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Abstract

A partition of a (hyper)graph is ε-homogenous if the edge densities between almost all clusters
are either at most ε or at least 1 ´ ε. Suppose a 3-graph has the property that the link of every
vertex has an ε-homogenous partition of size polyp1{εq. Does this guarantee that the 3-graph
also has a small homogenous partition? Terry and Wolf proved that such a 3-graph has an ε-
homogenous partition of size given by a wowzer-type function. Terry recently improved this to
a double exponential bound, and conjectured that this bound is tight. Our first result in this
paper disproves this conjecture by giving an improved (single) exponential bound, which is best
possible. We further obtain an analogous result for k-graphs of all uniformities k ě 3.

The above problem is part of a much broader programme which seeks to understand the
conditions under which a (hyper)graph has small ε-regular partitions. While this problem is
fairly well understood for graphs, the situation is (as always) much more involved already for
3-graphs. For example, it is natural to ask if one can strengthen our first result by only requiring
each link to have ε-regular partitions of size polyp1{εq. Our second result shows that surprisingly
the answer is ‘no’, namely, a 3-graph might only have regular partitions of tower-type size, even
though the link of every vertex has an ε-regular partition of polynomial size.

1 Introduction

Many important questions in extremal combinatorics are of a “local-to-global” nature: given local
information about a certain discrete object, can we deduce something about its global structure? For
example, extremal statements such as Turán’s theorem [39] or the Brown–Erdős–Sós conjecture [6]
assert that if a (hyper)graph has no local portion that is too dense, then one can deduce a stronger
bound on its global density.

When dealing with hypergraphs, a natural type of local condition that one can impose concerns
the links of vertices. Here, given a k-uniform hypergraph H and a vertex v P V pHq, the link Lpvq of
v is the pk ´ 1q-uniform hypergraph on vertex set V pHqztvu and edge set tS : S Y tvu P EpHqu. The
collection of all links tLpvq : v P V pHqu provide a local view of the hypergraph H, and it is natural
to ask which global properties can be deduced from this set of local views.

There are a number of well-known results and problems along these lines. For example, a famous
result of Garland [19], which is critical to the study of high-dimensional expanders (see e.g. the
survey [27]), roughly states that if all links are good spectral expanders, then the entire hypergraph
is a good expander; see [27, Theorem 2.5] for the precise statement. In Turán theory, a statement of
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this type is given by a famous conjecture attributed to Erdős and Sós (see [18, Conjecture 1]), which
states that if all links of a 3-uniform hypergraph are bipartite, then the hypergraph has edge density
at most 1

4 . In Ramsey theory, a recent result of Fox and He [12] essentially completely resolves
the question of what global information on the independence number of a 3-uniform hypergraph
(henceforth 3-graph) can be deduced from the local information of forbidden configurations within
its links.

In this paper, we study analogous questions that arise in the theory of graph and hypergraph
regularity. A bipartite graph with parts A,B is said to be ε-regular if for all X Ď A, Y Ď B with
|X| ě ε|A|, |Y | ě ε|B| it holds that |dpX,Y q ´ dpA,Bq| ď ε, where dpX,Y q :“ epX,Y q{p|X||Y |q
denotes the edge density. The famous regularity lemma of Szemerédi [32] asserts that every graph
has a vertex partition into parts V1, . . . , Vk such that all but an ε-fraction of pairs of parts pVi, Vjq

define an ε-regular bipartite graph, and such that k ď Kpεq for some constant Kpεq depending only
on ε; such a partition is called an ε-regular partition of size k. While Szemerédi’s regularity lemma
is of extraordinary importance in graph theory, theoretical computer science, number theory, and
other areas of mathematics, its applicability is often limited by the terrible quantitative bounds it
produces. Indeed, Szemerédi’s proof showed that Kpεq is at most a tower-type function1 of 1{ε, and
a famous construction of Gowers [20] demonstrates that such tower-type bounds are necessary in
the worst case. As such, there is a great deal of interest in proving more reasonable quantitative
bounds on Kpεq if one assumes that G has certain extra structure. Such assumptions can be global
in nature (such as assuming that G is defined by semi-algebraic relations of bounded complexity [14])
or local in nature (such as assuming that G forbids a fixed induced bipartite pattern [2, 15, 26]). In
both of these cases, one can obtain an ε-regular partition with only polyp1{εq parts, a substantial
improvement over the tower-type bound that is necessary without such assumptions. In this paper
we focus on questions of this type in the setting of (hyper)graphs, but it is worth noting that similar
questions have recently been studied in other areas such as arithmetic regularity in groups [9, 36, 37].

In hypergraphs, the most natural extension of the notion of ε-regularity is now termed weak ε-
regularity. We say that a tripartite 3-graph with parts A,B,C is weakly ε-regular if for all X Ď

A, Y Ď B,Z Ď C with |X| ě ε|A|, |Y | ě ε|B|, |Z| ě ε|C|, we have

|dpX,Y, Zq ´ dpA,B,Cq| ď ε,

where dpX,Y, Zq :“ epX,Y, Zq{p|X||Y ||Z|q denotes the edge density.

Extending Szemerédi’s work, Chung [8] proved a regularity lemma for 3-graphs, which states that
every 3-graph has a vertex partition into at most Kpεq parts, such that all but an ε-fraction of the
triples of parts define a weakly ε-regular tripartite 3-graph. Her proof again yields tower-type bounds
on Kpεq, and it is easy to embed Gowers’s example into a 3-graph to deduce that such tower-type
bounds are necessary in the worst case. We remark that Chung’s notion is now called weak regularity
because it is too weak to be of use in most applications of the regularity method, such as the proof
of the removal lemma; for such applications, more refined notions of hypergraph regularity had to
be developed, and we refer to [21, 22, 31] for more information.

Following the pattern of local-to-global questions discussed above, it is natural to ask whether
weak regularity of a 3-graph can be deduced from regularity of its links, and it is not hard to see
that the answer is yes. Indeed, let H be a tripartite 3-graph with parts A,B,C, and suppose that
every vertex c P C has a link2 Lpcq which is an ε-regular bipartite graph between A and B. Note

1We recall that the tower function is defined by twrp0q “ 1 and twrpx ` 1q “ 2twrpxq for x ě 0.
2Strictly speaking, the link of a vertex c P C consists of a bipartite graph between A and B, plus isolated vertices

corresponding to every vertex in Cztcu. But when working in the partite setting, it is more natural to delete these
isolated vertices.
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that for all X Ď A, Y Ď B,Z Ď C, we have

eHpX,Y, Zq “
ÿ

cPZ

eLpcqpX,Y q,

simply by the definition of the link. As a consequence, the edge densities satisfy

dHpX,Y, Zq “
1

|Z|
ÿ

cPZ

dLpcqpX,Y q.

Now suppose that |X| ě ε|A|, |Y | ě ε|B|, |Z| ě ε|C|. Then the assumption that Lpcq is ε-regular
implies that |dLpcqpX,Y q´dLpcqpA,Bq| ď ε. Note too that 1

|Z|
ř

cPZ dLpcqpA,Bq “ dHpA,B,Zq, hence

we conclude that
|dHpX,Y, Zq ´ dHpA,B,Zq| ď ε.

If we now assume that every vertex a P A has an ε-regular link as well, we may run the same
argument and deduce that |dHpA,B,Zq ´ dHpA,B,Cq| ď ε.

In other words, we have just proved that if all vertices3 of H have an ε-regular link, then H itself
is weakly 2ε-regular. Of course, the utility of the regularity lemma is that it allows us to decompose
any graph into ε-regular pieces, so the natural next question is as follows: if every vertex-link in H
has a small regular partition, does this guarantee that H itself has a small weakly ε-regular partition?

Our first result answers this question very strongly in the negative, even if we require that the
links have small regular partitions with a regularity parameter much smaller than ε.

Theorem 1.1. Let 0 ă δ ď ε such that ε is sufficiently small. Then for every n ě n0pδq, there is
an n-vertex tripartite 3-graph H with the following properties.

• For all v P V pHq, the link LHpvq has a δ-regular partition with Opδ´8q parts.

• Every weakly ε-regular equipartition of H has at least twr
`

Ωplog 1
ε q

˘

parts.

In particular, as every 3-graph has a weakly ε-regular equipartition of tower-type size, Theorem 1.1
states that having small regular partitions of all links is essentially useless: it provides no extra
benefit, in terms of the size of a weakly regular partition, than assuming no such information.
We remark that by adapting ideas from [29] one can improve the lower bound to be of the form
twrppolyp1ε qq; however, as we believe that the important issue is whether there is a sub-tower bound,
we decided to stick with a simpler proof that gives only a logarithmic lower bound on the tower height.

However, our other main result is positive, and says that information about regular partitions of
the links is useful, if we strengthen the notion of regularity. Namely, let us say that a bipartite graph
with parts A,B is ε-homogeneous if dpA,Bq P r0, εs Y r1 ´ ε, 1s. It is easy to verify that homogeneity
is a strictly stronger notion than regularity (up to a polynomial change in ε). Homogeneity for
k-partite k-graphs is defined analogously; namely, a k-tuple of parts A1, . . . , Ak is ε-homogeneous if
dpA1, . . . , Akq P r0, εs Y r1 ´ ε, 1s. For convenience, we focus on the k-partite setting, but we remark
that this restriction is not essential and can be easily removed (see Remark 1.5 for details). Thus, for
a k-partite k-graph H with parts A1, . . . , Ak, we only consider vertex partitions which respect the
partition into A1, . . . , Ak. Such a partition, consisting of a partition Pi of Ai for every i P rks, is said

3In fact, we did not even need to use this assumption for vertices of B. On the other hand, only assuming that
vertices in one part (say C) have regular links does not suffice; indeed, define a 3-graph by having half of the vertices
of C be isolated and the other half form an edge with every pair in A ˆ B. This 3-graph is not ε-regular but every
vertex in C has an ε-regular link.
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to be ε-homogeneous if the total sum of |X1| ¨ ¨ ¨ |Xk| over all k-tuples pX1, . . . , Xkq P P1 ˆ ¨ ¨ ¨ ˆ Pk

which are not ε-homogeneous is at most ε|A1| ¨ ¨ ¨ |Ak|.

