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Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every
pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths
in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Rédei’s theorem ⇐⇒ ~r(Pn) = n, where Pn = directed n-vertex path.



Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every
pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths
in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Rédei’s theorem ⇐⇒ ~r(Pn) = n, where Pn = directed n-vertex path.



Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every
pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths
in tournaments abound!
What structures must appear in every N-vertex tournament?

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Rédei’s theorem ⇐⇒ ~r(Pn) = n, where Pn = directed n-vertex path.



Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every
pair of vertices connected by a directed edge)
Questions and results about Hamiltonian paths
in tournaments abound!

What structures must appear in every N-vertex tournament?

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Rédei’s theorem ⇐⇒ ~r(Pn) = n, where Pn = directed n-vertex path.



Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every
pair of vertices connected by a directed edge)
Questions and results about Hamiltonian paths
in tournaments abound!
What structures must appear in every N-vertex tournament?

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Rédei’s theorem ⇐⇒ ~r(Pn) = n, where Pn = directed n-vertex path.



Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every
pair of vertices connected by a directed edge)
Questions and results about Hamiltonian paths
in tournaments abound!
What structures must appear in every N-vertex tournament?

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Rédei’s theorem ⇐⇒ ~r(Pn) = n, where Pn = directed n-vertex path.



Warmup: Hamiltonian paths in tournaments

Theorem (Rédei 1934)
Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every
pair of vertices connected by a directed edge)
Questions and results about Hamiltonian paths
in tournaments abound!
What structures must appear in every N-vertex tournament?

Definition
The Ramsey number ~r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Rédei’s theorem ⇐⇒ ~r(Pn) = n, where Pn = directed n-vertex path.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every N-vertex
tournament contains a copy of
H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ≥ 2εn.
So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ≥ 2εn.
So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ≥ 2εn.
So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ≥ 2εn.
So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ≥ 2εn.
So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.

If H has εn2 edges, then
r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ≥ 2εn.
So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.

If H has εn2 edges, then
r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.

If H has εn2 edges, then
~r(H) ≥ 2εn.

So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.

If H has εn2 edges, then
~r(H) ≥ 2εn.

So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ≥ 2εn.

So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Directed and undirected Ramsey numbers

Definition
The Ramsey number r(H) of a
graph H is the minimum N such
that every two-edge-coloring of
KN contains a monochromatic
copy of H.

For a complete graph Kn,
2n/2 ≤ r(Kn) ≤ 22n.

The upper bound implies that
r(H) exists for all H.
If H has εn2 edges, then

r(H) ≥ 2εn.

Definition
The Ramsey number ~r(H) of a
digraph H is the minimum N
such that every edge
orientation of KN contains a
copy of H.

For a transitive tournament −→Tn,
2n/2 ≤ ~r(−→Tn) ≤ 2n.

The upper bound implies that
~r(H) exists for all acyclic H.
If H has εn2 edges, then

~r(H) ≥ 2εn.
So the Ramsey number is exponential if H is dense.
For the rest of the talk, we’ll focus on sparse (di)graphs.



Ramsey numbers of sparse undirected graphs

If H is a tree or cycle, then r(H) = O(n).
Burr–Erdős (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvátal–Rödl–Szemerédi–Trotter 1983)
If H has n vertices and maximum degree Δ, then r(H) = OΔ(n).

A more refined notion of sparsity is degeneracy, defined by

max
H′⊆H

(minimum degree of H′).

If H has degeneracy d, then r(H) ≥ 2d/2. So graphs of unbounded
degeneracy have “large” Ramsey numbers.

Conjecture (Burr–Erdős 1975)

, Theorem (Lee 2017)

If H has degeneracy d, then r(H) = Od(n).

Upshots: H has linear Ramsey number “if and only if” H is sparse.
Qualitatively, n and d control r(H).
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Ramsey numbers of sparse digraphs

Conjecture (Sumner 1971)
If H is any orientation of an n-vertex tree, then~r(H) ≤ 2n − 2.

Häggkvist–Thomason (1991): ~r(H) ≤ 12n.
Kühn–Mycroft–Osthus (2011): ~r(H) ≤ 2n − 2 for n ≥ n0.

Theorem (Thomason 1986)
If H is any acyclic orientation of Cn, then~r(H) = n for n ≥ n0.

Bucić–Letzter–Sudakov: Is~r(H) linear for all bounded-degree H?

Theorem (Yuster 2020, Girão 2020, DDFGHKLMSS 2020)
If H has bandwidth k,

(i.e. there is an edge vi → vj only if 1 ≤ j− i ≤ k)

then~r(H) = Ok(n).
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Main results
Bucić–Letzter–Sudakov: Is~r(H) linear for all bounded-degree H?

No!
Theorem (Fox–He–W. 2021)
For all C > 0 and n ≥ n0, there is a bounded-degree

(Δ ≤ C3/2+o(1))

n-vertex acyclic digraph H with

~r(H) > nC.

Theorem (Fox–He–W. 2021)
Let H be an n-vertex acyclic digraph with maximum degree Δ.

