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Theorem (Rédei 1934)

Every tournament contains a Hamiltonian path.

Tournament = complete directed graph (every
pair of vertices connected by a directed edge)

Questions and results about Hamiltonian paths
in tournaments abound!

What structures must appear in every N-vertex tournament?
Definition

The Ramsey number r(H) of a digraph H is the minimum N such that
every N-vertex tournament contains a copy of H.

Rédei's theorem <= 7(P,) = n, where P, = directed n-vertex path.
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Directed and undirected Ramsey numbers

Definition

The Ramsey number r(H) of a
digraph H is the minimum N
such that every edge
orientation of Ky contains a
copy of H.

.. =
For a transitive tournament T,
%
202 < F(T,) < 2"
The upper bound implies that

r(H) exists for all acyclic H.
If H has en? edges, then

F(H) > 2°".

So the Ramsey number is exponential if H is dense.

For the rest of the talk, we'll focus on sparse (di)graphs.
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Ramsey numbers of sparse undirected graphs

If His a tree or cycle, then r(H) = O(n).
Burr-Erdds (1975): Does r(H) = O(n) for all sparse H?

Theorem (Chvéatal-Réd|-Szemerédi-Trotter 1983)
If H has n vertices and maximum degree A, then r(H) = Ox(n).
A more refined notion of sparsity is degeneracy, defined by

max(minimum degree of H').
H/CH

If His d-degenerate, then r(H) > 29/2. So graphs of unbounded
degeneracy have “large” Ramsey numbers.

Conjecture (Burr-Erdés 1975), Theorem (Lee 2017)
If H is d-degenerate, then r(H) = Oy4(n).

Upshots: H has linear Ramsey number “if and only if” H is sparse.
Qualitatively, n and d control r(H).
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Conjecture (Sumner 1971)

If H is any orientation of an n-vertex tree, then r(H) < 2n — 2.

Haggkvist-Thomason (1991): rF(H) < 12n.
Kihn-Mycroft-Osthus (2011): 7(H) < 2n — 2 forn > ny.

Theorem (Thomason 1986)

If H is any acyclic orientation of C,,, then r(H) = n for n > nj.

Bucic¢-Letzter-Sudakov: Is F(H) linear for all bounded-degree H?

Theorem (Yuster 2020, Girao 2020, DDFGHKLMSS 2020)

If H has bandwidth k, (i.e. there is an edge vi — vjonly if 1 < j—i < k)
then r(H) = Ok(n).

T e e e
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Main results

Buci¢-Letzter-Sudakov: Is F(H) linear for all bounded-degree H?
No!

Theorem (Fox-He-W. 2021)

For all C > 0 and n > ny, there is a bounded-degree (A < C3/2+0(1))
n-vertex acyclic digraph H with

F(H) > nC.

Theorem (Fox-He-W. 2021)

Let H be an n-vertex acyclic digraph with maximum degree A.
e 7(H) < nOallogn),
* If H has height h, then F(H) < n - h®(°sh) = O, (n).
® IfHis chosen randomly, then 7(H) < n - (logn)®*(") w.h.p.

Height (aka depth) = length of longest directed path
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What additional parameters are relevant in the directed setting?

If His an acyclic digraph, we can order its vertices as vy, ..., v, such
that all edges go to the right (v; — v; implies i <).

Given such an ordering, the length of an edge v; — vjisj —i.
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Multiscale complexity affects r(H)

Multiscale complexity: Many edges in many dyadic length scales.

"“Theorem”

Let H be a bounded-degree acyclic digraph. Then r(H) is large "if
and only if” H has high multiscale complexity.

If H has bandwidth k, then every edge in H has length < k.
If H has height h, then “most” edges have length in [n/h, n].
In a random digraph, a o(1) fraction of edges have length o(n).

 Our construction of a bounded-degree H with F(H) > n® has
many edges at every dyadic scale (“interval mesh”).
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Conclusion and open questions

Let H have n vertices and maximum degree A.

® There is a gap between the n® lower bound and n©»(legn)
upper bound on r(H).
We conjecture that the upper bound is closer to the truth.

e |f His random, we conjecture r(H) = O, (n) w.h.p., but can only
prove F(H) < n(logn)©s(M,
This boils down to improving one technical lemma.

e Some notion of multiscale complexity affects whether F(H) is
small or large.
» Can one formalize this?
» Which other digraph parameters are relevant?
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Theorem
There exists an n-vertex acyclic digraph H with maximum degree
< 1000 and F(H) > n'°92(3)—¢,

We need (1) a construction of H, (2) a tournament T on n'°92(3)—¢
vertices, and (3) a proof that there is no embedding H < T.

For (2): We let T be an iterated
blowup of a cyclic triangle.

For (3): Construct H so that in any embedding H < T, some
subinterval of [n] of length > 0.49n is mapped into a single part.
Ensure that the induced subgraph on this subinterval has the same

property, so we can iterate. At each step, |T| drops by a factor of 3,
but |H| drops by a factor of 2.01.
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Lower bound proof sketch: interval meshes

Want: In any embedding H < T, some subinterval of [n] of length
> 0.49n is mapped into a single part, and this is hereditary.

Definition

H is an interval mesh if

® H has a Hamiltonian path 1 -2 — --- — n.

® Forall1<a<b<c<d<nwithc—b <100min(b —a,d—c),
there is an edge between [a, b] and [c, d].

Ji J2 Ja Js

Thus, |Ji] > 100 min(|Ji=1], | Ji+1]). So |Ji| = 0.49n for some i.
Greedy algorithm yields an interval mesh with max degree < 1000.
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Upper bound proof sketch: greedy embedding
H :

Lemma
If T is H-free, then T contains two large vertex sets with most edges
between them oriented the same way.
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The multiscale complexity of H controls the number of iterations.



Conclusion and open questions

Let H have n vertices and maximum degree A.

® There is a gap between the n® lower bound and n©»(legn)
upper bound on r(H).
We conjecture that the upper bound is closer to the truth.

e |f His random, we conjecture r(H) = O, (n) w.h.p., but can only
prove F(H) < n(logn)©s(M,
This boils down to improving one technical lemma.

e Some notion of multiscale complexity affects whether 7(H) is
small or large.
» Can one formalize this?
» Which other digraph parameters are relevant?



Thank you!