Note that it is no longer the case that all graphs or k-graphs have an ε-homogeneous parti-
tion of bounded size; for example, a random k-partite k-graph of edge density 1

2 does not have
a 1

4 -homogeneous partition into any bounded number of parts. However, our second main result
demonstrates that if every link has a small homogeneous partition, then so does the hypergraph
itself. Before stating this result precisely, we recall some of the history and known results on the
question of which graphs and hypergraphs admit small homogeneous partitions.

In the case of graphs, the answer has been well-understood for some time, and it turns out that
the key notion is that of having bounded VC-dimension. We recall that the VC-dimension of a graph
G is the largest integer d such that there exist distinct vertices v1, . . . , vd P V pGq with the property
that for all S Ď rds, there exists a vertex wS which is adjacent to tvi : i P Su and non-adjacent to
tvj : j R Su. Generally, the precise VC-dimension of a graph is not very important, and we are only
interested in the property of having bounded VC-dimension, i.e. bounded by an absolute constant
independent of the order of the graph. The property of having bounded VC-dimension turns out
to be a deep and fundamental “low-complexity” notion for graphs, and a large number of works
(e.g. [5, 13, 15, 16, 23, 24, 28]) have established that certain difficult problems become much more
tractable when restricted to graphs of bounded VC-dimension.

In particular, VC-dimension is intimately connected with regular and homogeneous partitions. In-
deed, it is well-known [2, 15, 26] that every graph with bounded VC-dimension has an ε-homogeneous
(and hence polypεq-regular) partition of size p1{εqOp1q. Moreover, this is an if and only if charac-
terization in two distinct ways: first, a hereditary class of graphs admits homogeneous partitions of
(any) bounded size if and only if it has bounded VC-dimension, which in turn happens if and only if
it admits small ε-regular partitions (and otherwise tower-type bounds are required); see e.g. [3, 34]
for details.

It is natural to ask for extensions of these characterizations to hypergraphs; for example, which
classes of hypergraphs admit polynomially-sized regular partitions or polynomially-sized homoge-
neous partitions? Moreover, as hypergraph regularity is substantially subtler and more involved
than graph regularity, there are additional questions that arise, such as characterizing hypergraphs
which admit full regularity partitions of sub-wowzer type. For more information on these questions,
and for recent progress, see e.g. [34, 35, 38]. In what follows, we focus on the existence and size of
homogeneous partitions.

The first progress in this direction was due to Fox, Pach, and Suk [15], who introduced a strong
notion of bounded VC-dimension for hypergraphs, and proved that such hypergraphs admit ε-
homogeneous partitions of size polyp1{εq. More recently, Terry [34, Theorem 1.16] proved that this
is an if and only if characterization in uniformity 3: a class of 3-graphs has bounded VC-dimension,
in the notion of Fox–Pach–Suk, if and only if it admits polynomially-sized homogeneous partitions.
However, in contrast to the graph case, the class of hypergraphs admitting homogeneous partitions
of (some) bounded size is actually larger: it suffices for all links to have bounded VC-dimension. To
state this precisely, we introduce the following definition [38].

Definition 1.2. Let k ě 3 and let H be a k-graph. For distinct vertices v1, . . . , vk´2 P V pHq,
their link Lpv1, . . . , vk´2q is the graph on V pHqztv1, . . . , vk´2u with edge set txy : xyv1 . . . vk´2 P

EpHqu. The slicewise VC-dimension4 of H is then defined as the maximum VC-dimension of a link
Lpv1, . . . , vk´2q over all v1, . . . , vk´2 P V pHq.

That is, H has bounded slicewise VC-dimension if and only if all of its links have bounded

4In this context, “slice” is a synonym for “link”. In [7], this quantity is called the VC1-dimension of H.
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VC-dimension. Chernikov and Towsner [7] proved that if H has bounded slicewise VC-dimension,
then H admits an ε-homogeneous partition of bounded size (and in the case k “ 3, this result was
independently proved by Terry and Wolf [38]). Moreover, bounded slicewise VC-dimension turns
out to be an if and only if characterization for when a hypergraph admits homogeneous partitions
(see [38, Theorem 2.34] or [7, Theorem 7.1]) of any bounded size. The results of [7, 38], however,
give essentially no quantitative information on the number of parts in the resulting homogeneous
partition: Chernikov and Towsner use infinitary techniques that give no bound at all, and Terry and
Wolf use the hypergraph regularity lemma, and thus obtain wowzer-type bounds on the number of
parts in the homogeneous partition of H.

These bounds were substantially improved by Terry, who gave a double-exponential upper bound
[33, Theorem 1.4] in the case k “ 3. Moreover, Terry proved a single-exponential lower bound [34,
Theorem 6.8]; more precisely, she constructed a 3-graph with bounded slicewise VC-dimension which

has no ε-homogeneous partitions with fewer than 2p1{εqΩp1q

parts. Terry writes that the main problem
left open by her work is to close the gap between the single-exponential and double-exponential
bounds, and she conjectured [33, 34] that the double-exponential upper bound is best possible.

Our second main theorem disproves Terry’s conjecture, showing that the single-exponential bound
is the truth.

Theorem 1.3. Let H be a k-partite k-graph with bounded slicewise VC-dimension, and let ε ą 0.

Then H has an ε-homogeneous equipartition into 2p1{εqOp1q

parts.

In addition to providing optimal bounds for this problem, Theorem 1.3 also gives a short and
much simpler proof of the result of Chernikov–Towsner [7] that bounded slicewise VC-dimension
implies the existence of homogeneous partitions.

In fact, we deduce Theorem 1.3 from the following result, which follows the theme introduced in
Theorem 1.1; it states that if all links in H have homogeneous partitions of size r, then H itself has
a homogeneous partition of size exponential in r. This immediately implies Theorem 1.3 since, as
discussed above, all graphs of bounded VC-dimension have homogeneous partitions of polynomial
size. Moreover, it nicely complements Theorem 1.1: knowing that all links have small regular
partitions is essentially useless for finding a regular partition of H, but knowing that all links have
small homogeneous partitions does yield a small homogeneous partition of H.

Theorem 1.4. Let ε P p0, 12q, let H be a k-partite k-graph with all parts of size n, and suppose that for
all v1, . . . , vk´2 P V pHq in distinct parts, the bipartite5 graph Lpv1, . . . , vk´2q has an ε1-homogeneous
partition of size at most r, where ε1 “ ckε

6 for a small enough constant ck ą 0 depending only on k.

Then H has an ε-homogeneous equipartition into at most 2pr{εqOp1q

parts.

Remark 1.5. In both Theorems 1.3 and 1.4, the statement for k-partite k-graphs immediately
implies the corresponding result for general k-graphs.6 Indeed, given a k-graph H, we may pass to
its k-partite cover pH, whose vertex set is k disjoint copies of V pHq and whose edges are all transversal
k-tuples corresponding to edges of H. It is easy to see that if all links in H have small homogeneous
equipartitions, then the same holds for pH. We may then apply Theorem 1.4 to pH, and then take
the common refinement of the partitions of the k parts to obtain a partition of V pHq whose number

of parts is still 2pr{εqOp1q

. Finally, it is not hard to check that if the original equipartition of pH was
ε-homogeneous, then the resulting partition of H is

?
ε-homogeneous.

5In the k-partite setting, when v1, . . . , vk´2 come from distinct parts, we again delete the isolated vertices and view
Lpv1, . . . , vk´2q as a bipartite graph between the two parts not containing any of v1, . . . , vk´2.

6Here, the definition of an ε-homogeneous partition of a (general) k-graph includes k-tuples pX1, . . . , Xkq where
some of the Xi’s are equal; namely, the definition requires the sum of |X1| . . . |Xk| over all non-ε-homogeneous k-tuples
of parts pX1, . . . , Xkq (including those which repeat parts) to be at most ε|V pHq|

k.
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Remark 1.6. It is natural to ask for a version of Theorem 1.4 where we assume that all links of
ℓ-tuples of vertices have small homogeneous partitions, for some 1 ď ℓ ď k ´ 2. However, it is not
hard to check that this assumption is weakest for ℓ “ k ´ 2, in the following sense: If in a k-partite
k-graph, the link of every ℓ-tuple has an ε2-homogeneous partition of size r, then all but ε1nk´2 of the
pk´ 2q-links have an ε1-homogeneous partition of size r, provided that ε2 “ polypε1q is small enough.
Also, our proof of Theorem 1.4 tolerates a small number of pk´2q-tuples without an ε1-homogeneous
partition in their link. Hence, the analogue of Theorem 1.4 holds for ℓ-links, for any 1 ď ℓ ă k ´ 2.

1.1 Proof overview

We now briefly sketch the proofs of our main theorems, starting with the upper bound, Theorem 1.4.
For this high-level discussion, we restrict our attention to 3-graphs, which already capture the heart
of the problem.

Thus, let H be a 3-partite 3-graph with parts A,B,C, each of size n, and assume that the link of
every vertex has a small ε-homogeneous equipartition, say of size r “ polyp1{εq (the case of general
r is no more complicated). It is not hard to show that the refinement of any homogeneous partition
is again homogeneous (with only a polynomial loss in the parameters), so a natural approach is to
simply take the common refinement of the homogeneous partitions of Lpcq over certain carefully
chosen c P C. This is essentially the approach taken by Terry [33], who first classifies the vertices
in c according to the “structure” of the homogeneous partition of Lpcq. However, it seems very
difficult to follow such an approach without incurring double-exponential bounds: Terry loses one
exponential in this classification by structure, and another exponential from needing to take the
common refinement of all of these partitions. The key new idea in our approach is to begin with
an “intermediate” partition, which is not a vertex partition, but rather a partition of A ˆ B into a
collection of (completely unstructured) bipartite graphs. By working with such partitions for much
of the proof, we are able to maintain polynomial dependencies almost throughout, and only pay
a single exponential at the end to take a common refinement. As discussed above, Terry [34] also
proved a single-exponential lower bound for this problem, so this final step is in a sense unavoidable.

