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In this talk, I will discuss dependent random choice, which is a surprisingly powerful
technique in extremal graph theory and related areas. Almost all of the material is drawn
from the excellent survey of Fox and Sudakov.

1 Background: Kővári–Sós–Turán

Kővári, Sós, and Turán introduced an extremely simple, but surprisignly versatile averag-
ing technique in their study of the problem of Zarankiewicz, aka the extremal numbers of
bipartite graphs. In my opinion, the “right” way to think of dependent random choice is as
a generalization/strengthening of the Kővári–Sós–Turán technique, so I want to start with
their result. The following is a convenient way of stating (a special case) of their result.

Theorem 1.1. Fix an integer s. Let G be an n-vertex graph with average degree d = εn.
Then G contains an s-tuple of vertices which has at least εsn−

(
s
2

)
common neighbors.

In every application, the additive error
(
s
2

)
is going to be much smaller than the main

term εsn. So, roughly speaking, we are able to find an s-tuple of vertices with ≳ εsn common
neighbors. This is essentially best possible, since in a random graph of edge density ε, w.h.p.
every s-set of vertices has (εs ± o(1))n common neighbors.

Proof. Let u1, . . . , us be iid uniformly random vertices of G, and let S = {u1, . . . , us}. For a
fixed vertex v, the probability that v is a common neighbor of S is (deg(v)/n)s. Therefore,
if we let Y denote the set of common neighbors of S, we see that

E[|Y |] =
∑

v∈V (G)

Pr(v ∈ Y ) =
∑

v∈V (G)

(
deg(v)

n

)s

≥ n ·
(
d

n

)s

= εsn, (1)

where the inequality follows from convexity of the function x 7→ xs. Hence, there exists such
a set S with at least εsn common neighbors.

Unfortunately, we are not yet done, since it is possible that the vertices u1, . . . , us are not
all distinct, and thus that |S| < s. Note that Pr(ui = uj) = 1/n, and hence Pr(|S| < s) ≤(
s
2

)
/n by the union bound. Note too that any set of vertices in G has at most n common

neighbors. Therefore,

εsn ≤ E[|Y |]
= E[|Y | | |S| = s] Pr(|S| = s) + E[|Y | | |S| < s] Pr(|S| < s)

≤ E[|Y | | |S| = s] + n ·
(
s
2

)
n

.

Rearranging gives the desired result.

As an immediate corollary, we see that for any fixed integers s ≤ t, every n-vertex graph
G with Ωs,t(n

2−1/s) edges contains a copy of Ks,t. Indeed, in such a graph, the average degree
is Ω(n1−1/s) = Ω(n−1/s) · n. Letting ε = Ω(n−1/s) and choosing the implicit constant large
enough, we see that G contains an s-set with at least εsn−

(
s
2

)
≥ t common neighbors, i.e.

a copy of Ks,t.
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2 Basic dependent random choice

In Theorem 1.1, we found a single s-set with many common neighbors, where “many” means
at least roughly εsn. However, in our example of a random graph, we actually see that every
s-set has this property. Is it possible to strengthen Theorem 1.1 to ensure that all s-sets
have many common neighbors?

Trivially, the answer is no. For example, let G be the disjoint union of two copies of
Kn/2. Then G has average degree around n/2. But most s-sets, namely those with vertices
in both components, have no common neighbors at all. So something as strong as what was
suggested in the previous paragraph clearly cannot happen.

Nonetheless, it is clear what the “problem” with this graph G is: it’s disconnected! All
the s-sets which lie in only one component do indeed have many common neighbors. This
suggests that perhaps we can get a result for all s-sets, as long as we allow ourselves to
restrict this “all” to all s-sets coming from a fixed subset of the vertices. This is indeed true,
and is the content of the next theorem.

Theorem 2.1. Fix an integer s. Let G be an n-vertex graph with average degree d = εn.
Let m be any integer. Then there exists W ⊆ V (G) with the following properties:

• Every s-tuple of vertices in W has at least m common neighbors, and

• |W | ≥ εsn−ms.

In the proof of Theorem 1.1, we picked a uniformly random s-tuple of vertices and
showed that in expectation, it had many common neighbors. In this proof, we will use a
non-independent random choice (hence the name of the technique). Namely, we will first pick
a random s-tuple of vertices, and we will then define Y to be the set of common neighbors
of this s-tuple. Then Y is a random, but certainly not uniformly random, set of vertices.
We then delete some vertices from Y to obtain W , and show that this choice of W satisfies
the desired properties with positive probability. Here are the details of the proof.

