Yuval Wigderson (Stanford) Joint with Jacob Fox and Xiaoyu He

May 31, 2021

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge) Questions and results about Hamiltonian paths in tournaments abound!

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Rédei's theorem $\iff \vec{r}(P_n) = n$, where $P_n = \text{directed } n$ -vertex path.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every N-vertex tournament contains a copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

 $2^{n/2} \leq r(K_n) \leq 2^{2n}.$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

 $2^{n/2} \leq r(K_n) \leq 2^{2n}.$

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament $\overrightarrow{T_n}$, $2^{n/2} \leq \overrightarrow{r}(\overrightarrow{T_n}) \leq 2^n$.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

 $2^{n/2} \leq r(K_n) \leq 2^{2n}.$

The upper bound implies that r(H) exists for all H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament $\overrightarrow{T_n}$, $2^{n/2} \leq \overrightarrow{r}(\overrightarrow{T_n}) \leq 2^n$.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

 $2^{n/2} \leq r(K_n) \leq 2^{2n}.$

The upper bound implies that r(H) exists for all H.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament $\overrightarrow{T_n}$,

$$2^{n/2} \leq \vec{r}(\overrightarrow{T_n}) \leq 2^n.$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic *H*.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

 $2^{n/2} \leq r(K_n) \leq 2^{2n}.$

The upper bound implies that r(H) exists for all H. If H has εn^2 edges, then $r(H) > 2^{\varepsilon n}$.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament $\overrightarrow{T_n}$,

$$2^{n/2} \leq \vec{r}(\overrightarrow{T_n}) \leq 2^n.$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic *H*.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

 $2^{n/2} \leq r(K_n) \leq 2^{2n}.$

The upper bound implies that r(H) exists for all H. If H has εn^2 edges, then $r(H) > 2^{\varepsilon n}$.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament $\overrightarrow{T_n}$,

$$2^{n/2} \leq \vec{r}(\overrightarrow{T_n}) \leq 2^n.$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic *H*. If *H* has εn^2 edges, then

 $\vec{r}(H) \geq 2^{\varepsilon n}$.

Definition

The Ramsey number r(H) of a graph H is the minimum N such that every two-edge-coloring of K_N contains a monochromatic copy of H.

For a complete graph K_n ,

 $2^{n/2} \leq r(K_n) \leq 2^{2n}.$

The upper bound implies that r(H) exists for all H. If H has εn^2 edges, then $r(H) > 2^{\varepsilon n}$.

Definition

The Ramsey number $\vec{r}(H)$ of a digraph H is the minimum N such that every edge orientation of K_N contains a copy of H.

For a transitive tournament $\overrightarrow{T_n}$,

$$2^{n/2} \leq \vec{r}(\overrightarrow{T_n}) \leq 2^n.$$

The upper bound implies that $\vec{r}(H)$ exists for all acyclic *H*. If *H* has εn^2 edges, then

 $\vec{r}(H) \geq 2^{\varepsilon n}$.

So the Ramsey number is exponential if *H* is dense. For the rest of the talk, we'll focus on sparse (di)graphs.

If *H* is a tree or cycle, then r(H) = O(n).

If *H* is a tree or cycle, then r(H) = O(n).

Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

If H is a tree or cycle, then r(H) = O(n). Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

If H is a tree or cycle, then r(H) = O(n). Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H} (\text{minimum degree of } H').$

If H is a tree or cycle, then r(H) = O(n). Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H} (\text{minimum degree of } H').$

If *H* has degeneracy *d*, then $r(H) \ge 2^{d/2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

If H is a tree or cycle, then r(H) = O(n). Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H} (\text{minimum degree of } H').$

If *H* has degeneracy *d*, then $r(H) \ge 2^{d/2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975)

If H has degeneracy d, then $r(H) = O_d(n)$.