Namely, the first step is to partition AˆB into bipartite graphs E1 Y ¨ ¨ ¨ YEt with the following
property: if pa, bq and pa1, b1q lie in the same class Ei of this partition, then they have similar
neighborhoods, in the sense that the number of c P C such that pa, b, cq P EpHq but pa1, b1, cq R EpHq

(or vice versa) is at most εn. To define this partition, let us first fix some pa, bq P AˆB, and consider
the homogeneous partition of Lpaq. The vertex b lies in some part, say Bi, of this partition. The
key observation now is that for almost all b1 P Bi, the vertices b and b1 have similar neighborhoods
in the graph Lpaq, simply because they lie in the same part of a homogeneous partition: almost
all c P C have the same edge relation to both b and b1. By the definition of the link Lpaq, this
immediately implies that pa, bq and pa, b1q have similar neighborhoods in the sense above. As |Bi| “

n{r “ polypεq ¨ n, we conclude that there are polypεq ¨ n choices of b1 such that pa, bq and pa, b1q

have similar neighborhoods. By repeating the same argument, but now looking at the link Lpb1q and
considering the part containing a, we find that there are also polypεq ¨n choices of a1 such that pa1, b1q

and pa, b1q have similar neighborhoods. In total, we find polypεq ¨ n2 choices of pa1, b1q which have a
similar neighborhood to pa, bq. At this point, it is straightforward to use random sampling to find a
partition of (almost all of) A ˆ B into t “ polyp1{εq many bipartite graphs such that in each class
(apart from a small exceptional class E0), all pairs pa, bq, pa1, b1q have similar neighborhoods.

As all pairs in a given part Ei have nearly the same neighborhood in C, we can now partition
C into at most 2t parts according to this information (and this is the only step where we pay an
exponential). In this way, we obtain a homogeneous “vertex-edge” partition: we have partitioned C
and A ˆ B into parts, such that for almost all choices of a part in C and a part in A ˆ B, either
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almost all triples or almost none of the triples defined by these parts are edges of H. To convert this
vertex-edge partition into a vertex partition of A Y B Y C, we simply repeat the argument above
twice more, obtaining in turn partitions of pA,B ˆ Cq and of pB,A ˆ Cq. Finally, it is not hard to
show that the vertex partition of AYBYC arising in this way is homogeneous, proving Theorem 1.4.

We now turn to discussing the proof of the lower bound, Theorem 1.1. The key idea here is a simple
observation about the structure of Gowers’s [20] ingenious tower-type lower bound for Szemerédi’s
regularity lemma. Namely, Gowers’s example can be viewed as an overlay of t “ Θplog 1

ε q many
bipartite graphs G1, . . . , Gt, each of which is itself ε-regular (or, more precisely, has an ε-regular
partition into a small number of parts). Nonetheless, these graphs interact in complicated ways,
which causes their union to have no small ε-regular partition.

In our proof of Theorem 1.1, we leverage this observation as follows. We place the exact same
graphs G1, . . . , Gt on vertex set A Y B. We also partition C into t parts C1, . . . , Ct, and define a
3-graph by declaring that the link of each c P Ci is precisely the graph Gi, for all 1 ď i ď t. By
construction, all links of vertices in C have small ε-regular partitions. Moreover, this construction
immediately implies that the link of every a P A is the union of t complete bipartite graphs, namely
between NGipaq and Ci, for all i; this structure readily yields a small ε-regular partition of Lpaq, and
the symmetric argument handles links of vertices in B. Finally, by modifying Gowers’s analysis of
his construction, we show that the hypergraph H does not have any weakly ε-regular partitions into
fewer than twrpΩplog 1

ε qq parts, proving Theorem 1.1.

Paper organization: We prove the upper bound Theorem 1.4 in Section 2, and the lower bound
Theorem 1.1 in Section 3. We end in Section 4 with some concluding remarks and three tantalizing
open problems, related to analogues of the Erdős–Hajnal conjecture, Rödl’s theorem, and the induced
counting lemma. We omit floor and ceiling signs whenever these are not crucial.

2 Proof of Theorem 1.4

In this section we prove Theorem 1.4. Throughout this section, we assume for convenience that the
number of vertices n is divisible by quantities determined by the other parameters. All proofs work
without this assumption with very minor changes.

We need the following simple lemma, showing that an ε-homogeneous partition of a bipartite
graph translates to a partition of almost all vertices on one of the sides so that any two vertices
in the same part have almost the same neighborhood. We also require all parts, except for a small
exceptional set, to have the same size. Finally, for technical reasons it is important that we can
specify the number of parts; namely, this number should be the same for all applications with the
same parameters, rather than only being upper bounded by a function of these parameters.

Lemma 2.1. Let γ ą 0 and r P N, and set q :“ rp1 ´ γq3rγ s. Let G be a bipartite graph with parts

X,Y of size n each, and suppose that G has an γ1-homogeneous partition X “ X1 Y ¨ ¨ ¨ Y Xs and

Y “ Y1Y¨ ¨ ¨YYt, where s ď r and γ1 :“ γ3

48 . Then there is a partition X “ X 1
0YX 1

1Y . . . X 1
q such that

1. |X 1
1| “ ¨ ¨ ¨ “ |X 1

q| and |X 1
0| ď γn;

2. for every i P rqs and x, x1 P X 1
i, it holds that |NY pxq△NY px1q| ď γn.

Proof. We say that i P rss is good if the sum of |Yj | over j P rts for which pXi, Yjq is not γ1-

homogeneous is at most γ2

16n. Otherwise Xi is bad. As the given partition is γ1-homogeneous, we get
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from Markov’s inequality that
ř

Xi bad |Xi| ď
γ1n2

γ2n{16
“

γ
3n. Place all bad sets Xi into the exceptional

set X 1
0 (which we construct throughout the proof).

Observe that if pXi, Yjq is γ1-homogeneous, then the number of triples x, x1, y such that x, x1 P Xi

and y P NY pxq△NY px1q is at most γ1|Xi|
2|Yj |. Indeed, if e.g. dpXi, Yjq ě 1 ´ γ1 (the other case is

symmetric), then the number of triples x, x1, y containing a non-edge is at most γ1|Xi|
2|Yj |.

Consider a good set Xi. Let T be the set of triples x, x1, y such that x, x1 P Xi, y P Y and

y P NY pxq△NY px1q. By the above and the choice of γ1, we have |T | ď p
γ2

16 ` γ1q|Xi|
2n ď

γ2

12 |Xi|
2n.

Hence, there is xi P Xi participating in at most γ2

6 |Xi|n triples in T . This means that the number
of x P Xi with |NY pxq△NY pxiq| ě

γ
2n is at most γ

3 |Xi|. Move all of such elements x to X 1
0, and for

every i, let X2
i denote the remaining elements of Xi. We now have that |X 1

0| ď
2γ
3 n. Also, this gives

a partition X2
1 , . . . , X

2
s of XzX 1

0 such that for every x P X2
i it holds that |NY pxq△NY pxiq| ď

γ
2n. By

the triangle inequality, |NY pxq△NY px1q| ď γn for all x, x1 P X2
i .

Now set m :“ γn
3r and split each X2

i into sets of size m and possibly one leftover set of size less

than m. Move all leftover sets to X 1
0. Now |X 1

0| ď
2γ
3 n ` ms ď γn, using s ď r. This means that

the number of parts of size m disjoint from X 1
0 is at least p1´γqn

m “ p1 ´ γq3rγ , and hence at least q.

Move additional parts to X 1
0 until the number of parts disjoint from X 1

0 is exactly q. This gives the
desired partition X 1

0, X
1
1, . . . , X

1
q. Note that |X 1

0| “ n´ qm ď n´ p1 ´γq3rγ ¨m “ γn, as required. ■

The next lemma is the key step of the proof, yielding a partition of A1 ˆ ¨ ¨ ¨ ˆ Ak´1 into pk ´ 1q-
partite pk ´ 1q-graphs, with the property that all pk ´ 1q-tuples in the same class have similar
neighborhoods in Ak. This is, in a sense, a generalization of Lemma 2.1 to k-graphs, but, as discussed
in Section 1.1, the main new insight is to partition pk ´ 1q-tuples of vertices, rather than vertices, in
this step of the argument.

Lemma 2.2. Let H be a k-partite k-graph with parts A1, . . . , Ak of size n each, and suppose that for
every pk ´ 2q-tuple of vertices v1, . . . , vk´2 in distinct parts, Lpv1, . . . , vk´2q has an ε1-homogeneous
partition of size at most r, where ε1 “ 1

48p ε
6k q3. Then there is a partition A1 ˆ ¨ ¨ ¨ ˆ Ak´1 “

E0 Y E1 Y ¨ ¨ ¨ Y Et with t ď pr{εqOp1q such that |E0| ď εnk´1 and such that for every 1 ď i ď t and
every e, e1 P Ei, it holds that |NAk

peq△NAk
pe1q| ď εn.