Proof. Let u1, . . . , us be iid uniformly random vertices of G, and let S = {u1, . . . , us}. Let
Y denote the set of common neighbors of S. By (1), we see that E[|Y |] ≥ εsn. Let Z denote
the number of s-tuples in Y which have at most m common neighbors. We now estimate
E[Z].

Fix an s-tuple T of vertices with at most m common neighbors. The event that T ⊆ Y
is the same as the event that u1, . . . , us are all in the common neighborhood of T . As this
common neighborhood has size at most m, we see that Pr(T ⊆ Y ) ≤ (m/n)s. As there are
at most

(
n
s

)
choices for T , we conclude that

E[Z] ≤
(
n

s

)
·
(m
n

)s
≤ ms.

Therefore, E[|Y | − Z] ≥ εsn −ms. Thus, for some fixed realization of S, we have that the
corresponding realizations of Y, Z satisfy |Y | − Z ≥ εsn − ms. Let W be a subset of Y
obtained by deleting one vertex from each s-tuple counted from Z. Then W satisfies the two
desired properties.
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As an immediate corollary, we obtain the following generalization of the Kővári–Sós–
Turán bound on the extremal number of complete bipartite graphs. The result is originally
due to Füredi, and its simplified proof using dependent random choice is due to Alon,
Krivelevich, and Sudakov.

Theorem 2.2. Let H be a bipartite graph with bipartition A ∪ B, and suppose that every
vertex in B has degree at most s. Then ex(n,H) = OH(n

2−1/s). In other words, if G is an
n-vertex graph with average degree ΩH(n

1−1/s), then G contains a copy of H.

Plugging in H = Ks,t recovers our earlier result, but this theorem is of course much more
general.

Proof. Let G have average degree d = εn, where ε = ΩH(n
−1/s). We apply Theorem 2.1

with m = |B|, to conclude that there is W ⊆ V (G) satisfying two properties. First, every
s-tuple of vertices in W has at least m common neighbors, and second,

|W | ≥ εsn−ms ≥ ΩH(1)−OH(1) ≥ |A|,

by choosing the implicit constants appropriately. Pick an arbitrary embedding of A into W .
Now proceed one by one along the vertices of B. Each one has at most s neighbors in A,
and by the choice of W , each such s-tuple has at least |B| common neighbors in G. So we
may arbitrarily embed the vertices of B one at a time, and find a copy of H in G.

In fact, if we examine the proof of Theorem 2.1, we see that we prove Theorem 2.2
with a weaker assumption on H. Namely, note that by the construction of W in the proof
of Theorem 2.1, we know that all vertices in W have s common neighbors in G, namely1

u1, . . . , us. We can also use these vertices to embed vertices of B. By doing this, we can
weaken the assumption in Theorem 2.2 to say that all vertices of B, with at most s exceptions,
have degree at most s. This implies, for example, an upper bound of O(n3/2) on the extremal
number of K3,3 \ e.

3 Slightly less basic dependent random choice

If we examine the proof of Theorem 2.1, we notice that the parameter s plays two different
roles. On the one hand, it is a parameter in the statement, controlling the sizes of tuples
we’re interested in. On the other hand, it’s also a parameter in the proof, controlling how
many random vertices are chosen in defining the common neighborhood from which we build
W . Other than simplifying some computations (and sufficing in some applications), there
is no reason to make these two numbers equal; making them distinct yields the following
generalization of Theorem 2.1.

Theorem 3.1. Fix an integer s. Let G be an n-vertex graph with average degree d = εn.
Let m, t be any integers. Then there exists W ⊆ V (G) with the following properties:

1This is not 100% true, as these vertices may not be distinct. But it is easy to modify the proof to ensure
their distinctness (and obtain a slightly worse bound on |W |).
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• Every s-tuple of vertices in W has at least m common neighbors, and

• |W | ≥ εtn−mtns−t.

Proof. The proof is identical to that of Theorem 2.1. We now pick u1, . . . , ut at random,
and let Y be their common neighborhood. Then by (1), we know that E[|Y |] ≥ εtn. On
the other hand, letting Z denote the number of s-tuples in Y with fewer than m common
neighbors, we see that E[Z] ≤

(
n
s

)
(m/n)t ≤ mtns−t. Applying linearity of expectation as

before yields the desired result.

