Ramsey numbers of sparse digraphs

Yuval Wigderson (Stanford)
Joint with Jacob Fox and Xiaoyu He

May 31, 2021

Warmup: Hamiltonian paths in tournaments

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.
Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.
Tournament = complete directed graph (every pair of vertices connected by a directed edge) Questions and results about Hamiltonian paths in tournaments abound!

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.
Tournament = complete directed graph (every pair of vertices connected by a directed edge) Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.
Tournament = complete directed graph (every pair of vertices connected by a directed edge) Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.
Tournament = complete directed graph (every pair of vertices connected by a directed edge) Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Rédei's theorem $\Longleftrightarrow \vec{r}\left(P_{n}\right)=n$, where $P_{n}=$ directed n-vertex path.

Directed and undirected Ramsey numbers

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Directed and undirected Ramsey numbers

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.

Directed and undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every two-edge-coloring of K_{N} contains a monochromatic copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.

Directed and undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every two-edge-coloring of K_{N} contains a monochromatic copy of H.

For a complete graph K_{n},

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.

Directed and undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every two-edge-coloring of K_{N} contains a monochromatic copy of H.

For a complete graph K_{n},

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n} .
$$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.
For a transitive tournament \vec{T}_{n},

$$
2^{n / 2} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n} .
$$

Directed and undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every two-edge-coloring of K_{N} contains a monochromatic copy of H.

For a complete graph K_{n},

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

The upper bound implies that $r(H)$ exists for all H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.

For a transitive tournament \vec{T}_{n},

$$
2^{n / 2} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n} .
$$

Directed and undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every two-edge-coloring of K_{N} contains a monochromatic copy of H.

For a complete graph K_{n},

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

The upper bound implies that $r(H)$ exists for all H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.

For a transitive tournament \vec{T}_{n},

$$
2^{n / 2} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n} .
$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H.

Directed and undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every two-edge-coloring of K_{N} contains a monochromatic copy of H.

For a complete graph K_{n},

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n}
$$

The upper bound implies that $r(H)$ exists for all H.
If H has εn^{2} edges, then

$$
r(H) \geq 2^{\varepsilon n}
$$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.

For a transitive tournament \vec{T}_{n},

$$
2^{n / 2} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n} .
$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H.

Directed and undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every two-edge-coloring of K_{N} contains a monochromatic copy of H.

For a complete graph K_{n},

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n} .
$$

The upper bound implies that $r(H)$ exists for all H.
If H has εn^{2} edges, then

$$
r(H) \geq 2^{\varepsilon n} .
$$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.
For a transitive tournament $\overrightarrow{T_{n}}$,

$$
2^{n / 2} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n} \text {. }
$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. If H has εn^{2} edges, then

$$
\vec{r}(H) \geq 2^{\varepsilon n} .
$$

Directed and undirected Ramsey numbers

Definition

The Ramsey number $r(H)$ of a graph H is the minimum N such that every two-edge-coloring of K_{N} contains a monochromatic copy of H.

For a complete graph K_{n},

$$
2^{n / 2} \leq r\left(K_{n}\right) \leq 2^{2 n} .
$$

The upper bound implies that $r(H)$ exists for all H.
If H has εn^{2} edges, then

$$
r(H) \geq 2^{\varepsilon n} .
$$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_{N} contains a copy of H.
For a transitive tournament $\overrightarrow{T_{n}}$,

$$
2^{n / 2} \leq \vec{r}\left(\overrightarrow{T_{n}}\right) \leq 2^{n} \text {. }
$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic H. If H has εn^{2} edges, then

$$
\vec{r}(H) \geq 2^{\varepsilon n} .
$$

So the Ramsey number is exponential if H is dense.
For the rest of the talk, we'll focus on sparse (di)graphs.

Ramsey numbers of sparse undirected graphs

Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then $r(H)=O(n)$.

Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then $r(H)=O(n)$.
Burr-Erdős (1975): Does $r(H)=O(n)$ for all sparse H ?

Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then $r(H)=O(n)$.
Burr-Erdős (1975): Does $r(H)=O(n)$ for all sparse H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.

Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then $r(H)=O(n)$.
Burr-Erdős (1975): Does $r(H)=O(n)$ for all sparse H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A more refined notion of sparsity is degeneracy, defined by

$$
\max _{H^{\prime} \subseteq H}\left(\text { minimum degree of } H^{\prime}\right) \text {. }
$$

Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then $r(H)=O(n)$.
Burr-Erdős (1975): Does $r(H)=O(n)$ for all sparse H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A more refined notion of sparsity is degeneracy, defined by

$$
\max _{H^{\prime} \subseteq H}\left(\text { minimum degree of } H^{\prime}\right) \text {. }
$$

If H has degeneracy d, then $r(H) \geq 2^{d / 2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then $r(H)=O(n)$.
Burr-Erdős (1975): Does $r(H)=O(n)$ for all sparse H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A more refined notion of sparsity is degeneracy, defined by

$$
\max _{H^{\prime} \subseteq H}\left(\text { minimum degree of } H^{\prime}\right) \text {. }
$$

If H has degeneracy d, then $r(H) \geq 2^{d / 2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975)
If H has degeneracy d, then $r(H)=O_{d}(n)$.

Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then $r(H)=O(n)$.
Burr-Erdős (1975): Does $r(H)=O(n)$ for all sparse H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A more refined notion of sparsity is degeneracy, defined by

$$
\max _{H^{\prime} \subseteq H}\left(\text { minimum degree of } H^{\prime}\right) \text {. }
$$

If H has degeneracy d, then $r(H) \geq 2^{d / 2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975), Theorem (Lee 2017)
If H has degeneracy d, then $r(H)=O_{d}(n)$.

Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then $r(H)=O(n)$.
Burr-Erdős (1975): Does $r(H)=O(n)$ for all sparse H ?
Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree Δ, then $r(H)=O_{\Delta}(n)$.
A more refined notion of sparsity is degeneracy, defined by

$$
\max _{H^{\prime} \subseteq H}\left(\text { minimum degree of } H^{\prime}\right) \text {. }
$$

If H has degeneracy d, then $r(H) \geq 2^{d / 2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975), Theorem (Lee 2017)

If H has degeneracy d, then $r(H)=O_{d}(n)$.
Upshots: H has linear Ramsey number "if and only if" H is sparse. Qualitatively, n and d control $r(H)$.

Ramsey numbers of sparse digraphs

Ramsey numbers of sparse digraphs

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.

Ramsey numbers of sparse digraphs

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$. Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.

Ramsey numbers of sparse digraphs

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.
Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2 n-2$ for $n \geq n_{0}$.

Ramsey numbers of sparse digraphs

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.
Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2 n-2$ for $n \geq n_{0}$.
Theorem (Thomason 1986)
If H is any acyclic orientation of C_{n}, then $\vec{r}(H)=n$ for $n \geq n_{0}$.

Ramsey numbers of sparse digraphs

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.
Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2 n-2$ for $n \geq n_{0}$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_{n}, then $\vec{r}(H)=n$ for $n \geq n_{0}$.
Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ?

Ramsey numbers of sparse digraphs

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.
Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2 n-2$ for $n \geq n_{0}$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_{n}, then $\vec{r}(H)=n$ for $n \geq n_{0}$.
Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ?
Theorem (Yuster 2020, Girão 2020, DDFGHKLMSS 2020)
If H has bandwidth k, then $\vec{r}(H)=O_{k}(n)$.

Ramsey numbers of sparse digraphs

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2 n-2$.
Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12 n$.
Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2 n-2$ for $n \geq n_{0}$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_{n}, then $\vec{r}(H)=n$ for $n \geq n_{0}$.
Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ?
Theorem (Yuster 2020, Girão 2020, DDFGHKLMSS 2020)
If H has bandwidth k, (i.e. there is an edge $v_{i} \rightarrow v_{j}$ only if $1 \leq j-i \leq k$) then $\vec{r}(H)=O_{k}(n)$.

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ?

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ? No!

