
Claude Shannon, Master of Uncertainty Yuval Wigderson

1 Background and introduction

Throughout this talk, X will be an arbitrary finite set. X will be a random variable valued
in X , and for x ∈ X, we denote the point probability at x by p(x) := Pr(X = x) (and
analogously for Y , Y , and p(y)). Our main object of study will be the entropy of X, defined
by

H(X) =
∑
x∈X

p(x) log
1

p(x)
.

Here, and for the rest of the talk, log will denote the base-2 logarithm, though this doesn’t
really matter, and a different choice will simply scale everything by the same constant. Note
that we can also write the entropy as

H(X) = EX
[
log

1

p(X)

]
= −EX [log p(X)],

which will be a useful interpretation at times.
The first notion of the information contained in X, proposed by Hartley, was simply

log|X |. This is not totally crazy, for the following reason: suppose we first sample X (dis-
tributed on X) and then Y (distributed on Y), which is independent of X. According to
this definition, the amount of information we get in total is

log|X × Y| = log|X |+ log|Y|,

which is the sum of the amount of information we got from X and Y . Of course, the problem
with Hartley’s definition is that it doesn’t take the distribution of X into account: intuitively,
a variable that takes on one variable 99% of the time and another 1% of the time contains
less information than one that is uniform on these two outcomes. This is because we are
much more likely to correclty predict the first variable, so we learn less new information by
seeing an outcome of it.

To fix this, let’s begin by thinking about how much information content is delivered by
observing an outcome x ∈ X when we sample X. I claim that − log p(x) is a good measure
of this information content. To see why, suppose we are trying to guess a secret number
between 1 and 8 by asking yes/no questions. The standard strategy for this is binary search,
where in each question we seek to cut the search space in half. In that case, every outcome
we get to a question we ask has probability 1/2, and we will be done in 3 moves. Thus, the
total amount of information content we get is

− log
1

2
− log

1

2
− log

1

2
= 3,

which makes sense since log 8 = 3. Now, suppose that we take the alternate strategy of
asking, “Is it 1? Is it 2?” etc. In the first question, we have a 7/8 chance of getting the
answer no and a 1/8 chance of getting the answer yes. Assuming we first saw a no, our
probabilities for the second question are 6/7 for no and 1/7 for yes. In general, suppose we

1

Claude Shannon, Master of Uncertainty Yuval Wigderson

finally get a yes when there are n possibilities left. Then the total amount of information
content we get is

− log
7

8
− log

6

7
− · · · − log

n

n+ 1
− log

1

n
= − log

(
7

8
· 6

7
· · · n

n+ 1
· 1

n

)
= − log

1

8
= 3.

Moreover, you can convince yourself that no matter what guessing strategy we employ, and
no matter what sequence of outcomes we observe, we will always gain a total of 3 bits of
information content from these outcomes. This suggests that − log p(x) is really a worthwhile
notion of information content. With this interpretation, we see that H(X) = EX [− log p(X)]
is precisely the expected amount of information content we gain from one sample of X, which
is a good measure of the information contained in X.

It is also worth mentioning that one can write down a few axioms we might want a
function that measures information to have, and then prove that these axioms uniquely
determine the function up to scaling. The scaling corresponds to the fact that we can choose
a different base for the log (or, equivalently, a different unit of information content than the
bit), and this unique function is exactly the entropy.

2 Shannon’s coding theorems

Before defining all the relevant terms, we will (informally) state Shannon’s three main “cod-
ing theorems”. All of them are very different and deal with different setups, but all can
be interpreted as saying that there is some quantity associated to a random variable that
controls how much information it contains, and, moreover, this quantity is the same in all
three cases: its entropy.

Theorem 1 (Noiseless coding theorem, informal). If X is encoded as a collection of bi-
nary strings which can be uniquely decoded, then the average string length is at least H(X).
Moreover, every X can be encoded with average string length at most H(X) + 1.

Theorem 2 (Noisy coding theorem, informal). Let X1, . . . , Xn be iid copies of X. The
vector (X1, . . . , Xn) can be encoded in nH(X) bits with arbitrarily small probability of error.
However, if we encode in fewer than nH(X) bits, then the probability of error tends to 1 as
n→∞.

Theorem 3 (Channel coding theorem, informal). Let W be a “noisy channel”, which takes
an input from X and (randomly) ouptuts an element of Y. There exists a number C = C(W),
called the channel capacity, with the following properties. First, we can always communicate
across W with negligible error probability if we send fewer than C bits of information per
bit sent over W . Second, if we try to transmit more than C bits of information per bit sent,
then the error probability tends to 1 no matter how we do this. Finally, if the noise in W is
gotten by “adding” a random variable X, then C(W) = 1−H(X). In other words, exactly
H(X) bits of information are destroyed by this noise.

2

Claude Shannon, Master of Uncertainty Yuval Wigderson

3 Noiseless coding

Definition 1. Let {0, 1}∗ denote the set of all finite binary strings. A map f : X → {0, 1}∗
is called a prefix code if for every x 6= x′ ∈ X , f(x) is not a prefix of f(x′).

Example. The set {0, 10, 11} forms a prefix code, as does {00, 01, 101, 111}. The set
{0, 01, 10} does not, since 0 is a prefix of 01.