In most applications of Theorem 3.1, the added flexibility over Theorem 2.1 is used as
follows. We want to take m to be fairly large, e.g. m ≈

√
n. In Theorem 2.1, this is not

possible, as then ms will be much larger than εsn, so the set W we get is empty (and thus
useless). But Theorem 3.1 lets us get around this problem by choosing t ≫ s, so that the
term mtns−t = ns(m/n)t becomes very small. Of course, we pay for this in that the term εtn
is also smaller, but in many applications there is plenty of wiggle room on this main term,
so shrinking it is OK. I will show two applications that demonstrate this idea.

The first application can be viewed as a refinement of Theorem 2.2. Let K̂r denote
the 1-subdivision of Kr; this is a bipartite graph with parts of size r and

(
r
2

)
, where every

pair of vertices in the first part has a unique common neighbor in the second part, and
where every vertex in the second part has degree two. By Theorem 2.2, we know that
ex(n, K̂r) = Or(n

3/2). However, Erdős asked about what can be said for graphs of constant
edge density: if G is an n-vertex graph with average degree εn, what is the largest r for
which we can guarantee K̂r ⊆ G? As K̂r has r +

(
r
2

)
= Θ(r2) vertices, it is clear that we

must have r = O(
√
n) if K̂r ⊆ G. The next result, due to Alon, Krivelevich, and Sudakov,

shows that this is tight up to a constant factor.

Theorem 3.2. Let G be an n-vertex graph with average degree εn, and let r = ε3/2
√
n. Then

K̂r ⊆ G.

Proof. Let s = 2,m = r2/2 = ε3n/2, and t = log n/(2 log 1
ε
). Note that εt = n−1/2, and

hence

εtn =
√
n and mtns−t = n2

(m
n

)t
= n2 · ε

3t

2t
≤

√
n

2
.

Therefore, by Theorem 3.1, there is W ⊆ V (G) with |W | ≥
√
n/2 ≥ r such that every pair

of vertices in W has at least m ≥
(
r
2

)
common neighbors. By the same argument as in the

proof of Theorem 2.2, we can embed the first part of K̂r in W and the second half among
the common neighbors.

The next result is a combination of Ramsey’s theorem and the Kővári–Sós–Turán theo-
rem. Recall that Ramsey’s theorem implies that every n-vertex graph contains a clique or
coclique2 of order 1

2
log n. Additionally, Theorem 1.1 implies that if G is an n-vertex graph

with average degree εn, then G contains a complete bipartite subgraph with parts of size

2aka an independent set
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log n/(2 log 1
ε
). It would be nice if we could guarantee that this complete bipartite subgraph

is an induced subgraph, but this is clearly impossible, since G might be a disjoint union of
copies of Kεn. However, the following result, essentially implicit in work of Fox and Sudakov,
shows that we can have it be “almost” induced.

Theorem 3.3. Let G be an n-vertex graph with average degree εn, and let s = log n/(4 log 1
ε
).

Then G contains a copy of Ks,s such that each part is either a clique or a coclique.

Note that a naive way of proving such a result is to first find a big complete bipartite
subgraph, and then apply Ramsey’s theorem in each part. But doing this would yield a
bound of order log log n; the point of this theorem is that one can avoid doing the two steps
one after another, and thus only lose one logarithm. This result is tight up to the constant
factor, as shown by a random graph of edge density ε.

Proof. Let s = log n/(4 log 1
ε
),m =

√
n, and t = 2s. Note that εt = n−1/2, so

εtn =
√
n and mtns−t = (

√
n)2s · n−s = 1.

By Theorem 3.1, we find W ⊆ V (G) with |W | ≥
√
n − 1 such that every s-set of vertices

from W has at least m common neighbors. Applying Ramsey’s theorem to the induced
subgraph on W , we find a clique or coclique of order 1

2
log(

√
n− 1) ≥ s. This yields a clique

or coclique of order s, which has at least m =
√
n common neighbors. Applying Ramsey’s

theorem again in this common neighborhood gives the desired result.

4 More advanced dependent random choice

Recall that in Theorem 1.1, we were able to guarantee the existence of an s-tuple whose
common neighborhood is roughly as big as it would be in a random graph: if the edge
density is ε, then we can find an s-tuple with roughly εsn common neighbors. However, in
the versions of dependent random choice we saw above, we were not able to get such a strong
bound: we instead guarantee m common neighbors to each s-tuple, where m is necessarily
much smaller than εsn.