Theorem (Fox-He-W. 2021)
For all $C>0$ and $n \geq n_{0}$, there is a bounded-degree n-vertex acyclic digraph H with

$$
\vec{r}(H)>n^{C} .
$$

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ? No!

Theorem (Fox-He-W. 2021)
For all $C>0$ and $n \geq n_{0}$, there is a bounded-degree ($\Delta \leq C^{3 / 2+o(1)}$) n-vertex acyclic digraph H with

$$
\vec{r}(H)>n^{C} .
$$

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ? No!

Theorem (Fox-He-W. 2021)
For all $C>0$ and $n \geq n_{0}$, there is a bounded-degree ($\Delta \leq C^{3 / 2+o(1)}$) n-vertex acyclic digraph H with

$$
\vec{r}(H)>n^{C} .
$$

Theorem (Fox-He-W. 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ? No!

Theorem (Fox-He-W. 2021)
For all $C>0$ and $n \geq n_{0}$, there is a bounded-degree ($\Delta \leq C^{3 / 2+o(1)}$) n-vertex acyclic digraph H with

$$
\vec{r}(H)>n^{C} .
$$

Theorem (Fox-He-W. 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ? No!

Theorem (Fox-He-W. 2021)

For all $C>0$ and $n \geq n_{0}$, there is a bounded-degree ($\Delta \leq C^{3 / 2+o(1)}$) n-vertex acyclic digraph H with

$$
\vec{r}(H)>n^{C} .
$$

Theorem (Fox-He-W. 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H has height h, then $\vec{r}(H) \leq n \cdot h^{O_{\Delta}(\log h)}=O_{\Delta, h}(n)$.

Height (aka depth) = length of longest directed path

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H ? No!

Theorem (Fox-He-W. 2021)

For all $C>0$ and $n \geq n_{0}$, there is a bounded-degree ($\Delta \leq C^{3 / 2+o(1)}$) n-vertex acyclic digraph H with

$$
\vec{r}(H)>n^{C} .
$$

Theorem (Fox-He-W. 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

- $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H has height h, then $\vec{r}(H) \leq n \cdot h^{O_{\Delta}(\log h)}=O_{\Delta, h}(n)$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot(\log n)^{O_{\Delta}(1)}$ w.h.p.

Height (aka depth) = length of longest directed path

What determines if $\vec{r}(H)$ is large?

Recall: In the undirected setting, number of vertices and degeneracy determine how large $r(H)$ is.

What determines if $\vec{r}(H)$ is large?

Recall: In the undirected setting, number of vertices and degeneracy determine how large $r(H)$ is.
What additional parameters are relevant in the directed setting?

What determines if $\vec{r}(H)$ is large?

Recall: In the undirected setting, number of vertices and degeneracy determine how large $r(H)$ is.
What additional parameters are relevant in the directed setting?
If H is an acyclic digraph, we can order its vertices as v_{1}, \ldots, v_{n} such that all edges go to the right ($v_{i} \rightarrow v_{j}$ implies $i<j$).

What determines if $\vec{r}(H)$ is large?

Recall: In the undirected setting, number of vertices and degeneracy determine how large $r(H)$ is.
What additional parameters are relevant in the directed setting?
If H is an acyclic digraph, we can order its vertices as v_{1}, \ldots, v_{n} such that all edges go to the right ($v_{i} \rightarrow v_{j}$ implies $i<j$).
Given such an ordering, the length of an edge $v_{i} \rightarrow v_{j}$ is $j-i$.

What determines if $\vec{r}(H)$ is large?

Recall: In the undirected setting, number of vertices and degeneracy determine how large $r(H)$ is.
What additional parameters are relevant in the directed setting?
If H is an acyclic digraph, we can order its vertices as v_{1}, \ldots, v_{n} such that all edges go to the right ($v_{i} \rightarrow v_{j}$ implies $i<j$).
Given such an ordering, the length of an edge $v_{i} \rightarrow v_{j}$ is $j-i$.
"Definition"
Suppose that for every ordering, H has "many" edges of length in $\left[2^{t}, 2^{t+1}\right.$) for "most" $0 \leq t \leq \log n$. Then H has high multiscale complexity.
If not, H has low multiscale complexity.