Proof. For each i P rk ´ 1s and pk ´ 2q-tuple v P
ś

jPrk´1sztiu Aj , apply Lemma 2.1 to the link

of v (which is a bipartite graph between Ai and Ak) with parameter γ :“ ε
6k to obtain a partition

Ai “ X
pvq

0 YX
pvq

1 Y¨ ¨ ¨YX
pvq
q such that q “ rp1´ ε

6k q18krε s ď 18kr
ε , |X

pvq

0 | ď γn, |X
pvq

1 | “ ¨ ¨ ¨ “ |X
pvq
q | ě

p1´γqn
q , and for every 1 ď ℓ ď q and x, x1 P X

pvq

ℓ it holds that |NAk
pv Y txuq△NAk

pv Y tx1uq| ď γn.
Note that due to the statement of Lemma 2.1, the number of parts q does not depend on v. For
i P rk ´ 1s, a tuple e P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 is called i-bad if, writing e “ v Y txu for v P

ś

jPrk´1sztiu Aj

and x P Ai, we have x P X
pvq

0 . Otherwise e is i-good. Note that there are at most γnk´1 i-bad tuples.

Next, given two i-good pk ´ 1q-tuples e, e1 P A1 ˆ ¨ ¨ ¨ ˆ Ak´1, we call them i-twins if they arise

from the same v P
ś

jPrk´1sztiu Aj and the same set X
pvq

ℓ . More precisely, e, e1 are i-twins if, when

writing e “ v Y txu, e1 “ v1 Y tx1u, we have that v “ v1 and x, x1 both lie in the same part X
pvq

ℓ ,
for some 1 ď ℓ ď q. Note that if e, e1 are i-twins then |NAk

peq△NAk
pe1q| ď γn. Moreover, for each

i-good tuple e, there are at least p1´γqn
q and at most n

q tuples e1 such that e, e1 are i-twins.

Additionally, let us say that two tuples e, e1 P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 are chain twins if there exists
a sequence e1, e2, . . . , ek “ e such that ei, ei`1 are i-twins for each 1 ď i ď k ´ 1. Note that the
choice of e2, . . . , ek´1 is determined by e and e1, as ei is obtained from e1 by changing all coordinates

8



1, . . . , i ´ 1 to be as in e. Next, let us say that a tuple e P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 is excellent if there are
at least p

γn
q qk´1 choices of e1 P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 such that e and e1 are chain twins. Our next claim

shows that almost all tuples are excellent.

Claim 2.3. There are at least p1 ´ ε
2qnk´1 excellent tuples e P A1 ˆ ¨ ¨ ¨ ˆ Ak´1.

Proof. For the proof, we need to extend our definition of excellent tuples. For 0 ď i ď k ´ 1, we
say that e P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 is i-excellent if there are at least p

γn
q qi choices of e1 P A1 ˆ ¨ ¨ ¨ ˆ Ak´1

for which there is a sequence e1, . . . , ei, ei`1 “ e where ej , ej`1 are j-twins for every 1 ď j ď i. Note
that, as above, such a sequence is uniquely determined by e1 and the value of i. Moreover, in this
terminology, an excellent tuple is the same as a pk ´ 1q-excellent tuple.

In order to prove the claim, we will show by induction on i that there are at least p1 ´ 3iγqnk´1

i-excellent tuples, for all 0 ď i ď k ´ 1. Note that the i “ k ´ 1 case suffices to prove the claim, as
1 ´ 3γpk ´ 1q ě 1 ´ ε

2 . Moreover, the base case i “ 0 of the induction is trivial, so we now turn to
the inductive step.

As such, let 1 ď i ď k ´ 1, and let F be the set of the pi ´ 1q-excellent tuples. By the induction
hypothesis, |F | ě p1 ´ 3pi ´ 1qγqnk´1. Let F 1 be the set of all e P F which are i-good. As there
are in total at most γnk´1 i-bad tuples, we have that |F 1| ě |F | ´ γnk´1 ě p1 ´ p3i ´ 2qγqnk´1.

Every e1 P F 1 is i-good, hence has at least p1´γqn
q i-twins. Thus, the number of pairs pe, e1q where

e1 P F 1 and e, e1 are i-twins is at least |F 1| ¨
p1´γqn

q ě p1 ´ p3i ´ 1qγq ¨ nk

q . Let G be the set of all

e P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 such that e has at least γ n
q i-twins e1 P F 1. Using that each e P A1 ˆ ¨ ¨ ¨ ˆ Ak´1

has at most n
q i-twins, we get

|G| ě
p1 ´ p3i ´ 1qγq ¨ nk

q ´
γnk

q
n
q

“ p1 ´ 3iγqnk´1.

To complete the proof of the claim, we show that every e P G is i-excellent. Indeed, fix any e P G. Fix
any e1 P F 1 such that e, e1 are i-twins; there are at least γn

q choices for e1. As e1 is pi ´ 1q-excellent,

there are at least p
γn
q qi´1 choices for e1, . . . , ei´1, ei “ e1 P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 such that ej , ej`1 are

j-twins for every 1 ď j ď i´ 1. Setting ei`1 :“ e, we get that ej , ej`1 are j-twins for every 1 ď j ď i.
The total number of choices for e1 is at least p

γn
q qi, hence e is indeed i-excellent. This completes the

induction, and hence proves the claim by taking i “ k ´ 1. ■

Now let e be an excellent tuple, let e1 be a chain twin of e, and let e2, . . . , ek´1 be such that,
setting ek :“ e, we have that ei, ei`1 are i-twins for every 1 ď i ď k ´ 1. By the triangle inequality,

|NAk
peq△NAk

pe1q| ď

k´1
ÿ

i“1

|NAk
pei`1q△NAk

peiq| ď pk ´ 1qγn ď
ε

2
n.

As e is excellent, there are at least p
γn
q qk´1 choices for e1 in the computation above. Therefore, there

are at least p
γn
q qk´1 tuples e1 P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 such that |NAk

peq△NAk
pe1q| ď ε

2n.

Now sample tuples f1, . . . , ft P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 uniformly at random and independently, where

t :“

ˆ

q

γ

˙k´1

log

ˆ

2

ε

˙

“

´r

ε

¯Op1q

.

For i P rts, let Ei be the set of e P A1 ˆ ¨ ¨ ¨ ˆ Ak´1 such that |NAk
peq△NAk

pfiq| ď ε
2n (if this holds

for multiple i, we break ties arbitrarily). Then by the triangle inequality, |NAk
peq△NAk

pe1q| ď εn
for every e, e1 P Ei.
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Moreover, for any fixed e P A1 ˆ ¨ ¨ ¨ ˆ Ak´1, we have that e P E1 Y ¨ ¨ ¨ Y Et if some fi is a chain
twin of e. In particular, if e is excellent, then

Pre R E1 Y ¨ ¨ ¨ Y Ets ď

˜

1 ´

ˆ

γ

q

˙k´1
¸t

ď e
´p

γ
q

qk´1t
ď

ε

2
.

Moreover, by Claim 2.3, the number of excellent tuples is at least p1 ´ ε
2qnk´1. As a consequence,

by linearity of expectation, we have that

Er|E1 Y ¨ ¨ ¨ YEt|s ě
ÿ

e excellent

Pre P E1 Y ¨ ¨ ¨ YEts ě
ÿ

e excellent

´

1 ´
ε

2

¯

ě

´

1 ´
ε

2

¯2
nk´1 ě p1 ´εqnk´1.

Hence, there is an outcome with |E1 Y ¨ ¨ ¨ Y Et| ě p1 ´ εqnk´1, and setting E0 :“ pA1 ˆ ¨ ¨ ¨ ˆ

Ak´1qzpE1 Y ¨ ¨ ¨ Y Etq completes the proof of Lemma 2.2. ■

The following lemma is a sort of converse to Lemma 2.1, stating that if a partition is not homo-
geneous, then there are many “witnesses” which witness this by having a large symmetric difference
of their neighborhoods. It is an easy consequence of [15, Lemma 2.3], but we include a proof for
completeness.

Lemma 2.4. Let H be a k-partite k-graph with parts X1, . . . , Xk of size n each. For i P rks, let Pi be
an equipartition of Xi into s parts, and suppose that pP1, . . . ,Pkq is not ε-homogeneous. Then there

are at least ε2p1 ´ εqn
k`1

s pairs e, e1 P X1 ˆ ¨ ¨ ¨ ˆ Xk such that |e X e1| “ k ´ 1, e P EpHq, e1 R EpHq,
and e△e1 is contained in some part of Pi for some i P rks.

Proof. Fix a k-tuple pY1, . . . , Ykq P P1ˆ¨ ¨ ¨ˆPk with ε ď dpY1, . . . , Ykq ď 1´ε. We claim that there
are at least εp1 ´ εqpns qk`1 pairs e, e1 P Y1 ˆ ¨ ¨ ¨ ˆ Yk with |e X e1| “ k ´ 1 and e P EpHq, e1 R EpHq.
This suffices because the number of non-ε-homogeneous k-tuples pY1, . . . , Ykq is at least εsk.

To prove the above claim, sample vertices ui, vi P Yi uniformly at random and independently,
for each i P rks. For 0 ď i ď k, let ei :“ pv1, . . . , vi, ui`1, . . . , ukq. So e0 “ pu1, . . . , ukq and
ek “ pv1, . . . , vkq. Let us say that two k-tuples e, e1 disagree if one of them is in EpHq while the
other is not. As the random tuples e0, ek are independent of one another, the probability that e0, ek
disagree is at least 2εp1´εq, because ε ď dpY1, . . . , Ykq ď 1´ε. If this happens, then there is 1 ď i ď k
such ei´1, ei disagree. Note that ei´1, ei differ only in the ith coordinate. Let ti be the number of
pairs e, e1 P Y1 ˆ ¨ ¨ ¨ ˆ Yk such that e, e1 differ only in the ith coordinate and e P EpHq, e1 R EpHq.
The probability that there exists 1 ď i ď k such that ei´1, ei disagree is at most

k
ÿ

i“1

2ti
|Y1| ¨ ¨ ¨ |Yk| ¨ |Yi|

“

k
ÿ

i“1

2ti
pn{sqk`1

.

On the other hand, as explained above, this probability is at least 2εp1´εq. It follows that
řk

i“1 ti ě

εp1 ´ εqpns qk`1, proving our claim. ■

We now have all the tools needed to prove Theorem 1.4.