If H is a tree or cycle, then r(H) = O(n). Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H} (\text{minimum degree of } H').$

If *H* has degeneracy *d*, then $r(H) \ge 2^{d/2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975), Theorem (Lee 2017) If H has degeneracy d, then $r(H) = O_d(n)$.

If H is a tree or cycle, then r(H) = O(n). Burr-Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal-Rödl-Szemerédi-Trotter 1983)

If H has n vertices and maximum degree Δ , then $r(H) = O_{\Delta}(n)$.

A more refined notion of sparsity is degeneracy, defined by

 $\max_{H'\subseteq H} (\text{minimum degree of } H').$

If *H* has degeneracy *d*, then $r(H) \ge 2^{d/2}$. So graphs of unbounded degeneracy have "large" Ramsey numbers.

Conjecture (Burr-Erdős 1975), Theorem (Lee 2017)

If H has degeneracy d, then $r(H) = O_d(n)$.

Upshots: *H* has linear Ramsey number "if and only if" *H* is sparse. Qualitatively, *n* and *d* control r(H).

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$. Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$. Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for $n \ge n_0$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$. Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for $n \ge n_0$.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H?

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$. Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for $n \ge n_0$.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H?

Theorem (Yuster 2020, Girão 2020, DDFGHKLMSS 2020) If H has bandwidth k, then $\vec{r}(H) = O_k(n)$.

Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then $\vec{r}(H) \leq 2n - 2$.

Häggkvist-Thomason (1991): $\vec{r}(H) \leq 12n$. Kühn-Mycroft-Osthus (2011): $\vec{r}(H) \leq 2n - 2$ for $n \geq n_0$.

Theorem (Thomason 1986)

If H is any acyclic orientation of C_n , then $\vec{r}(H) = n$ for $n \ge n_0$.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H?

Theorem (Yuster 2020, Girão 2020, DDFGHKLMSS 2020) If H has bandwidth k, (i.e. there is an edge $v_i \rightarrow v_j$ only if $1 \le j - i \le k$) then $\vec{r}(H) = O_k(n)$.

Main results

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H?
Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? No!

```
Theorem (Fox-He-W. 2021)
```

For all C > 0 and $n \ge n_0$, there is a bounded-degree *n*-vertex acyclic digraph H with

 $\vec{r}(H)>n^C.$

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? No!

Theorem (Fox-He-W. 2021)

For all C > 0 and $n \ge n_0$, there is a bounded-degree ($\Delta \le C^{3/2+o(1)}$) n-vertex acyclic digraph H with

 $\vec{r}(H) > n^C$.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? No!

Theorem (Fox-He-W. 2021)

For all C > 0 and n \geq n₀, there is a bounded-degree ($\Delta \leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

 $\vec{r}(H)>n^C.$

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? No!

Theorem (Fox-He-W. 2021)

For all C > 0 and n \geq n₀, there is a bounded-degree ($\Delta \leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

 $\vec{r}(H)>n^C.$

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

•
$$\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$$
.

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? No!

Theorem (Fox-He-W. 2021)

For all C > 0 and n \geq n₀, there is a bounded-degree ($\Delta \leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

 $\vec{r}(H)>n^C.$

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H has height h, then $\vec{r}(H) \leq n \cdot h^{O_{\Delta}(\log h)} = O_{\Delta,h}(n)$.

Height (aka depth) = length of longest directed path

Bucić-Letzter-Sudakov: Is $\vec{r}(H)$ linear for all bounded-degree H? No!

Theorem (Fox-He-W. 2021)

For all C > 0 and n \geq n₀, there is a bounded-degree ($\Delta \leq C^{3/2+o(1)}$) n-vertex acyclic digraph H with

 $\vec{r}(H)>n^C.$

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree Δ .

- $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$.
- If H has height h, then $\vec{r}(H) \leq n \cdot h^{O_{\Delta}(\log h)} = O_{\Delta,h}(n)$.
- If H is chosen randomly, then $\vec{r}(H) \leq n \cdot (\log n)^{O_{\Delta}(1)}$ w.h.p.