What determines if $\vec{r}(H)$ is large?

Recall: In the undirected setting, number of vertices and degeneracy determine how large $r(H)$ is.
What additional parameters are relevant in the directed setting?
If H is an acyclic digraph, we can order its vertices as v_{1}, \ldots, v_{n} such that all edges go to the right ($v_{i} \rightarrow v_{j}$ implies $i<j$).
Given such an ordering, the length of an edge $v_{i} \rightarrow v_{j}$ is j - i.
"Definition"
Suppose that for every ordering, H has "many" edges of length in $\left[2^{t}, 2^{t+1}\right.$) for "most" $0 \leq t \leq \log n$. Then H has high multiscale complexity.
If not, H has low multiscale complexity.

"Theorem"

Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

Multiscale complexity affects $\vec{r}(H)$

Multiscale complexity: Many edges in many dyadic length scales.
"Theorem"
Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

Multiscale complexity affects $\vec{r}(H)$

Multiscale complexity: Many edges in many dyadic length scales.
"Theorem"
Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.

Multiscale complexity affects $\vec{r}(H)$

Multiscale complexity: Many edges in many dyadic length scales.
"Theorem"
Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in $[n / h, n]$.

Multiscale complexity affects $\vec{r}(H)$

Multiscale complexity: Many edges in many dyadic length scales.
"Theorem"
Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in $[n / h, n]$.
- Suppose H is chosen randomly by connecting $v_{i} \rightarrow v_{j}$ with probability $p=c / n$.

Multiscale complexity affects $\vec{r}(H)$

Multiscale complexity: Many edges in many dyadic length scales.
"Theorem"
Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in $[n / h, n]$.
- Suppose H is chosen randomly by connecting $v_{i} \rightarrow v_{j}$ with probability $p=c / n$. Then
$\mathbb{E}[\#($ edges of length $\leq \ell)] \leq p(n \ell)=c \ell$.

Multiscale complexity affects $\vec{r}(H)$

Multiscale complexity: Many edges in many dyadic length scales.
"Theorem"
Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in $[n / h, n]$.
- Suppose H is chosen randomly by connecting $v_{i} \rightarrow v_{j}$ with probability $p=c / n$. Then
$\mathbb{E}[\#($ edges of length $\leq \ell)] \leq p(n \ell)=c \ell$.
So a o(1) fraction of H 's edges have length o(n).

Multiscale complexity affects $\vec{r}(H)$

Multiscale complexity: Many edges in many dyadic length scales.
"Theorem"
Let H be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" H has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in $[n / h, n]$.
- Suppose H is chosen randomly by connecting $v_{i} \rightarrow v_{j}$ with probability $p=c / n$. Then

$$
\mathbb{E}[\#(\text { edges of length } \leq \ell)] \leq p(n \ell)=c \ell .
$$

So a o(1) fraction of H's edges have length o(n).

- Our construction of a bounded-degree H with $\vec{r}(H)>n^{C}$ has many edges at every dyadic length scale ("interval mesh").

Lower bound proof sketch

Lower bound proof sketch

Theorem
There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

Lower bound proof sketch

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $\mathrm{H} \hookrightarrow T$.

Lower bound proof sketch

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $\mathrm{H} \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

Lower bound proof sketch

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of $H_{1}(2)$ a tournament T on $n^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $\mathrm{H} \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

Lower bound proof sketch

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of $H_{1}(2)$ a tournament T on $n^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

Lower bound proof sketch

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of $H_{1}(2)$ a tournament T on $n^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

Lower bound proof sketch

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of $H_{1}(2)$ a tournament T on $n^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of $[n]$ of length $\geq 0.49 n$ is mapped into a single part.

Lower bound proof sketch

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of $H_{1}(2)$ a tournament T on $n^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of $[n]$ of length $\geq 0.49 n$ is mapped into a single part.
Ensure that the induced subgraph on this subinterval has the same property, so we can iterate.

