New constructions in Ramsey theory

Yuval Wigderson

Thesis defense May 6, 2022

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Given an $N \times N$ grid, if half the points are colored red, how large of a red subgrid can we find?

Given an $N \times N$ grid, if half the points are colored red, how large of a red subgrid can we find?

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Given N points, if half are colored red, how many evenly spaced red points can we find?

Given N points, if half are colored red, how many evenly spaced red points can we find?

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points.

Given an $N \times N$ grid, if half the points are colored red, how large of an evenly spaced red subgrid can we find?

Given an $N \times N$ grid, if half the points are colored red, how large of an evenly spaced red subgrid can we find?

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log N evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.

Any large object contains a large structured subobject.

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points.

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid.

Any large object contains a large structured subobject. How large?

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid. This is tight.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points. Is this tight?

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid. Is this tight?

Any large object contains a large structured subobject. How large?

Theorem ("Folklore")

Given N points, if half are colored red, then there are N/2 red points.

Theorem (Kővári-Sós-Turán 1954)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\log N \times \log N$ red subgrid. This is tight.

Theorem (Szemerédi 1975, Gowers 2001)

Given N points, if half the points are colored red, then there are log log log log log N evenly spaced red points. Is this tight?

Theorem (Furstenberg-Katznelson 1978, Nagle-Rödl-Schacht-Skokan 2005, Gowers 2007)

Given an $N \times N$ grid, if half the points are colored red, then there is a $\sqrt{A^{-1}(N)} \times \sqrt{A^{-1}(N)}$ evenly spaced red subgrid. Is this tight?

Any large object contains a large structured subobject. How large? Constructions are crucial for understanding such questions.

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

There is a 2-coloring of the edges of K_5 with no monochromatic triangle

 $r(t) = \text{minimum } N \text{ so that every 2-coloring of the edges of } K_N \text{ has a monochromatic } K_t.$

 $r(t) = \text{minimum } N \text{ so that every 2-coloring of the edges of } K_N \text{ has a monochromatic } K_t.$

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

 $r(t) = \text{minimum } N \text{ so that every 2-coloring of the edges of } K_N \text{ has a monochromatic } K_t.$

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

$$r(t) > 2^{t/2}$$
.

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

$$r(t) > 2^{t/2}$$
.

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

$$r(t) > 2^{t/2}.$$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

 $\mathbb{E}[\#\text{monochromatic } K_t]$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

$$r(t) > 2^{t/2}.$$

$$\mathbb{E}[\#\text{monochromatic } K_t] = \binom{N}{t} 2^{1 - \binom{t}{2}}$$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

$$r(t) > 2^{t/2}.$$

$$\mathbb{E}[\#\text{monochromatic } K_t] = \binom{N}{t} 2^{1 - \binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2}$$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

$$r(t) > 2^{t/2}.$$

$$\mathbb{E}[\#\text{monochromatic } K_t] = \binom{N}{t} 2^{1-\binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2} = 1.$$

r(t) = minimum N so that every 2-coloring of the edges of K_N has a monochromatic K_t .

Theorem (Ramsey 1930, Erdős-Szekeres 1935)

r(t) exists (i.e. is finite). In fact, $r(t) < 4^t$.

For a lower bound we need a construction: a coloring of K_N with no monochromatic K_t .

Theorem (Erdős 1947)

$$r(t) > 2^{t/2}.$$

Proof: Let $N = 2^{t/2}$. Consider a random two-coloring of $E(K_N)$.

$$\mathbb{E}[\# \text{monochromatic } K_t] = \binom{N}{t} 2^{1 - \binom{t}{2}} < N^t 2^{-\frac{1}{2}t^2} = 1.$$

So there exists a coloring of $E(K_N)$ with < 1 monochromatic K_t .