Proof of Theorem 1.4. We apply Lemma 2.2 k times with parameter ε2

8k , each time with a different
set Xi (1 ď i ď k) playing the role of Ak (with the other k ´ 1 sets Xj playing the roles of

A1, . . . , Ak´1). This gives, for every i P rks, a partition
ś

jPrksztiu Xj “ E
piq
0 YE

piq
1 Y¨ ¨ ¨YE

piq
t such that
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|E
piq
0 | ď ε2

8kn
k´1, and such that for every 1 ď j ď t and e, e1 P E

piq
j it holds that |NXipeq△NXipe

1q| ď

ε2

8kn. Also, t ď pr{εqOp1q.

For i P rks, we define a partition Pi of Xi as follows. For each j P rts, fix e
piq
j P E

piq
j and

put X
piq
j :“ NXipe

piq
j q. Let P 1

i be the common refinement of the sets X
piq
1 , . . . , X

piq
t . Note that

|P 1
i| ď 2t “: p. Next, we refine P 1

i further to make the parts have the same size. To this end,

partition each part of P 1
i into parts of size m :“ ε2n

8kp and (possibly) an additional leftover part of size

less than m. Let X
piq
0 be the union of the leftover parts; so |X

piq
0 | ď ε2

8kn. Partition7 X
piq
0 into parts of

size m. The resulting partition is Pi. Note that Pi is an equipartition of size s :“ n
m “

8kp
ε2

ď 2pr{εqOp1q

.

We claim that pP1, . . . ,Pkq is an ε-homogeneous partition of H. For the sake of contradiction,
suppose otherwise. For i P rks, let Ti be the number of pairs of k-tuples e, e1 P X1 ˆ ¨ ¨ ¨ ˆ Xk such
that there is pX 1

1, . . . , X
1
kq P P1 ˆ ¨ ¨ ¨ ˆ Pk with e, e1 P X 1

1 ˆ ¨ ¨ ¨ ˆ X 1
k, |e X e1| “ k ´ 1, e△e1 Ď X 1

i,
e P EpHq and e1 R EpHq. As we assumed that pP1, . . . ,Pkq is not ε-homogeneous, Lemma 2.4

gives T1 ` ¨ ¨ ¨ ` Tk ě ε2p1 ´ εqn
k`1

s . To get a contradiction, we now upper-bound each Ti. By
symmetry, it suffices to consider Tk. Thus, we consider pairs e, e1 with e, e1 P X 1

1 ˆ ¨ ¨ ¨ ˆX 1
k for some

pX 1
1, . . . , X

1
kq P P1 ˆ¨ ¨ ¨ˆPk, |eXe1| “ k´1, e△e1 Ď X 1

k, e P EpHq and e1 R EpHq. For i P rk´1s, let

xi be the vertex of e, e1 in Xi. The number of choices for e, e1 where px1, . . . , xk´1q P E
pkq

0 is at most

|E
pkq

0 | ¨ s ¨ pns q2 ď ε2

8k ¨ nk`1

s . Let now j P rts, and let us consider the case that px1, . . . , xk´1q P E
pkq

j .

Recall that |NXk
px1, . . . , xk´1q△X

pkq

j | ď ε2

8kn, where X
pkq

j “ NXk
pe

pkq

j q as above. This holds because

px1, . . . , xk´1q and e
pkq

j both belong to E
pkq

j , and as |NXk
pfq△NXk

pf 1q| ď ε2

8kn for any two f, f 1 P E
pkq

j .

Also, by the definition of Pk, each part of Pk is contained either in X
pkq

0 , or in X
pkq

j , or in XkzX
pkq

j

(because P 1
k is the common refinement of X

pkq

1 , . . . , X
pkq

t ). We handle these cases separately. First,

as |X
pkq

0 | ď ε2

8kn, the number of choices for e, e1 where e△e1 Ď X
pkq

0 is at most nk´1 ¨ ε
2

8kn ¨ ns “ ε2

8k ¨ n
k`1

s .

Now consider the case that e△e1 is contained in X
pkq

j or in XkzX
pkq

j . As |NXk
px1, . . . , xk´1q△X

pkq

j | ď

ε2

8kn, the number of vertices y1 P X
pkq

j with px1, . . . , xk´1, y
1q R EpHq is at most ε2

8kn. Hence, the

number of choices for e, e1 where e△e1 Ď X
pkq

j is at most |E
pkq

j | ¨ ε2

8kn ¨ ns “ |E
pkq

j | ¨ ε2

8k ¨ n
2

s . Similarly, the

number of vertices y P XkzX
pkq

j with px1, . . . , xk´1, yq P EpHq is at most ε2

8kn. Hence, the number of

choices for e, e1 where e△e1 Ď XkzX
pkq

j is at most |E
pkq

j | ¨ ε2

8k ¨ n2

s . Collecting all terms, we get that

Tk ď 2 ¨
ε2

8k
¨
nk`1

s
` 2 ¨

ε2

8k
¨
n2

s

t
ÿ

j“1

|E
pkq

j | ď
ε2

2k
¨
nk`1

s
.

By symmetry, T1, . . . , Tk´1 ď ε2

2k ¨ nk`1

s as well, so T1 ` ¨ ¨ ¨ ` Tk ă ε2p1 ´ εqn
k`1

s , a contradiction. ■

3 Proof of Theorem 1.1

Throughout this section, we fix 0 ă δ ď ε with ε smaller than some implicit absolute constant, and
also assume wherever needed that n ě n0pδq is large enough. We will use the following lemma, which
essentially appears in [20].

7Here we use our assumption that n is divisible by quantities determined by the other parameters, and in particular
is divisible by m.
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Lemma 3.1. Let m,M be integers with M ď maxpem{16, 2q. Then there are partitions pXi, Yiqi“1,...,m

of rM s having the following properties:

1. If M ě log3p4m2q, then |Xi|, |Yi| “ M
2 ˘ M2{3 for every 1 ď i ď m, and |Xi X Xi1 |, |Xi X

Yi1 |, |Yi X Yi1 | “ M
4 ˘ M2{3 for every pair 1 ď i ‰ i1 ď m.

2. Let ζ ď 1{2 and η, ε ą 0 such that p1 ´ ηqp1 ´ 4εq ě 1 ´ ζ ` ζ2. Let λ1, . . . , λM P Rě0 with
řM

i“1 λi “ 1, and suppose that λi ď 1 ´ ζ for every i P rM s. Then there are at least ηm indices

i P rms satisfying min
´

ř

jPXi
λj ,

ř

jPYi
λj

¯

ą ε.

Item 2 of Lemma 3.1 follows immediately by combining Lemmas 3 and 5 in [20]. The desired
partitions pXi, Yiq are chosen uniformly at random, and Item 1 is a simple property of random
partitions. For completeness, we include the proof of Lemma 3.1 in Appendix A.

We now proceed with the proof of Theorem 1.1. We describe the construction used to establish
the theorem in the following Section 3.1, and then analyze it in Section 3.2. As in [20], it is convenient
to describe the construction as a weighted 3-graph. We will then transform this into an unweighted
(“normal”) 3-graph via sampling.

3.1 The construction

We construct a weighted 3-partite 3-graph H with parts A,B,C, each of size n. We set t :“
t14 log7p1ε q ´ 3u and s0 “ r4{δ4s. Partition C into t equal parts C1, . . . , Ct.

For an integer m, let ϕpmq :“ max
`

tem{16u, 2
˘

, and note that the conclusion of Lemma 3.1 holds
for each M ď ϕpmq. We now inductively define a sequence of integers m0,m1, . . . ,mt as follows. Set
m0 “ 1. For each 1 ď r ď t, if mr´1 ă s0 and ϕpmr´1q ě s0 then set mr :“ mr´1 ¨ s0. Otherwise,
set mr :“ mr´1 ¨ ϕpmr´1q. Note that mr´1 divides mr and mr ą mr´1 (using that ϕpmr´1q, s0 ě 2).
Also, mr

mr´1
ď ϕpmr´1q. To explain this somewhat unusual choice of a sequence, let us remark that we

would generally like mr “ mr´1 ¨ϕpmr´1q, as this enables us to apply Lemma 3.1 while also ensuring
that mr is exponentially larger than mr´1, so as to obtain a tower-type bound in the end. However,
if we have the sequence grow exponentially at every step, we may accidentally end up with a vertex
whose link only has a δ-regular partition of size exponential in δ. In order to ensure that this doesn’t
happen, we make sure to stunt the growth of the sequence at the critical step (around the value s0),
thus ensuring a polynomial-sized δ-regular partition in all cases. See the proof of Lemma 3.4 for the
precise details.

Next, let us identify each of A,B with rns in order to have an order on these sets. For 0 ď r ď t,
let Ar be the partition of A into mr equal-sized intervals (with respect to the vertex order), and
similarly let Br be the partition of B into mr equal-sized intervals. For each 1 ď r ď t, Ar refines
Ar´1 because mr´1 divides mr, and similarly for Br and Br´1.

Now we define 3-partite 3-graphs H1, . . . ,Ht Ď AˆB ˆC. Fix 1 ď r ď t and let us write Ar´1 “

tA1, . . . , Amu and Br´1 “ tB1, . . . , Bmu, where m :“ mr´1. Put also M :“ mr
mr´1

ď ϕpmr´1q “ ϕpmq.

For each i P rms, let Ai,1, . . . , Ai,M (resp. Bi,1, . . . , Bi,M ) be the parts of Ar (resp. Br) contained in
Ai (resp. Bi). Let pXi, Yiq

m
i“1 be the partitions of rM s given by Lemma 3.1 (it is possible to invoke

Lemma 3.1 because M ď ϕpmq). Define a bipartite graph Gr Ď A ˆ B as follows: For each pair

1 ď i, j ď m, put into Gr all edges in
´

Ť

kPXj
Ai,k

¯

ˆ
`
Ť

kPXi
Bj,k

˘

and
´

Ť

kPYj
Ai,k

¯

ˆ
`
Ť

kPYi
Bj,k

˘

.