Lower bound proof sketch

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H)>n^{\log _{2}(3)-\varepsilon}$.

We need (1) a construction of $H_{1}(2)$ a tournament T on $n^{\log _{2}(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $\mathrm{H} \hookrightarrow T$.

For (2): We let T be an iterated blowup of a cyclic triangle.

For (3): Construct H so that in any embedding $H \hookrightarrow T$, some subinterval of $[n]$ of length $\geq 0.49 n$ is mapped into a single part.
Ensure that the induced subgraph on this subinterval has the same property, so we can iterate. At each step, $|T|$ drops by a factor of 3, but $|H|$ drops by a factor of 2.01 .

Lower bound proof sketch: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Lower bound proof sketch: interval meshes

Want: In any embedding $\mathrm{H} \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Thus, $\left|J_{i}\right|>100 \min \left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Thus, $\left|J_{i}\right|>100 \mathrm{~min}\left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$. So $\left|J_{i}\right| \geq 0.49 n$ for some i.

Lower bound proof sketch: interval meshes

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49 n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- H has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \leq a<b \leq c<d \leq n$ with $c-b \leq 100 \min (b-a, d-c)$, there is an edge between $[a, b]$ and $[c, d]$.

Thus, $\left|J_{i}\right|>100 \mathrm{~min}\left(\left|J_{i-1}\right|,\left|J_{i+1}\right|\right)$. So $\left|J_{i}\right| \geq 0.49 n$ for some i.
Greedy algorithm yields an interval mesh with max degree ≤ 1000.

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Upper bound proof sketch: greedy embedding

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof sketch: greedy embedding

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof sketch: greedy embedding

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof sketch: greedy embedding

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof sketch: greedy embedding

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

Upper bound proof sketch: greedy embedding

Lemma

If T is H -free, then T contains two large vertex sets with most edges between them oriented the same way.

The multiscale complexity of H controls the number of iterations.

More colors and ordered Ramsey numbers

Summary: If H has n vertices and maximum degree Δ, then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H)>n^{C}$ is possible.

More colors and ordered Ramsey numbers

Summary: If H has n vertices and maximum degree Δ, then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H)>n^{C}$ is possible. With more colors, the upper bound is closer to the truth.

More colors and ordered Ramsey numbers

Summary: If H has n vertices and maximum degree Δ, then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H)>n^{C}$ is possible.
With more colors, the upper bound is closer to the truth.

$$
\overrightarrow{r_{k}}(H)=\min \left\{\begin{array}{l|l}
N & \begin{array}{c}
\text { any } k \text {-edge-colored } N \text {-vertex tournament } \\
\text { contains a monochromatic copy of } H
\end{array}
\end{array}\right\} .
$$

More colors and ordered Ramsey numbers

Summary: If H has n vertices and maximum degree Δ, then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H)>n^{C}$ is possible.
With more colors, the upper bound is closer to the truth.

$$
\overrightarrow{r_{k}}(H)=\min \left\{\begin{array}{l|l}
N & \begin{array}{c}
\text { any } k \text {-edge-colored } N \text {-vertex tournament } \\
\text { contains a monochromatic copy of } H
\end{array}
\end{array}\right\} .
$$

Theorem (Fox-He-W. 2021)
If H has n vertices and maximum degree Δ, then

$$
\overrightarrow{r_{k}}(H) \leq n^{O_{\Delta}\left(\log ^{O_{k}(1)} n\right)}
$$

More colors and ordered Ramsey numbers

Summary: If H has n vertices and maximum degree Δ, then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H)>n^{C}$ is possible.
With more colors, the upper bound is closer to the truth.

$$
\overrightarrow{r_{k}}(H)=\min \left\{\begin{array}{l|l}
N & \begin{array}{c}
\text { any } k \text {-edge-colored } N \text {-vertex tournament } \\
\text { contains a monochromatic copy of } H
\end{array}
\end{array}\right\} .
$$