Multicolor Ramsey numbers

 $r(t) = \min N$ so that any 2-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

$$\sqrt{2}^t < r(t) < 2^{2t}$$

Multicolor Ramsey numbers

 $r(t;q) = \min. N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

$$\sqrt{2}^t < r(t) < 2^{2t}$$

Multicolor Ramsey numbers

 $r(t;q) = \min. N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

$$\sqrt{q}^t < r(t;q) < q^{qt}$$

 $r(t;q) = \min. N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

$$\sqrt{q}^t < r(t;q) < q^{qt}$$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^t$.

 $r(t;q) = \min. N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

$$\sqrt{q}^t < r(t;q) < q^{qt}$$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^t$.

 $r(t;q) = \min. N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

$$\sqrt{q}^t < r(t;q) < q^{qt}$$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^t$.

 $r(t;q) = \min. N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

$$\sqrt{q}^t < r(t;q) < q^{qt}$$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^t$.

Conlon-Ferber (2021): $r(t;q) > \left(2^{\frac{7q}{24} + C}\right)^t$.

 $r(t;q) = \min. N$ so that any q-coloring of $E(K_N)$ has monochromatic K_t Erdős-Szekeres (1935), Erdős (1947):

$$\sqrt{q}^t < r(t;q) < q^{qt}$$

Product coloring trick: $r(t;q) > 2^{\lfloor \frac{q}{2} \rfloor \frac{t}{2}} \approx \left(2^{\frac{q}{4}}\right)^t$.

Conlon-Ferber (2021): $r(t;q) > \left(2^{\frac{7q}{24} + C}\right)^t$.

W. (2021):
$$r(t;q) > \left(2^{\frac{3q}{8} - \frac{1}{4}}\right)^t$$
.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows.

Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}.$

For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows.

Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}.$

For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even).

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows.

Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}.$

For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even).

Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows.

Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}.$

For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even).

Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t.

We color the edges of G_t green.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows.

Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}.$

For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even).

Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t.

We color the edges of G_t green.

Let $p \approx 2^{-\frac{1}{8}t}$, and keep each vertex of G_t with probability p.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t. We color the edges of G_t green.

Let $p \approx 2^{-\frac{1}{8}t}$, and keep each vertex of G_t with probability p.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t. We color the edges of G_t green.

Let $p \approx 2^{-\frac{1}{8}t}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t. We color the edges of G_t green.

Let $p \approx 2^{-\frac{1}{8}t}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t. We color the edges of G_t green.

Let $p \approx 2^{-\frac{1}{8}t}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \leq p^t \cdot 2^{\frac{5}{8}t^2} \cdot 2^{1-\binom{t}{2}} \approx \left(2^{-\frac{1}{8}t} \cdot 2^{\frac{5}{8}t} \cdot 2^{-\frac{1}{2}t}\right)^t = 1.$$

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t. We color the edges of G_t green.

Let $p \approx 2^{-\frac{1}{8}t}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \leq p^t \cdot 2^{\frac{5}{8}t^2} \cdot 2^{1-\binom{t}{2}} \approx \left(2^{-\frac{1}{8}t} \cdot 2^{\frac{5}{8}t} \cdot 2^{-\frac{1}{2}t}\right)^t = 1.$$

No green K_t by Fact 1, so $r(t;3) > N \approx p|V_t| \approx 2^{\frac{7}{8}t}$.

For $x, y \in \mathbb{F}_2^t$, let $x \cdot y = \sum_{i=1}^t x_i y_i$. We define a graph G_t as follows. Let $V_t = \{x \in \mathbb{F}_2^t : x \text{ has an even number of 1s}\} = \{x \in \mathbb{F}_2^t : x \cdot x = 0\}$. For $x, y \in V_t$, make xy adjacent if $x \cdot y = 1$.

Fact 1: G_t contains no K_t (for t even). Fact 2: G_t has at most $2^{\frac{5}{8}t^2}$ independent sets of size t. We color the edges of G_t green.