Now let Hr “ te Y tvu : e P EpGrq, v P Cru “ Gr ˆ Cr. This completes the definition of Hr. Finally,
let H be the weighted 3-graph H :“

řt
r“1 2´rHr. Note that, as

řt
r“1 2´r ď 1, every edge of H has

weight in r0, 1s.
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For most of the proof, we shall work with the weighted 3-graph H. Consequently, we need to
introduce the weighted analogues of the basic notions of link, density, and regularity. For v P A,
the link LHpvq is defined as the weighted graph on B ˆ C where e P B ˆ C has weight Hpe Y tvuq.
The link of a vertex in B or C is defined analogously. For A1 Ď A,B1 Ď B,C 1 Ď C, the density of
pA1, B1, C 1q is defined as dHpA1, B1, C 1q “ 1

|A1||B1||C1|

ř

ePA1ˆB1ˆC1 Hpeq. Weak regularity for weighted

3-graphs is defined analogously to the unweighted case.

3.2 The analysis

Throughout this section, we use the same notation as in Section 3.1. We begin with the following
lemma, showing that if mr´1 is large enough, then the graph Gr is δ-regular.

Lemma 3.2. Let 1 ď r ď t such that mr´1 ě s0. Then the graph Gr is δ-regular.

For the proof of Lemma 3.2, we need the following fact from [1].

Lemma 3.3 ([1, Lemma 3.2]). Let G be a bipartite graph with parts A,B of size n each. Let d be
the density of G and let 2n´1{4 ă δ ă 1

16 . Suppose that

1. For all but at most 1
8δ

4n of the vertices x P B, it holds that |dGpxq ´ dn| ď δ4n;

2. For every B1 Ď B with |B1| ě δn, it holds that
ř

x,yPB1

`

|NGpxq X NGpyq| ´ d2n
˘

ă δ3

2 n|B1|2.

Then G is δ-regular.

Proof of Lemma 3.2. We will show that Conditions 1–2 in Lemma 3.3 are satisfied. As in Section
3.1, write m :“ mr´1, M :“ mr

mr´1
, Ar´1 “ tA1, . . . , Amu and Br´1 “ tB1, . . . , Bmu, and for each

i P rms let Ai1 , . . . , Ai,M (resp. Bi,1, . . . , Bi,M ) be the parts of Ar (resp. Br) contained in Ai (resp.
Bi). Let also pXi, Yiq

m
i“1 be the partitions of rM s given by Lemma 3.1. Note that by the assumption

of Lemma 3.2, we have m ě s0 and therefore M “ ϕpmq “ tem{16u ě eΩps0q. This also implies that
M ě log3p4m2q (as we assumed that ε is at most some absolute constant, hence s0 is at least some
large constant), so we may apply Item 1 of Lemma 3.1.

First, fix any x P B and let us consider the degree of x in Gr. Let j P rms such that x P Bj .

Fix any 1 ď i ď m and consider the edges between x in Ai. For convenience, set A
p1q

i “
Ť

kPXj
Ai,k,

A
p2q

i “
Ť

kPYj
Ai,k, B

p1q

j “
Ť

kPXi
Bj,k, B

p2q

j “
Ť

kPYi
Bj,k. By definition, Gr has all edges in A

p1q

i ˆB
p1q

j

and A
p2q

i ˆB
p2q

j and no other edges between Ai and Bj . By Item 1 of Lemma 3.1, |Xi|, |Yi|, |Xj |, |Yj | “

M
2 ˘M2{3. This means that each of the sets A

p1q

i , A
p2q

i has size p12˘M´1{3q|Ai|. Therefore, the number

of edges between x and Ai is
`

1
2 ˘ M´1{3

˘

|Ai|. As this is true for every 1 ď i ď m, it follows that

dGrpxq “ p12 ˘ M´1{3qn “ p12 ˘ δ4

2 qn, using that M ě eΩps0q. It follows that the density d of Gr is
1
2 ˘ δ4

2 , and that for every x P B we have |dGpxq ´ dn| ď δ4n.

Now we consider Item 2 in Lemma 3.3. Fix any B1 Ď B with |B1| ě δn. For convenience, put
fpx, yq :“ |NGrpxqXNGrpyq|´d2n for x, y P B1, and let S :“

ř

x,yPB1 fpx, yq. The pairs x, y belonging

to the same part of Br´1 contribute at most |B1| ¨ n
m ¨ n “ |B1|n

2

m ď δ3

4 n|B1|2 to S, using that m ě s0
and |B1| ě δn. Now consider the pairs x, y belonging to different parts of Br´1. So fix 1 ď j ‰ j1 ď m

such that x P Bj , y P Bj1 . Fix any 1 ď i ď m. As before, put B
p1q

j “
Ť

kPXi
Bj,k, B

p2q

j “
Ť

kPYi
Bj,k

and similarly B
p1q

j1 “
Ť

kPXi
Bj1,k, B

p2q

j1 “
Ť

kPYi
Bj1,k. Let a, a1 P t1, 2u such that x P B

paq

j and

13



y P B
pa1q

j1 . By the definition of Gr, the common neighborhood of x, y in Ai is
Ť

kPZ Ai,k, where

Z :“

$

’

’

’

&

’

’

’

%

Xi X Xi1 a “ 1, a1 “ 1,

Xi X Yi1 a “ 1, a1 “ 2,

Yi X Xi1 a “ 2, a1 “ 1,

Yi X Yi1 a “ 2, a1 “ 2.

By Item 1 of Lemma 3.1, in all cases we have |Z| “ M
4 ˘ M2{3. This means that the common

neighborhood of x, y in Ai has size p14 ˘ M´1{3q|Ai|. Summing over all 1 ď i ď m, we get that

|NGrpxq X NGrpyq| ď p14 ` M´1{3qn and therefore fpx, yq ď p14 ` M´1{3qn ´ p12 ´ M´1{3q2n ď δ3

4 n,

using that M ě eΩps0q. It follows that S ď δ3

4 n|B1|2 ` δ3

4 n|B1|2 “ δ3

2 n|B1|2. Hence, both items of
Lemma 3.3 hold, implying that Gr is δ-regular. ■

Given Lemma 3.2, it is now straightforward to show that all links in H have small δ-regular partitions.

Lemma 3.4. For every v P V pHq, the link LHpvq of v has a δ-regular partition of size Opδ´8q.

Proof. Suppose first that v P C, and let 1 ď r ď t such that v P Cr. Note that LHpvq “ 2´r ¨ Gr.
We consider two cases. If mr´1 ě s0 then by Lemma 3.2, Gr, and hence also LHpvq “ 2´r ¨ Gr, is δ-
regular, meaning that pA,Bq is a (trivial) δ-regular partition of LHpvq. Now suppose that mr´1 ă s0.
Then, by the definition of the sequence m0, . . . ,mt, we have mr ď mr´1 ¨ s0 ď s20 (it is here that we
crucially use the definition of the sequence, making sure that mr is not exponentially larger than s0).
Thus, the partitions Ar,Br have size at most s20 ď 17{δ8. Observe that for each A1 P Ar, B

1 P Br,
pA1, B1, Crq is a complete or empty 3-partite 3-graph. This means that in H, either all edges in
pA1, B1, Crq have weight 2´r, or all such edges have weight 0. Hence, pAr,Brq is a δ-regular partition
of LHpvq.

Next, suppose that v P A Y B. By symmetry, it suffices to handle the case that v P A. For
1 ď r ď t, let Nr Ď B denote the neighborhood of v in the graph Gr. By the definition of Hr and H,
all edges in Nr ˆCr have weight 2´r in LHpvq, while all edges in pBzNrqˆCr have weight 0 in LHpvq.
Let B1, . . . , Bs be the atoms of the Venn diagram of N1, . . . , Nt, and note that s ď 2t ď 1

ε ď 1
δ . Then

for each 1 ď i ď s and 1 ď r ď t, all edges in pBi, Crq have the same weight in LHpvq. It follows that
ptB1, . . . , Bsu, tC1, . . . , Ctuq is a δ-regular partition of LHpvq, as required. ■

The final step is showing that H has no weakly ε-regular partitions with fewer than a tower-type
number of parts. This step also follows the work of Gowers, so we recall some notation and ideas
from [20]. For two sets P,A and a real number β, we write P Ăβ A if |P X A| ě p1 ´ βq|P |, or
equivalently if |P zA| ď β|P |. For β “ 0, this is simply the usual subset relation. If P1, . . . , Pk

and A1, . . . , Am are two partitions of the same set, we say that the partition tP1, . . . , Pku β-refines
tA1, . . . , Amu if, for all but at most βk indices s P rks, there exists some i P rms such that Ps Ăβ Ai.
For β “ 0, this is precisely the standard notion of refinement of partitions. We also remark that as
long as β ă 1

2 , there can be no ambiguity: if Ps Ăβ Ai, then PsĆβAj for any j ‰ i. We will ensure
that β ă 1

2 in all that follows.

Lemma 3.5. Let P1, . . . , Pk, Q1, . . . , Qk, R1, . . . , Rk be partitions of A,B,C, respectively, and sup-
pose that all parts have the same size up to a factor of two. Suppose that all but εk3 of the triples
pPa, Qb, Rcq are weakly ε-regular in H. Suppose that ε1{4 ď β ď 1

72 . If pP1, . . . , Pkq and pQ1, . . . , Qkq

β-refine Ar´1 and Br´1, respectively, then they p7βq-refine Ar,Br, respectively.
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We stress that in the statement of this lemma, we do not care about how the partition pR1, . . . , Rkq

interacts with the given partition pC1, . . . , Ctq of C; all that matters is the fact that pP1, . . . , Pkq and
pQ1, . . . , Qkq roughly refine Ar´1 and Br´1.

