Proof sketch I

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

Proof sketch I

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

Proof sketch I

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

Proof sketch I

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part.

Proof sketch I

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part. Ensure that the induced subgraph on this subinterval has the same property, so we can iterate.

Proof sketch I

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H)>t^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part.
Ensure that the induced subgraph on this subinterval has the same property, so we can iterate. At each step, $|T|$ drops by a factor of 3, but $|H|$ drops by a factor of 2.01 .

Proof sketch II: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Proof sketch II: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Thus, $\left|J_{i}\right|>100 \min \left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$.

Proof sketch II: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Thus, $\left|J_{i}\right|>100 \mathrm{~min}\left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$. So $\left|J_{i}\right| \geq 0.49 t$ for some i.

Proof sketch II: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of $[t]$ of length $\geq 0.49 t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \leq a<b \leq c<d \leq t$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Thus, $\left|J_{i}\right|>100 \mathrm{~min}\left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$. So $\left|J_{i}\right| \geq 0.49 t$ for some i.
Greedy algorithm yields an interval mesh with max degree ≤ 1000.

Size Ramsey numbers

$K_{s, t}$ is the complete bipartite graph with parts of sizes $s \leq t$.

Size Ramsey numbers

$K_{s, t}$ is the complete bipartite graph with parts of sizes $s \leq t$.
Theorem (Erdős-Faudree-Rousseau-Schelp 1978)
There exists a graph G with $O\left(s^{2} t 2^{s}\right)$ edges so that every 2-coloring of $E(G)$ contains a monochromatic $K_{s, t}$.

Size Ramsey numbers

$K_{s, t}$ is the complete bipartite graph with parts of sizes $s \leq t$.
Theorem (Erdős-Faudree-Rousseau-Schelp 1978)
There exists a graph G with $O\left(s^{2} t 2^{s}\right)$ edges so that every 2-coloring of $E(G)$ contains a monochromatic $K_{s, t}$.

Theorem (Erdős-Rousseau 1993)
Any G with $O\left(s t 2^{s}\right)$ edges does not have property (*).

Size Ramsey numbers

$K_{s, t}$ is the complete bipartite graph with parts of sizes $s \leq t$.
Theorem (Erdős-Faudree-Rousseau-Schelp 1978)
There exists a graph G with $O\left(s^{2} t 2^{s}\right)$ edges so that every 2 -coloring of $E(G)$ contains a monochromatic $K_{s, t}$.

Theorem (Erdős-Rousseau 1993)
Any G with $O\left(s t 2^{s}\right)$ edges does not have property (*).
This is proved by considering a uniformly random coloring.

Size Ramsey numbers

$K_{s, t}$ is the complete bipartite graph with parts of sizes $s \leq t$.
Theorem (Erdős-Faudree-Rousseau-Schelp 1978)
There exists a graph G with $O\left(s^{2} t 2^{s}\right)$ edges so that every 2-coloring of $E(G)$ contains a monochromatic $K_{s, t}$.

Theorem (Erdős-Rousseau 1993)

Any G with $O\left(s t 2^{s}\right)$ edges does not have property (*).
This is proved by considering a uniformly random coloring.
Theorem (Conlon-Fox-W. 2022+)
Any G with $O\left(s^{2-\frac{s}{t}} t 2^{s}\right)$ edges does not have property ($*$). In particular, if $t>C s \log s$, then the EFRS theorem is best possible.

Size Ramsey numbers

$K_{s, t}$ is the complete bipartite graph with parts of sizes $s \leq t$.
Theorem (Erdős-Faudree-Rousseau-Schelp 1978)
There exists a graph G with $O\left(s^{2} t 2^{s}\right)$ edges so that every 2-coloring of $E(G)$ contains a monochromatic $K_{s, t}$.

Theorem (Erdős-Rousseau 1993)

Any G with $O\left(s t 2^{s}\right)$ edges does not have property (*).
This is proved by considering a uniformly random coloring.
Theorem (Conlon-Fox-W. 2022+)
Any G with $O\left(s^{2-\frac{s}{t}} t 2^{s}\right)$ edges does not have property (*). In particular, if $t>C s \log s$, then the EFRS theorem is best possible.

New construction: Instead of a uniformly random coloring, use a "dyadically iterated hypergeometric" random coloring.

Thank you!