It turns out that one can get a version of the dependent random choice lemma where
m ∼ εsn, but it requires weakening our condition slightly. Rather than getting that every
s-tuple has many common neighbors, we instead get that almost every s-tuple has many
common neighbors. The following is a representative example of this type of result.

Theorem 4.1. Fix an integer s and a real number δ ∈ (0, 1). Let G be an n-vertex graph
with average degree d = εn, and suppose that d ≥ 2s2. Let m = δ

2
· εsn. There exists

W ⊆ V (G) with the following properties:

• The number of s-tuples of vertices in W with at least m common neighbors is at least
(1− δ)

(|W |
s

)
, and

• |W | ≥ εn/2.
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Proof. For this proof, we pick a single random vertex u, and let Y be its common neighbor-
hood. Then E[|Y |] = εn. Let Z denote the number of subsets of Y with at most m common
neighbors; as before, we know that E[Z] ≤

(
n
s

)
· (m/n) ≤ mns−1/s!.

The trick now is to consider the sth moment of the random variable |Y |. By Jensen’s
inequality, we know that E[|Y |s] ≥ E[|Y |]s, and therefore

E
[
|Y |s − E[|Y |]s

2E[Z]
Z − E[|Y |]s

2

]
= E[|Y |s]− E[|Y |]s ≥ 0.

Therefore, there exists a realization such that

|Y |s ≥ E[|Y |]s

2E[Z]
Z +

E[|Y |]s

2
≥ εsns

mns−1/s!
Z +

εsns

2
=

s!εsn

m
Z +

εsns

2
=

2s!

δ
Z +

εsns

2
.

In particular, we find that |Y | ≥ εn/21/s ≥ εn/2. Additionally, we see that

Z ≤ δ

2s!
|Y |s ≤ δ

(
|Y |
s

)
,

where the final step uses the fact that |Y | ≥ εn/2 ≥ s2 ≥ 2
(
s
2

)
to conclude that(

|Y |
s

)
=

|Y |s

s!

s−1∏
i=0

(
1− i

|Y |

)
≥ |Y |s

s!

(
1−

s−1∑
i=1

i

|Y |

)
=

|Y |s

s!

(
1−

(
s
2

)
|Y |

)
≥ |Y |s

2s!
.

This shows that setting W = Y gives the desired result.

An important application of this version of dependent random choice is the Balog–
Szemerédi–Gowers theorem in additive combinatorics3. We begin with a graph theory result,
which is a quick consequence of Theorem 4.1.

Lemma 4.2. There exist absolute constants c, C > 0 such that the following holds. Let
G = (A,B,E) be a bipartite graph with at least ε|A||B| edges. There exist A′ ⊆ A,B′ ⊆ B
with |A′| ≥ cεC |A|, |B′| ≥ cεC |B| with the property that for every (a, b) ∈ A′×B′, the number
of three-edge paths (a, x, y, b) joining them is at least cεC |A||B|.

Note that this result is best possible up to the values of c, C; indeed, if |A| = |B| and G
is d-regular with d = ε|A|, then the number of three-edge paths between any two vertices
is at most d2 = ε2|A||B|. Note too that it’s crucial that we count paths of length three
(specifically, length greater than one), for in a random bipartite graph of edge density ε, the
largest complete bipartite subgraph has only logarithmically many vertices in one part.

3A good reference for the following material is Chapter 7.13 of Zhao’s book Graph Theory and Additive
Combinatorics.
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Proof. Throughout this proof, c and C will represent arbitrary absolute constants, whose
value can change from one line to the next.

By discarding low-degree vertices from A, we may assume that every vertex in A has at
least ε|B|/2 neighbors in B. We now apply Theorem 4.1 to the resulting graph, with s = 2
and δ = ε/10. By doing this4, we find W ⊆ A with |W | ≥ cε|A|, and with the property that
all but a δ-fraction of pairs of vertices in W have at least cεC |B| common neighbors in B.

Recall that we discarded the low-degree vertices from A, so in particular every vertex
of W has at least ε|B|/2 neighbors in B. Thus, the induced subgraph on (W,B) has edge
density at least ε/2. Let B′ denote the set of vertices in B with at least ε|W |/4 neighbors
in W , so that |B′| ≥ cε|B|.

Recall that there are at most δ
(|W |

2

)
pairs of vertices in W which are “bad”, meaning

that they have fewer than cεC |B| common neighbors in B. Let A′ ⊆ W denote the set of
vertices of W that participate in at most 2δ|W | = ε|W |/5 bad pairs. Then |A′| ≥ cεC |A|,
and we claim that (A′, B′) satisfy the desired property.