Theorem (Fox-He-W. 2021)
If H has n vertices and maximum degree Δ, then

$$
\left.\overrightarrow{r_{k}}(H) \leq n^{O_{\Delta}\left(\log _{k}(1)\right.} n\right) .
$$

For $k \geq 2$, there exists H of maximum degree 3 and

$$
\overrightarrow{r_{k}}(H) \geq n^{\Omega(\log n / \log \log n)} .
$$

More colors and ordered Ramsey numbers

Summary: If H has n vertices and maximum degree Δ, then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H)>n^{C}$ is possible.
With more colors, the upper bound is closer to the truth.

$$
\overrightarrow{r_{k}}(H)=\min \left\{\begin{array}{l|l}
N & \begin{array}{c}
\text { any } k \text {-edge-colored } N \text {-vertex tournament } \\
\text { contains a monochromatic copy of } H
\end{array}
\end{array}\right\} .
$$

Theorem (Fox-He-W. 2021)
If H has n vertices and maximum degree Δ, then

$$
\left.\overrightarrow{r_{k}}(H) \leq n^{O_{\Delta}\left(\log _{k}(1)\right.} n\right) .
$$

For $k \geq 2$, there exists H of maximum degree 3 and

$$
\overrightarrow{r_{k}}(H) \geq n^{\Omega(\log n / \log \log n)} .
$$

Proof uses a connection to ordered Ramsey numbers.

More colors and ordered Ramsey numbers

Summary: If H has n vertices and maximum degree Δ, then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H)>n^{C}$ is possible.
With more colors, the upper bound is closer to the truth.

$$
\overrightarrow{r_{k}}(H)=\min \left\{\begin{array}{l|l}
N & \begin{array}{c}
\text { any } k \text {-edge-colored } N \text {-vertex tournament } \\
\text { contains a monochromatic copy of } H
\end{array}
\end{array}\right\} .
$$

Theorem (Fox-He-W. 2021)
If H has n vertices and maximum degree Δ, then

$$
\left.\overrightarrow{r_{k}}(H) \leq n^{O_{\Delta}\left(\log _{k}(1)\right.} n\right) .
$$

For $k \geq 2$, there exists H of maximum degree 3 and

$$
\overrightarrow{r_{k}}(H) \geq n^{\Omega(\log n / \log \log n)} .
$$

Proof uses a connection to ordered Ramsey numbers. Conlon-Fox-Lee-Sudakov and Balko-Cibulka-Král-Kynčl proved that random ordered matchings have super-polynomial ordered Ramsey numbers.

Conclusion and open questions

Let H have n vertices and maximum degree Δ.

Conclusion and open questions

Let H have n vertices and maximum degree Δ.

- There is a gap between the n^{C} lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$.
We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?

Conclusion and open questions

Let H have n vertices and maximum degree Δ.

- There is a gap between the n^{C} lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$.
We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H)=O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$.
This boils down to improving one technical lemma.

Conclusion and open questions

Let H have n vertices and maximum degree Δ.

- There is a gap between the n^{C} lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$.
We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H)=O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$.
This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.

Conclusion and open questions

Let H have n vertices and maximum degree Δ.

- There is a gap between the n^{C} lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$.
We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H)=O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$.
This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
- Can one formalize this?

Conclusion and open questions

Let H have n vertices and maximum degree Δ.

- There is a gap between the n^{C} lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$.
We conjecture that the upper bound is closer to the truth.
Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H)=O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$.
This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
- Can one formalize this?
- Which other digraph parameters are relevant?

Conclusion and open questions

Let H have n vertices and maximum degree Δ.

- There is a gap between the n^{C} lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$.
We conjecture that the upper bound is closer to the truth.
Perhaps the same iterated blowup construction for T works?
- If H is random, we conjecture $\vec{r}(H)=O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \leq n(\log n)^{O_{\Delta}(1)}$.
This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
- Can one formalize this?
- Which other digraph parameters are relevant?
- Can one combine greedy embedding with existing techniques (e.g. median ordering)?

Thank you!