Height (aka depth) = length of longest directed path

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

If *H* is an acyclic digraph, we can order its vertices as $v_1, ..., v_n$ such that all edges go to the right $(v_i \rightarrow v_j \text{ implies } i < j)$.

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

If *H* is an acyclic digraph, we can order its vertices as $v_1, ..., v_n$ such that all edges go to the right ($v_i \rightarrow v_j$ implies i < j).

Given such an ordering, the *length* of an edge $v_i \rightarrow v_j$ is j - i.

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

If *H* is an acyclic digraph, we can order its vertices as $v_1, ..., v_n$ such that all edges go to the right $(v_i \rightarrow v_j \text{ implies } i < j)$.

Given such an ordering, the *length* of an edge $v_i \rightarrow v_j$ is j - i.

"Definition"

Suppose that for every ordering, *H* has "many" edges of length in $[2^t, 2^{t+1})$ for "most" $0 \le t \le \log n$. Then *H* has high multiscale complexity. If not, *H* has low multiscale complexity.

Recall: In the undirected setting, number of vertices and degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?

If *H* is an acyclic digraph, we can order its vertices as $v_1, ..., v_n$ such that all edges go to the right $(v_i \rightarrow v_j \text{ implies } i < j)$.

Given such an ordering, the *length* of an edge $v_i \rightarrow v_j$ is j - i.

"Definition"

Suppose that for every ordering, *H* has "many" edges of length in $[2^t, 2^{t+1})$ for "most" $0 \le t \le \log n$. Then *H* has high multiscale complexity. If not, *H* has low multiscale complexity.

"Theorem"

Let *H* be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" *H* has high multiscale complexity.

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let *H* be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" *H* has high multiscale complexity.

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let *H* be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" *H* has high multiscale complexity.

• If H has bandwidth k, then every edge in H has length $\leq k$.

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let *H* be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" *H* has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let *H* be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" *H* has high multiscale complexity.

- If H has bandwidth k, then every edge in H has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].
- Suppose *H* is chosen randomly by connecting $v_i \rightarrow v_j$ with probability p = c/n.

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let *H* be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" *H* has high multiscale complexity.

- If *H* has bandwidth *k*, then every edge in *H* has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].
- Suppose *H* is chosen randomly by connecting $v_i \rightarrow v_j$ with probability p = c/n. Then

 $\mathbb{E}[\#(\text{edges of length} \le \ell)] \le p(n\ell) = c\ell.$

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let *H* be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" *H* has high multiscale complexity.

- If *H* has bandwidth *k*, then every edge in *H* has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].
- Suppose *H* is chosen randomly by connecting $v_i \rightarrow v_j$ with probability p = c/n. Then

 $\mathbb{E}[\#(\text{edges of length} \le \ell)] \le p(n\ell) = c\ell.$

So a o(1) fraction of H's edges have length o(n).

Multiscale complexity: Many edges in many dyadic length scales.

"Theorem"

Let *H* be a bounded-degree acyclic digraph. Then $\vec{r}(H)$ is large "if and only if" *H* has high multiscale complexity.

- If *H* has bandwidth *k*, then every edge in *H* has length $\leq k$.
- If H has height h, then "most" edges have length in [n/h, n].
- Suppose *H* is chosen randomly by connecting $v_i \rightarrow v_j$ with probability p = c/n. Then

 $\mathbb{E}[\#(\text{edges of length} \le \ell)] \le p(n\ell) = c\ell.$

So a o(1) fraction of *H*'s edges have length o(n).

• Our construction of a bounded-degree *H* with $\vec{r}(H) > n^C$ has many edges at every dyadic length scale ("interval mesh").

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\epsilon}$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\epsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\epsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\epsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\varepsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\epsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\epsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\epsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\epsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let *T* be an iterated blowup of a cyclic triangle.