To see this, fix (a, b) ∈ A′ × B′. Recall that b has at least ε|W |/4 neighbors in W , and
that a is in a bad pair with at most ε|W |/5 other vertices of W . Thus, there are at least
ε|W |/20 vertices y ∈ W that are neighbors of b and don’t form a bad pair with a. For each
such y, by definition, there are at least cεC |B| common neighbors x of a and y. This yields,
in total, cεC |A||B| paths of length three connecting a and b.

The reason we care about these paths of length three is that they have an important
consequence in additive combinatorics. Let X be a finite subset of some abelian group. We
define the sumset

X +X := {x+ y : x, y ∈ X}
and the additive energy

E(X) := |{(w, x, y, z) ∈ X : w + x = y + z}|.

It is easy to see that |X| ≤ |X +X| ≤ |X|2 and that |X|2 ≤ E(X) ≤ |X|3. In general, we
say that X “has a lot of additive structure” if |X +X| ≈ |X|, or if E(X) ≈ |X|3. These are
both natural notions of additive structure, and they both arise naturally in many contexts
It would be nice to say that these two notions are equivalent. In one direction, a simple
application of Cauchy–Schwarz shows that if |X + X| ≤ K|X|, then E(X) ≥ |X|3/K, so
the first notion of additive structure implies the second. However, the reverse direction is
simply false, as shown by letting X be the union of an arithmetic progression of length n
and n random elements. Then |X + X| = Θ(|X|2), but E(X) = Θ(|X|3). Thus, this set
is additively structured in the second sense, but not in the first. Of course, it’s clear what
the “problem” is in this example: X contains a large subset which is additively structured
in both senses. The Balog–Szemerédi–Gowers theorem says that this is in fact the only
obstruction to equivalence.

4Strictly speaking, this doesn’t quite follow from Theorem 4.1, since that was stated for a general graph,
and here we want to apply it in a way that respects the bipartition, so that W ⊆ A. But it is easy to see
that if we rerun the proof of Theorem 4.1, but now select u ∈ B uniformly at random, we necessarily find
that W ⊆ A, and everything else goes through as before.
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Theorem 4.3 (Balog–Szemerédi–Gowers). There exists an absolute constant C > 0 such
that the following holds. Suppose X is a finite subset of some abelian group satisfying E(X) ≥
|X|3/K. Then there exists Y ⊆ X with |Y | ≥ |X|/KC and |Y + Y | ≤ KC |Y |.

This theorem is extremely useful in many applications, as it allows one to convert between
the two notions of additive structure while invoking only a polynomial loss in the parameters.
The original proof of Balog and Szemerédi had much worse quantitative dependence; the
proof with the polynomial dependence is due to Gowers, and is one of the earliest applications
of dependent random choice.

I won’t prove Theorem 4.3 in full. Instead, I will prove the following result; there is a
short and elementary argument showing that it implies Theorem 4.3. To state it, we need
the following terminology: given a bipartite graph G = (A,B,E), where the vertex sets A,B
are subsets of some abelian group, we define the restricted sumset

A+
G
B := {a+ b : (a, b) ∈ E(G)}.

Lemma 4.4. Let G = (A,B,E) be a bipartite graph, where A,B are subsets of some abelian
group with |A| = |B| = n. Suppose that G has at least n2/K edges and that |A+

G
B| ≤ Kn.

Then there exist A′ ⊆ A,B′ ⊆ B with |A′|, |B′| ≥ n/KC and |A′ +B′| ≤ KCn.

Proof. We apply Lemma 4.2 with ε = 1/K, and claim that the resulting sets A′, B′ satisfy
the desired result. Certainly the size lower bound follows immediately from the conclusion
of Lemma 4.2, so it remains to prove the bound on the sumset. By definition, for every
(a, b) ∈ A′ ×B′, there exist at least n2/KC choices of x ∈ B, y ∈ A such that (a, x, y, b) is a
path in G. Note that

a+ b = (a+ x)− (x+ y) + (y + b)

and that (a+x), (x+y), (y+ b) ∈ A+
G
B. Therefore, every element of A′+B′ can be written

as a signed sum of three elements from A+
G
B in at least n2/KC different ways. Therefore,

|A′ +B′| ≤

∣∣∣∣A+
G
B

∣∣∣∣3
n2/KC

≤ K3n3

n2/KC
= KC+3n.
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