Let $p \approx 2^{-\frac{1}{8}t}$, and keep each vertex of G_t with probability p. Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \leq p^t \cdot 2^{\frac{5}{8}t^2} \cdot 2^{1-\binom{t}{2}} \approx \left(2^{-\frac{1}{8}t} \cdot 2^{\frac{5}{8}t} \cdot 2^{-\frac{1}{2}t}\right)^t = 1.$$

No green K_t by Fact 1, so $r(t;3) > N \approx \rho |V_t| \approx 2^{\frac{7}{8}t}$.

This works over larger fields, but the bounds aren't very good. Conlon-Ferber use the product coloring for q > 4.

Overlay two random copies of G_t in green and yellow.

Overlay two random copies of G_t in green and yellow.

Overlay two random copies of G_t in green and yellow.

Overlay two random copies of G_t in green and yellow.

The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4}t^2}$

(because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2}$).

Overlay two random copies of G_t in green and yellow.

The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4}t^2}$ (because a t-set is independent in either

copy with probability $\leq 2^{-\frac{3}{8}t^2}$).

Keep each vertex with probability p (chosen later).

Overlay two random copies of G_t in green and yellow.

The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4}t^2}$

(because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2}$).

Keep each vertex with probability p (chosen later).

Color all remaining pairs red or blue at random.

Overlay two random copies of G_t in green and yellow.

The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4}t^2}$

(because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2}$).

Keep each vertex with probability p (chosen later).

Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \leq p^t \cdot 2^{\frac{1}{4}t^2} \cdot 2^{1-\binom{t}{2}} \approx \left(p \cdot 2^{\frac{1}{4}t} \cdot 2^{-\frac{1}{2}t}\right)^t.$$

Overlay two random copies of G_t in green and yellow.

The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4}t^2}$

(because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2}$).

Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } \mathcal{K}_t] \leq p^t \cdot 2^{\frac{1}{4}t^2} \cdot 2^{1-\binom{t}{2}} \approx \left(p \cdot 2^{\frac{1}{4}t} \cdot 2^{-\frac{1}{2}t}\right)^t.$$

Pick $p \approx 2^{\frac{1}{4}t}$ to obtain $r(t;4) > N \approx p|V_t| \approx 2^{\frac{5}{4}t}$.

Overlay two random copies of G_t in green and yellow.

The number of sets of size t independent in both copies is $\leq 2^{\frac{1}{4}t^2}$

(because a *t*-set is independent in either copy with probability $\leq 2^{-\frac{3}{8}t^2}$).

Color all remaining pairs red or blue at random.

$$\mathbb{E}[\#\text{red or blue } K_t] \leq p^t \cdot 2^{\frac{1}{4}t^2} \cdot 2^{1-\binom{t}{2}} \approx \left(p \cdot 2^{\frac{1}{4}t} \cdot 2^{-\frac{1}{2}t}\right)^t.$$

Pick $p \approx 2^{\frac{1}{4}t}$ to obtain $r(t;4) > N \approx p|V_t| \approx 2^{\frac{5}{4}t}$.

How are we picking p > 1???

Let p be any positive real number, and let $N = p|V_t|$.

Let p be any positive real number, and let $N = p|V_t|$.

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \to V_t$.

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \to V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get G_t .

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \to V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get $\widetilde{G_t}$. If $p \ll 1$, $\widetilde{G_t}$ looks like keeping vertices from G_t with probability p. If $p \gg 1$, it looks like a random blowup.

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \to V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get $\widetilde{G_t}$. If $p \ll 1$, $\widetilde{G_t}$ looks like keeping vertices from G_t with probability p.

Fact 1: \widetilde{G}_t contains no K_t .

If $p \gg 1$, it looks like a random blowup.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \to V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get \widetilde{G}_t .

If $p \ll 1$, $\widetilde{G_t}$ looks like keeping vertices from G_t with probability p.

If $p \gg 1$, it looks like a random blowup.

Fact 1: \widetilde{G}_t contains no K_t .

Fact 2: The number of independent sets of size t in $\widetilde{G_t}$ is $\lesssim p^t \cdot 2^{\frac{5}{8}t^2}$.