For (3): Construct *H* so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\ge 0.49n$ is mapped into a single part.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\epsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\epsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let *T* be an iterated blowup of a cyclic triangle.

For (3): Construct *H* so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\ge 0.49n$ is mapped into a single part. Ensure that the induced subgraph on this subinterval has the same property, so we can iterate.

Theorem

There exists an n-vertex acyclic digraph H with maximum degree ≤ 1000 and $\vec{r}(H) > n^{\log_2(3)-\varepsilon}$.

We need (1) a construction of H, (2) a tournament T on $n^{\log_2(3)-\epsilon}$ vertices, and (3) a proof that there is no embedding $H \hookrightarrow T$.

For (2): We let *T* be an iterated blowup of a cyclic triangle.

For (3): Construct *H* so that in any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\ge 0.49n$ is mapped into a single part. Ensure that the induced subgraph on this subinterval has the same property, so we can iterate. At each step, |T| drops by a factor of 3, but |H| drops by a factor of 2.01.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i| \ge 0.49n$ for some *i*.

Want: In any embedding $H \hookrightarrow T$, some subinterval of [n] of length $\geq 0.49n$ is mapped into a single part, and this is hereditary.

Definition

- *H* has a Hamiltonian path $1 \rightarrow 2 \rightarrow \cdots \rightarrow n$.
- For all $1 \le a < b \le c < d \le n$ with $c b \le 100 \min(b a, d c)$, there is an edge between [a, b] and [c, d].

Thus, $|J_i| > 100 \min(|J_{i-1}|, |J_{i+1}|)$. So $|J_i| \ge 0.49n$ for some *i*. Greedy algorithm yields an interval mesh with max degree ≤ 1000 .

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

If T is H-free, then T contains two large vertex sets with most edges between them oriented the same way.

The multiscale complexity of *H* controls the number of iterations.

More colors and ordered Ramsey numbers

Summary: If *H* has *n* vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) > n^{C}$ is possible.

More colors and ordered Ramsey numbers

Summary: If *H* has *n* vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) > n^{C}$ is possible.

With more colors, the upper bound is closer to the truth.

More colors and ordered Ramsey numbers

Summary: If *H* has *n* vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) > n^{C}$ is possible.

With more colors, the upper bound is closer to the truth.

 $\overrightarrow{r_k}(H) = \min \left\{ N \middle| \begin{array}{c} \sup k \text{-edge-colored } N \text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$
Summary: If *H* has *n* vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) > n^{C}$ is possible.

With more colors, the upper bound is closer to the truth.

 $\vec{r_k}(H) = \min \left\{ N \middle| \begin{array}{c} \sup k \text{-edge-colored } N \text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$

Theorem (Fox-He-W. 2021)

If H has n vertices and maximum degree Δ , then

 $\overrightarrow{r_k}(H) \leq n^{O_{\Delta}(\log^{O_k(1)} n)}.$

Summary: If *H* has *n* vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) > n^{C}$ is possible.

With more colors, the upper bound is closer to the truth.

 $\vec{r_k}(H) = \min \left\{ N \middle| \begin{array}{c} \sup k \text{-edge-colored } N \text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$

Theorem (Fox-He-W. 2021)

If H has n vertices and maximum degree $\Delta,$ then

 $\overrightarrow{r_k}(H) \le n^{O_{\Delta}(\log^{O_k(1)} n)}.$

For $k \ge 2$, there exists H of maximum degree 3 and $\overrightarrow{r_k}(H) \ge n^{\Omega(\log n / \log \log n)}$.

Summary: If *H* has *n* vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) > n^{C}$ is possible.

With more colors, the upper bound is closer to the truth.

 $\vec{r_k}(H) = \min \left\{ N \middle| \begin{array}{c} \sup k \text{-edge-colored } N \text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$

Theorem (Fox-He-W. 2021)

If H has n vertices and maximum degree Δ , then

 $\overrightarrow{r_k}(H) \le n^{O_{\Delta}(\log^{O_k(1)} n)}.$

For $k \ge 2$, there exists H of maximum degree 3 and $\overrightarrow{r_k}(H) \ge n^{\Omega(\log n / \log \log n)}$.