Proof of Lemma 3.5. We prove the statement for A; the statement for B is completely analogous.
As before, write Ar´1 “ tA1, . . . , Amu and Ar “ tAi,j : i P rms, j P rM su, where m “ mr´1 and
M :“ mr

mr´1
. Fix some Ps, and suppose that Ps Ăβ Ai for some i P rms. Suppose that there is no

j P rM s such that Ps Ă7β Ai,j . For each j P rM s, let µj :“ |Ps X Ai,j |{|Ps|. Note that

µ :“
M
ÿ

j“1

µj “

M
ÿ

j“1

|Ps X Ai,j |
|Ps|

“
|Ps X Ai|

|Ps|
ě 1 ´ β,

since Ps Ăβ Ai. Additionally, µj ď 1 ´ 7β for every j P rM s by the assumption that there is no

j with Ps Ă7β Ai,j . Now set λj :“ µj{µ, so that
řM

j“1 λj “ 1 and λj ď
µj

1´β ď
1´7β
1´β ď 1 ´ 6β for

every j P rM s. By Item 2 of Lemma 3.1 with ζ :“ 6β, η :“ 5β and 2ε in place of ε (the condition
p1 ´ ηqp1 ´ 8εq ě 1 ´ ζ ` ζ2 in Lemma 3.1 holds since β ď 1

72 and ε ď
β
16), we get that there is

I Ď rms with |I| ě 5βm, such that for every h P I we have

min

˜

ÿ

jPXh

λj ,
ÿ

jPYh

λj

¸

ą 2ε. (3.1)

Recall that for at least p1 ´ βqk choices of u P rks, there is some h P rms such that Qu Ăβ Bh. We
claim that for at least βk of the indices u P rks, there is h P I with Qu Ăβ Bh. Indeed, suppose
otherwise. Then for all but 2βk of the indices u P rks, it holds that |Qu XBh| ě p1 ´βq|Qu| for some
h P rmszI. Also, we have |Qu| ď 2n

k for every u P rks by the assumption that the parts Q1, . . . , Qk

differ by at most a factor of 2. It follows that

n “

k
ÿ

u“1

|Qu| ď 2βk ¨
2n

k
`

1

1 ´ β

ÿ

hPrmszI

|Bh| “ 4βn `
1

1 ´ β
pm ´ |I|q ¨

n

m
ď 4βn `

1 ´ 5β

1 ´ β
n ă n,

a contradiction. This proves our claim.

Now fix any u P rks such that Qu Ăβ Bh for some h P I (there are at least βk choices for u by the
above). Let VX :“ PsX

Ť

jPXh
Ai,j , VY :“ PsX

Ť

jPYh
Ai,j , and similarly WX :“ QuX

Ť

jPXi
Bh,j ,WY :“

Qu X
Ť

jPYi
Bh,j . By construction and (3.1), we have that

minp|VX |, |VY |q “ min

˜

ÿ

jPXh

µj ,
ÿ

jPYh

µj

¸

¨ |Ps| ě min

˜

ÿ

jPXh

λj ,
ÿ

jPYh

λj

¸

¨ p1 ´ βq ¨ |Ps| ě ε|Ps|.

Additionally, WX and WY are disjoint subsets of Qu with |WX Y WY | ě p1 ´ βq|Qu|, hence
maxp|WX |, |WY |q ě p1 ´ βq|Qu|{2 ě ε|Qu|. Suppose that |WX | ě ε|Qu|; the other case is han-
dled symmetrically.

In the graph Gr, we have that pVX ,WXq is a complete pair, whereas pVY ,WXq is empty. This
implies that dHpVX ,WX , Crq “ 2´r and dHpVY ,WX , Crq “ 0. For ℓ P rks, let us say that ℓ is r-small
if |Rℓ X Cr| ă ε|Rℓ|, where we recall that R1, . . . , Rk is the given partition of C. We say that ℓ is
r-large if it is not r-small. We have

|Cr| “
ÿ

ℓ r-large

|Rℓ X Cr| `
ÿ

ℓ r-small

|Rℓ X Cr| ă
ÿ

ℓ r-large

|Rℓ X Cr| `

t
ÿ

ℓ“1

ε|Rℓ| “
ÿ

ℓ r-large

|Rℓ X Cr| ` ε|C|.
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Using that |Cr| “ |C|{t, we get

ÿ

ℓ r-large

|Rℓ X Cr| ą
|C|
t

´ ε|C| ě
|C|
2t

,

where we used that ε ă 1{p2tq, which holds because t ď log 1
ε and as ε is assumed small enough.

On the other hand, since all parts Rℓ have the same size up to a factor of two, we have that

ÿ

ℓ r-large

|Rℓ X Cr| ď
ÿ

ℓ r-large

|Rℓ| ď
2|C|
k

¨ |tℓ P rks : ℓ is r-largeu|.

Combining these two inequalities, and using that
?
ε ă 1{p4tq (again since ε is sufficiently small), we

find that

|tℓ P rks : ℓ is r-largeu| ě
k

4t
ą

?
εk.

The final observation is that if ℓ is r-large, then the triple pPs, Qu, Rℓq is not weakly ε-regular. Indeed,
we have that

dHpVX ,WX , Rℓ X Crq ´ dHpVY ,WX , Rℓ X Crq “ 2´r ě 2´t ą ε,

while the sets VX , VY ,WX , Rℓ X Cr are subsets of Ps, Ps, Qu, Rℓ, respectively, each with at least an
ε-fraction of the vertices of the corresponding set.

Recall that this argument worked for each of at least βk choices for u, and at least
?
εk choices

for ℓ. Therefore, under the assumption that Ps Ăβ Ai but there is no j such that Ps Ă7β Ai,j , we find
that there are at least β

?
ε ¨ k2 choices of pu, ℓq P rks2 for which the triple pPs, Qu, Rℓq is not weakly

ε-regular. This can happen for at most βk values of s, because the given partitions pPi, Qi, Riqi“1,...,k

are weakly ε-regular, and as β ą ε1{4. Also, at most βk choices of s do not satisfy Ps Ăβ Ai for any
i. Hence, we conclude that tP1, . . . , Pku does indeed p7βq-refine Ar. ■

It is now a simple matter to complete the proof of Theorem 1.1.

Proof of Theorem 1.1. Let H be the weighted 3-partite 3-graph defined in Section 3.1. By Lemma
3.4, every link LHpvq in H has a δ-regular partition of size Opδ´8q. Next, we show that every weakly
ε-regular equipartition of H has size at least twr

`

Ωplog 1
ε q

˘

. So fix such an equipartition, given by

partitions P1, . . . , Pk, Q1, . . . , Qk, R1, . . . , Rk of A,B,C, respectively. Setting βr :“ 7rε1{4, we claim
that for 0 ď r ď t, the partitions pP1, . . . , Pkq and pQ1, . . . , Qkq βr-refine Ar and Br, respectively.
Indeed, this follows by induction on r: the base case r “ 0 is trivial, and the induction step is given
by Lemma 3.5. By the choice of t “ 1

4 log7p1ε q ´ 3, we get that βr ă 1
72 for every r, as required by

Lemma 3.5. It is easy to see that if an equipartition P β-refines an equipartition A for β ă 1
2 , then

|P| ě |A|{2. Hence, k ě mt{2. Now, observe that mt ě twr
`

Ωplog 1
ε q

˘

. Indeed, by the definition of
the sequence m0, . . . ,mt, we have mr “ mr´1 ¨ ϕpmr´1q for all but at most one choice of r. Also, for
all but Op1q choices of r, we have ϕpmr´1q “ temr´1{16u, meaning that mr is exponential in mr´1. It
is easy to see that this implies that mt ě twr pΩptqq, as required.

So far we proved Theorem 1.1 for weighted 3-graphs. To obtain a (non-weighted) 3-graph, we
let H˚ be the 3-partite 3-graph on A,B,C obtained by sampling each edge e P A ˆ B ˆ C with
probability Hpeq, where Hpeq is the weight of e in H. Using a Chernoff-type bound (e.g. Lemma
A.1), it is easy to see that with high probability the following holds:

• For all X Ď A, Y Ď B,Z Ď C with |X|, |Y |, |Z| “ Ωpnq, it holds that |dH˚pX,Y, Zq ´

dHpX,Y, Zq| “ op1q.
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• For all v P A and Y Ď B,Z Ď C with |Y |, |Z| “ Ωpnq, |dLH˚ pvqpY, Zq ´ dLHpvqpY,Zq| “ op1q,
and the analogous statement holds for v P B and v P C.

Consequently, H˚ satisfies the assertion of the theorem with ε, δ replaced with ε{2, 2δ, respectively.
■

4 Concluding remarks

In this section we record three corollaries of our results, none of which we believe to be quantitatively
optimal. It would be very interesting to improve the quantitative aspects of any of them. We restrict
our attention to 3-graphs, but the corollaries and questions have natural analogues in all higher
uniformities.

Proposition 4.1. For every D ě 1 and ε ą 0 there exists δ ą 0 such that the following holds. Let
H be a 3-partite 3-graph, and suppose that H has slicewise VC-dimension at most D. If H is weakly
δ-regular, then dpHq P r0, εs Y r1 ´ ε, 1s.

In other words, if H is both weakly δ-regular and of bounded slicewise VC-dimension, then H
must be almost empty or almost complete. Proposition 4.1 follows immediately from Theorem 1.3,
as the latter implies that H has a ε-homogeneous partition into at most 2polyp1{εq parts. If H is
weakly δ-regular for δ ă 2´polyp1{εq, then in fact the density of each of these homogeneous triples
must be very close to the global density of H, implying that H itself is very sparse or very dense.

This argument shows that we may take δ to depend single-exponentially on ε in Proposition 4.1.
However, we conjecture that this bound can be improved to polynomial.

Conjecture 4.2. We may take δ “ εOp1q in Proposition 4.1.