Random homomorphisms to the rescue

Let p be any positive real number, and let $N = p|V_t|$. Pick a uniformly random function $f: [N] \to V_t$.

Connect vertices in [N] if their labels are adjacent in G_t to get \widetilde{G}_t .

If $p \ll 1$, $\widetilde{G_t}$ looks like keeping vertices from G_t with probability p.

If $p \gg 1$, it looks like a random blowup.

Fact 1: \widetilde{G}_t contains no K_t .

Fact 2: The number of independent sets of size t in $\widetilde{G_t}$ is $\lesssim p^t \cdot 2^{\frac{5}{8}t^2}$.

So the above argument works for any p, if interpreted correctly.

Theorem (W. 2021)

$$r(t;q)>\left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^t.$$

Theorem (W. 2021)

$$r(t;q) > \left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^t.$$

Proof: Let $p = \left(2^{\frac{3q}{8} - \frac{5}{4}}\right)^t$, let $N = p|V_t|$, and pick q - 2 random functions $[N] \to V_t$. Overlay the resulting graphs $\widetilde{G_t}$ for the first q - 2 colors, then color the remaining pairs red or blue at random.

Theorem (W. 2021)

$$r(t;q) > \left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^t.$$

Proof: Let $p = \left(2^{\frac{3q}{8} - \frac{5}{4}}\right)^{\tau}$, let $N = p|V_t|$, and pick q - 2 random functions $[N] \to V_t$. Overlay the resulting graphs $\widetilde{G_t}$ for the first q - 2 colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

$$r(t;q) > \left(2^{0.383796q - 0.267592}\right)^t.$$

Theorem (W. 2021)

$$r(t;q) > \left(2^{\frac{3q}{8}-\frac{1}{4}}\right)^t.$$

Proof: Let $p = \left(2^{\frac{3q}{8} - \frac{5}{4}}\right)^{\tau}$, let $N = p|V_t|$, and pick q - 2 random functions $[N] \to V_t$. Overlay the resulting graphs $\widetilde{G_t}$ for the first q - 2 colors, then color the remaining pairs red or blue at random.

Theorem (Sawin 2022)

$$r(t;q) > \left(2^{0.383796q - 0.267592}\right)^t.$$

Proof: No reason to use $G_t!$ An appropriately chosen random graph works better as input to the random homomorphism machinery. \Box

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every edge orientation of K_N contains a transitive K_t .

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

$$2^{t/2} < \vec{r}(t) < 2^t.$$

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

$$2^{t/2} < \vec{r}(t) < 2^t$$
.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

$$2^{t/2} < \vec{r}(t) < 2^t.$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

Chvátal-Rödl-Szemerédi-Trotter (1983): If H has t vertices and maximum degree Δ , then $r(H) = O_{\Delta}(t)$. The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

$$2^{t/2} < \vec{r}(t) < 2^t$$
.

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

Chvátal-Rödl-Szemerédi-Trotter (1983): If H has t vertices and maximum degree Δ , then $r(H) = O_{\Delta}(t)$. The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

$$2^{t/2} < \vec{r}(t) < 2^t$$
.

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Bucić-Letzter-Sudakov (2019): If H has t vertices and maximum degree Δ , is it true that $\vec{r}(H) = O_{\Delta}(t)$?

The Ramsey number r(t) is the minimum N such that every 2-edge-coloring of K_N contains a monochromatic K_t .

$$2^{t/2} < r(t) < 2^{2t}$$
.

The Ramsey number r(H) of a graph H is the minimum N such that every 2-coloring of $E(K_N)$ contains a monochromatic copy of H.

Chvátal-Rödl-Szemerédi-Trotter (1983): If H has t vertices and maximum degree Δ , then $r(H) = O_{\Delta}(t)$. The oriented Ramsey number $\vec{r}(t)$ is the minimum N such that every N-vertex tournament contains a transitive K_t .

$$2^{t/2} < \vec{r}(t) < 2^t.$$

The oriented Ramsey number $\vec{r}(H)$ of an acyclic digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Bucić-Letzter-Sudakov (2019): If H has t vertices and maximum degree Δ , is it true that $\vec{r}(H) = O_{\Delta}(t)$?