Proof uses a connection to ordered Ramsey numbers.

Summary: If *H* has *n* vertices and maximum degree Δ , then $\vec{r}(H) \leq n^{O_{\Delta}(\log n)}$, but $\vec{r}(H) > n^{C}$ is possible.

With more colors, the upper bound is closer to the truth.

 $\vec{r_k}(H) = \min \left\{ N \middle| \begin{array}{c} \sup k \text{-edge-colored } N \text{-vertex tournament} \\ \text{contains a monochromatic copy of } H \end{array} \right\}.$

Theorem (Fox-He-W. 2021)

If H has n vertices and maximum degree Δ , then

 $\overrightarrow{r_k}(H) \leq n^{O_{\Delta}(\log^{O_k(1)} n)}.$

For $k \ge 2$, there exists H of maximum degree 3 and $\overrightarrow{r_k}(H) \ge n^{\Omega(\log n / \log \log n)}$.

Proof uses a connection to ordered Ramsey numbers. Conlon-Fox-Lee-Sudakov and Balko-Cibulka-Král-Kynčl proved that random ordered matchings have super-polynomial ordered Ramsey numbers.

Let *H* have *n* vertices and maximum degree Δ .

• There is a gap between the n^{C} lower bound and $n^{O_{\Delta}(\log n)}$ upper bound on $\vec{r}(H)$. We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for *T* works?

- There is a gap between the n^C lower bound and n^{O_Δ(log n)} upper bound on r
 ^(H).
 We conjecture that the upper bound is closer to the truth.
 Perhaps the same iterated blowup construction for T works?
- If *H* is random, we conjecture *r*(*H*) = O_Δ(*n*) w.h.p., but can only prove *r*(*H*) ≤ n(log n)^{O_Δ(1)}. This boils down to improving one technical lemma.

- There is a gap between the n^C lower bound and n^{O_Δ(log n)} upper bound on r
 <sup>
 (H)</sup>. We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If *H* is random, we conjecture $\vec{r}(H) = O_{\Delta}(n)$ w.h.p., but can only prove $\vec{r}(H) \le n(\log n)^{O_{\Delta}(1)}$. This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.

- There is a gap between the n^C lower bound and n^{O_Δ(log n)} upper bound on r
 <sup>
 (H)</sup>. We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If *H* is random, we conjecture *r*(*H*) = O_Δ(*n*) w.h.p., but can only prove *r*(*H*) ≤ n(log n)^{O_Δ(1)}. This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
 - Can one formalize this?

- There is a gap between the n^C lower bound and n^{O_Δ(log n)} upper bound on r
 <sup>
 (H)</sup>. We conjecture that the upper bound is closer to the truth. Perhaps the same iterated blowup construction for T works?
- If *H* is random, we conjecture *r*(*H*) = O_Δ(*n*) w.h.p., but can only prove *r*(*H*) ≤ n(log n)^{O_Δ(1)}. This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
 - Can one formalize this?
 - Which other digraph parameters are relevant?

- There is a gap between the n^C lower bound and n^{O_Δ(log n)} upper bound on r
 <sup>
 (H)</sup>.
 We conjecture that the upper bound is closer to the truth.
 Perhaps the same iterated blowup construction for T works?
- If *H* is random, we conjecture *r*(*H*) = O_Δ(*n*) w.h.p., but can only prove *r*(*H*) ≤ *n*(log *n*)^{O_Δ(1)}. This boils down to improving one technical lemma.
- Some notion of multiscale complexity affects whether $\vec{r}(H)$ is small or large.
 - Can one formalize this?
 - Which other digraph parameters are relevant?
- Can one combine greedy embedding with existing techniques (e.g. median ordering)?

Thank you!