A useful perspective on Conjecture 4.2 has to do with embedding induced sub(hyper)graphs,
which we now discuss. Let B be a bipartite graph. We say that B is a bipartitely induced subgraph of
a graph G if G contains an induced subgraph isomorphic to some supergraph of B, obtained by only
adding new edges in the two parts of B, without adding or removing any edges across the bipartition.
It is not hard to see that G has bounded VC-dimension if and only if there is some fixed B which is
not a bipartitely induced subgraph of G.

This immediately implies that a 3-graph H has bounded slicewise VC-dimension if and only if it
avoids T as a tripartitely induced subhypergraph, where T is some tripartite 3-graph one of whose
three parts is a singleton. In this language, we see that Proposition 4.1 can be viewed as an induced
embedding lemma: in contrapositive, it says that if H is weakly δ-regular and has edge density
bounded away from 0 and 1, then H contains a tripartitely induced copy of any fixed tripartite
T one of whose parts is a singleton. One motivation for Conjecture 4.2 is that most embedding
lemmas that one encounters can be proved with polynomial dependencies. Moreover, one could
try to prove such an induced embedding lemma by first proving a counting lemma with two-sided
error bounds, and then applying inclusion-exclusion. However, an unusual feature of this problem
is that this corresponding counting lemma is simply false: it is well-known (see e.g. [11, 25]) that
weak δ-regularity is too weak to support a counting lemma (with two-sided error bounds) for any T
that is not linear, and hence proving Conjecture 4.2 would require a completely different technique.
Additionally, in most settings when one can prove a counting lemma, it holds in any “orientation”:
namely, we should be able to embed the three parts of T into the three parts of H according to
any bijection r3s Ñ r3s. However, a simple example shows that this is not true for Proposition 4.1.
Namely, consider the 3-partite 3-graph H on parts A,B,C obtained as follows: each vertex c P C
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picks uniformly random subsets Ac Ď A,Bc Ď B, and then EpHq “ tpa, b, cq : c P C, a P Ac, b P Bcu.
With high probability H is weakly op1q-regular and has density 1

4`op1q. But if we let T be the 3-graph
on tx, y1, y2, z1, z2u with edge set EpT q “ tpx, y1, z1q, px, y2, z2qu, then it is easy to see that H contains
no tripartitely induced copy of T for which x P C. This is not a contradiction to Proposition 4.1,
as there are induced copies of T with x P A Y B, but this example demonstrates another subtle
feature of this unusual induced counting lemma, and shows why proving Conjecture 4.2 may be
more challenging than proving other similar-looking induced embedding lemmas.

Another natural statement that follows directly from Theorem 1.3, and which also suggests an
avenue for attacking Conjecture 4.2, is the following partite hypergraph analogue of Rödl’s theorem
[30] on induced F -free graphs. To make the analogy clearer, we continue using the language of
forbidden tripartitely induced subgraphs, rather than discussing bounded slicewise VC-dimension.

Proposition 4.3. Let T be a tripartite 3-graph one of whose parts is a singleton. For every ε ą 0,
there exists δ ą 0 such that the following holds. If H is a 3-partite 3-graph on parts V1 Y V2 Y V3,
each of size n, and if H contains no tripartitely induced copy of H, then there exist V 1

i Ď Vi with
|V 1

i | ě δn such that dpV 1
1 , V

1
2 , V

1
3q P r0, εs Y r1 ´ ε, 1s.

Indeed, Proposition 4.3 follows immediately from Theorem 1.3, as we may take pV 1
1 , V

1
2 , V

1
3q to be

any homogeneous triple from the ε-homogeneous partition of H. In particular, Theorem 1.3 implies
that we may take δ ě 2´polyp1{εq in Proposition 4.3. We conjecture that this dependence can also be
improved to polynomial.

Conjecture 4.4. We may take δ “ εOp1q in Proposition 4.3.

Note that Conjecture 4.4 would immediately imply Conjecture 4.2. Moreover, it is an appealing
statement for other reasons; for example, Conjecture 4.4 would imply the Erdős–Hajnal conjecture
for 3-partite 3-graphs with no tripartitely induced copy of T . That is, assuming Conjecture 4.4, a
standard argument (see e.g. [17, Conjecture 7.1]) shows that if H has no tripartitely induced copy
of T , then there exist V 2

i Ď Vi such that |V 2
i | “ nΩp1q, and such that the triple pV 2

1 , V
2
2 , V

2
3 q is

either complete or empty. We remark that one must work in this tripartite setting in order to obtain
such an Erdős–Hajnal-type result: [10, Theorem 1.2] implies that there exist H with no tripartitely
induced copy of T and with no clique or independent set of size greater than Θplog nq.

Nonetheless, we are still able to prove an analogue of Rödl’s theorem [30] in the non-partite
setting, as follows.

Proposition 4.5. Let T be a tripartite 3-graph one of whose parts is a singleton. For every ε ą 0,
there exists δ ą 0 such that the following holds. If H is a 3-graph with no tripartitely induced copy
of T , then there exists U Ď V pHq with |U | ě δ|V pHq| such that dpUq P r0, εs Y r1 ´ ε, 1s.

The deduction of Proposition 4.5 is relatively standard, so we only sketch it. First, by Theorem 1.3
and Remark 1.5, we can find an ε-homogeneous partition of H, as the assumption that there is no
tripartitely induced copy of T implies that all links have bounded VC-dimension. We now use Turán’s
theorem for hypergraphs to pass to a large number of parts containing no non-homogeneous triples,
and then apply Ramsey’s theorem for hypergraphs to pass to yet another subset in which either all
triples have density at most ε, or all triples have density at least 1 ´ ε. The union of these parts is
then the desired set U .

The proof sketched above shows that δ can be taken to depend triple-exponentially on ε (one
exponential from the application of Theorem 1.4, then two more from the application of the 3-
uniform Ramsey theorem). We are uncertain about the true dependence.

Problem 4.6. What is the optimal dependence of δ on ε in Proposition 4.5?
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A Proof of Lemma 3.1

We will need Hoeffding’s inequality (see [4, Theorem A.1.4]):

Lemma A.1 (Hoeffding’s inequality). Let Z „ Binpn, pq. Then

PrZ ě np ` ts,PrZ ď np ´ ts ď e´2t2{n.

Proof of Lemma 3.1. We choose each partition pXi, Yiq, 1 ď i ď m, randomly, by including each
element of rM s into one of the sets Xi, Yi with probability 1

2 , independently of all other choices. Thus

both |Xi| and |Yi| are distributed as BinpM, 12q, and in particular Er|Xi|s “ Er|Yi|s “ M
2 . By Lemma

A.1, the probability that ||Xi| ´ M
2 | ě M2{3 is at most 2e´2M1{3

. Similarly, fixing 1 ď i ‰ i1 ď m,

each of |Xi X Xi1 |, |Xi X Yi1 |, |Yi X Yi1 | has expected value M
4 , and by Lemma A.1, the probability

that it deviates from its expectation by more than M2{3 is at most 2e´2M1{3
. By taking the union

bound over all 1 ď i ď m (for the first statement) and 1 ď i ‰ i1 ď m (for the second statement), we

get that the probability that Item 1 fails is at most m2 ¨ 2e´2M1{3
ď 1

2 , where the inequality holds if

M ě log3p4m2q. Thus, Item 1 holds with probability at least 1
2 .

Now consider Item 2. For distinct j, j1 P rM s, let zj,j1 be the number of indices i for which
j, j1 are on the same side of the partition pXi, Yiq. Let A be the event that zj,j1 ď 3m

4 for all
j, j1. We claim that PrAs ą 1

2 . Indeed, fixing j, j1, we have zj,j1 „ Binpm, 12q. By Lemma A.1,

Przj,j1 ě 3m{4s ď e´2¨p1{4q2m “ e´m{8. By the union bound over j, j1, the probability that A fails is

at most
`

M
2

˘

¨ e´m{8 ă 1
2 , using that M ď em{16.

We conclude that with positive probability, Item 1 and A hold. Now we show that A implies Item

2. Put gipλq :“
ˇ

ˇ

ˇ

ř

jPXi
λj ´

ř

jPYi
λj

ˇ

ˇ

ˇ
. We have

m
ÿ

i“1

gipλq2 “

m
ÿ

i“1

»

—

–

M
ÿ

j“1

λ2
j `

ÿ

j,j1PpXi
2 qYpYi2 q

2λjλj1 ´
ÿ

jPXi,j1PYi

2λjλj1

fi

ffi

fl

“ m
M
ÿ

j“1

λ2
j `

ÿ

j,j1PpM2 q

`

4zj,j1 ´ 2m
˘

λjλj1 ď m

¨

˚

˝

M
ÿ

j“1

λ2
j `

ÿ

j,j1PpM2 q

λjλj1

˛

‹

‚
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“
m

2

¨

˝

M
ÿ

j“1

λ2
j `

˜

M
ÿ

j“1

λj

¸2
˛

‚“
m

2

˜

M
ÿ

j“1

λ2
j ` 1

¸

,

where the inequality uses that A happened. Convexity implies that under the constraints 0 ď λj ď

1 ´ ζ for every j and
řM

j“1 λj “ 1, the function
řM

j“1 λ
2
j is maximized when some λj equals 1 ´ ζ and

another λj equals ζ. Hence,
řM

j“1 λ
2
j ď p1 ´ ζq2 ` ζ2 “ 1 ´ 2ζ ` 2ζ2. Plugging this into the above,

we get that
řm

i“1 gipλq2 ď mp1 ´ ζ ` ζ2q ď mp1 ´ ηqp1 ´ 4εq. Hence, the number of 1 ď i ď m with
gipλq2 ě 1 ´ 4ε is at most p1 ´ ηqm. If gipλq2 ă 1 ´ 4ε then gipλq ă 1 ´ 2ε, which can only happen

if min
´

ř

jPXi
λj ,

ř

jPYi
λj

¯

ą ε. This proves that Item 2 in the lemma holds. ■
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