• ~r(H) ≤ nOΔ(log n).
• If H has height h, then~r(H) ≤ n · hOΔ(log h) = OΔ,h(n).
• If H is chosen randomly, then~r(H) ≤ n · (logn)OΔ(1) w.h.p.

Height (aka depth) = length of longest directed path
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What determines if ~r(H) is large?
Recall: In the undirected setting, number of vertices and
degeneracy determine how large r(H) is.

What additional parameters are relevant in the directed setting?
If H is an acyclic digraph, we can order its vertices as v1,…, vn such
that all edges go to the right (vi → vj implies i < j).
Given such an ordering, the length of an edge vi → vj is j − i.

“Definition”
Suppose that for every ordering, H has “many” edges of length in
[2t,2t+1) for “most” 0 ≤ t ≤ logn. Then H has high multiscale
complexity.
If not, H has low multiscale complexity.

“Theorem”
Let H be a bounded-degree acyclic digraph. Then~r(H) is large “if
and only if” H has high multiscale complexity.
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Multiscale complexity affects ~r(H)

Multiscale complexity: Many edges in many dyadic length scales.

“Theorem”
Let H be a bounded-degree acyclic digraph. Then~r(H) is large “if
and only if” H has high multiscale complexity.

• If H has bandwidth k, then every edge in H has length ≤ k.
• If H has height h, then “most” edges have length in [n/h,n].
• Suppose H is chosen randomly by connecting vi → vj with
probability p = c/n. Then

𝔼[#(edges of length ≤ `)] ≤ p(n`) = c`.

So a o(1) fraction of H’s edges have length o(n).
• Our construction of a bounded-degree H with~r(H) > nC has
many edges at every dyadic length scale (“interval mesh”).
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Lower bound proof sketch

Theorem
There exists an n-vertex acyclic digraph H with maximum degree
≤ 1000 and~r(H) > nlog2(3)−ε.

We need (1) a construction of H, (2) a tournament T on nlog2(3)−ε

vertices, and (3) a proof that there is no embedding H ↪→ T.

For (2): We let T be an iterated
blowup of a cyclic triangle.

For (3): Construct H so that in any embedding H ↪→ T, some
subinterval of [n] of length ≥ 0.49n is mapped into a single part.
Ensure that the induced subgraph on this subinterval has the same
property, so we can iterate. At each step, |T| drops by a factor of 3,
but |H| drops by a factor of 2.01.
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Lower bound proof sketch: interval meshes
Want: In any embedding H ↪→ T, some subinterval of [n] of length
≥ 0.49n is mapped into a single part, and this is hereditary.

Definition
H is an interval mesh if

• H has a Hamiltonian path 1 → 2 → · · · → n.
• For all 1 ≤ a < b ≤ c < d ≤ n with c − b ≤ 100min(b − a,d − c),
there is an edge between [a,b] and [c,d].

J1 J2 J3 J4 J5 J6
Thus, |Ji| > 100min(|Ji−1|, |Ji+1|). So |Ji| ≥ 0.49n for some i.
Greedy algorithm yields an interval mesh with max degree ≤ 1000.
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J1 J2 J3 J4 J5 J6

Thus, |Ji| > 100min(|Ji−1|, |Ji+1|). So |Ji| ≥ 0.49n for some i.
Greedy algorithm yields an interval mesh with max degree ≤ 1000.
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Upper bound proof sketch: greedy embedding

H
TT

Lemma
If T is H-free, then T contains two large vertex sets with most edges
between them oriented the same way.

The multiscale complexity of H controls the number of iterations.
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More colors and ordered Ramsey numbers
Summary: If H has n vertices and maximum degree Δ, then
~r(H) ≤ nOΔ(log n), but~r(H) > nC is possible.

With more colors, the upper bound is closer to the truth.
−→rk (H) = min

{
N

∣∣∣∣ any k-edge-colored N-vertex tournament
contains a monochromatic copy of H

}
.

Theorem (Fox–He–W. 2021)
If H has n vertices and maximum degree Δ, then

−→rk (H) ≤ nOΔ(logOk(1) n).
For k ≥ 2, there exists H of maximum degree 3 and

−→rk (H) ≥ nΩ(log n/ log log n).

Proof uses a connection to ordered Ramsey numbers.
Conlon–Fox–Lee–Sudakov and Balko–Cibulka–Král–Kynčl proved
that random ordered matchings have super-polynomial ordered
Ramsey numbers.
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Conclusion and open questions

Let H have n vertices and maximum degree Δ.

• There is a gap between the nC lower bound and nOΔ(log n)

upper bound on~r(H).
We conjecture that the upper bound is closer to the truth.
Perhaps the same iterated blowup construction for T works?

• If H is random, we conjecture~r(H) = OΔ(n) w.h.p., but can only
prove~r(H) ≤ n(logn)OΔ(1).
This boils down to improving one technical lemma.

• Some notion of multiscale complexity affects whether~r(H) is
small or large.

▶ Can one formalize this?
▶ Which other digraph parameters are relevant?

• Can one combine greedy embedding with existing techniques
(e.g. median ordering)?
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Thank you!