Theorem (Fox-He-W. 2022)

No! For any C > 0, there exist bounded-degree H with $\vec{r}(H) > t^C$.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^C$.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3) - \varepsilon}$.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part. Ensure that the induced subgraph on this subinterval has the same property, so we can iterate.

Theorem (Fox-He-W. 2022)

There exists a t-vertex acyclic digraph H with bounded maximum degree and $\vec{r}(H) > t^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $t^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part.

Ensure that the induced subgraph on this subinterval has the same property, so we can iterate. At each step, |T| drops by a factor of 3, but |H| drops by a factor of 2.01.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i| \ge 0.49t$ for some i.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [t] of length $\geq 0.49t$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow t$.
- For all $1 \le a < b \le c < d \le t$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i| \ge 0.49t$ for some i. Greedy algorithm yields an interval mesh with max degree ≤ 1000 .

 $K_{s,t}$ is the complete bipartite graph with parts of sizes $s \le t$.

 $K_{s,t}$ is the complete bipartite graph with parts of sizes $s \leq t$.

Theorem (Erdős-Faudree-Rousseau-Schelp 1978)

There exists a graph G with $O(s^2t2^s)$ edges so that every 2-coloring of E(G) contains a monochromatic $K_{s,t}$. (*)

 $K_{s,t}$ is the complete bipartite graph with parts of sizes $s \leq t$.

Theorem (Erdős-Faudree-Rousseau-Schelp 1978)

There exists a graph G with $O(s^2t2^s)$ edges so that every 2-coloring of E(G) contains a monochromatic $K_{s,t}$. (*)

Theorem (Erdős-Rousseau 1993)

Any G with $O(st2^s)$ edges does not have property (*).

 $K_{s,t}$ is the complete bipartite graph with parts of sizes $s \leq t$.

Theorem (Erdős-Faudree-Rousseau-Schelp 1978)

There exists a graph G with $O(s^2t2^s)$ edges so that every 2-coloring of E(G) contains a monochromatic $K_{s,t}$. (*)

Theorem (Erdős-Rousseau 1993)

Any G with $O(st2^s)$ edges does not have property (*).

This is proved by considering a uniformly random coloring.

 $K_{s,t}$ is the complete bipartite graph with parts of sizes $s \leq t$.

Theorem (Erdős-Faudree-Rousseau-Schelp 1978)

There exists a graph G with $O(s^2t2^s)$ edges so that every 2-coloring of E(G) contains a monochromatic $K_{s,t}$. (*)

Theorem (Erdős-Rousseau 1993)

Any G with $O(st2^s)$ edges does not have property (*).

This is proved by considering a uniformly random coloring.

Theorem (Conlon-Fox-W. 2022+)

Any G with $O(s^{2-\frac{s}{t}}t2^s)$ edges does not have property (*). In particular, if $t > Cs \log s$, then the EFRS theorem is best possible.

 $K_{s,t}$ is the complete bipartite graph with parts of sizes $s \le t$.

Theorem (Erdős-Faudree-Rousseau-Schelp 1978)

There exists a graph G with $O(s^2t2^s)$ edges so that every 2-coloring of E(G) contains a monochromatic $K_{s,t}$. (*)

Theorem (Erdős-Rousseau 1993)

Any G with $O(st2^s)$ edges does not have property (*).

This is proved by considering a uniformly random coloring.

Theorem (Conlon-Fox-W. 2022+)

Any G with $O(s^{2-\frac{s}{t}}t2^s)$ edges does not have property (*). In particular, if $t > Cs \log s$, then the EFRS theorem is best possible.

New construction: Instead of a uniformly random coloring, use a "dyadically iterated hypergeometric" random coloring.