The reason prefix codes are useful is the following. Suppose we keep getting samples
from X , and we transmit them one after another according to a prefix code X → {0, 1}∗.
Then the resulting long binary string can be uniquely decomposed into codewords by the
prefix-free property, and therefore the sequence of elements of X can be uniquely determined.
For instance if we use the prefix code {a, b, c} 7→ {0, 10, 11} and we see the sequence

0010111110011,

then we can decompose this as

0 0 10 11 11 10 0 11

and read off the message aabccbac.
The basic property of prefix codes is the following, which says that there must be a

tradeoff in the lengths of the codewords.

Proposition 1 (Kraft’s inequality). Let f : X → {0, 1}∗ be a prefix code, and let `(x) denote
the length of the binary string f(x). Then∑

x∈X

2−`(x) ≤ 1

Proof. Consider a uniformly random infinite binary string S. By the prefix-free property, at
most one codeword f(x) can be a prefix of S. Thus,

Pr(∃x ∈ X s.t. f(x) is a prefix of S) =
∑
x∈X

Pr(f(x) is a prefix of S) =
∑
x∈X

2−`(x),

where the final equality follows since a given binary string of length ` will be a prefix of
S with probability exactly 2−`. However, as the left-hand side is some probability, it is
upper-bounded by 1, giving the desired bound.

Using this, we can state and prove one direction of Shannon’s noiseless coding theorem.

Theorem 4 (Noiseless coding theorem). Let X be a random variable on a state space X ,
and let f : X → {0, 1}∗ be a prefix code. Let `(x) denote the length of f(x). Then

EX [`(X)] ≥ H(X).

3

Claude Shannon, Master of Uncertainty Yuval Wigderson

Proof. We write

H(X)− EX [`(X)] = EX
[
log

1

p(X)
− `(X)

]
= EX

[
log

1

p(X)2`(X)

]
≤ logEX

[
1

p(X)2`(X)

]
= log

∑
x∈X

2−`(x)

≤ 0,

where we use Jensen’s inequality applied to the (concave) logarithm function, and then
Kraft’s inequality in the final step.

This theorem says that if we wish to noiselessly encode X as a prefix code, we must use at
least H(X) bits on average. It is also known that such an encoding is always possible using
at most H(X) + 1 bits on average, meaning that H(X) is essentially exactly the threshold
of feasibility. Shannon’s original proof of this H(X) + 1 encoding was in a certain sense
suboptimal, and the more modern way of doing this uses what are called Huffman codes,
which are provably optimal in a certain sense. However, I’ll skip over all these feasibility
results for this talk.

It is also worth mentioning that there is a weaker notion than that of being a prefix
code, which is known as being uniquely decodable. This notion is exactly what you think
it is according to the above discussion: no matter what sequence in X we wish to send,
the resulting bit sequence can be uniquely decomposed as above. Uniquely decodable codes
also satisfy Kraft’s inequality (though here it usually called the Kraft–McMillan inequality),
but it is a bit harder to prove in this more general setting. But because of this, Shannon’s
noiseless coding theorem holds for them as well, which in particular implies that there is no
real advantage to using uniquely decodable codes over prefix codes.

4 Noisy coding

In this case, the compression we want to do is of a different sort. Now, we let n→∞, and
wish to map X n → {0, 1}k for some “small” k. If we want to have no chance of error, then
this map must be injective, and we basically can’t do anything. In the previous section, we
dealt with this problem by not mapping into strings of a fixed length, and we simply ensured
that the average length was short. Here, however, we really want all lengths to be short. To
deal with the fact that this is impossible, we will allow ourselves some small chance of error.

More formally, we will consider an encoder E : X n → {0, 1}k and a decoder D : {0, 1}k →
X n. We are interested in getting a small error probability, defined by

pe = Pr(D(E(X1, . . . , Xn)) 6= (X1, . . . , Xn)),

4

Claude Shannon, Master of Uncertainty Yuval Wigderson

where X1, . . . , Xn are iid copies of X.

Theorem 5 (Noisy coding theorem). For every ε > 0, the following holds. If k = n(H(X)+
ε), then there exist an encoder E : X n → {0, 1}k and a decoder D{0, 1}k → X n such that
pe → 0 as n→∞. However, if k = n(H(X)− ε), then pe → 1 no matter what encoder and
decoder we choose.

In other words, as n → ∞, the threshold for encoding X is exactly H(X) bits: any
arbitrarily larger slack than this and we can encode with vanishing error probability, but
any smaller and we are essentially guaranteed to get errors no matter what we do.

Proof sketch. For every (x1, . . . , xn) ∈ X n, let p(x1, . . . , xn) denote the probability Pr(X1 =
x1, . . . , Xn = xn), and consider the random variable Yn = − log p(X1, . . . , Xn). Observe that

E[Yn] = E[− log p(X1, . . . , Xn)] = H(X1, . . . , Xn) = nH(X).

Moreover, by independence, we can write

Yn = − log p(X1, . . . , Xn) = − log[p(X1) · · · p(Xn)] =
n∑
i=1

− log p(Xi).

Thus, we see that Yn is the sum of n iid random variables, − log p(Xi), each of which has
mean E[− log p(X)] = H(X). Thus, by the weak law of large numbers, we know that for
any δ > 0,

Pr

(∣∣∣∣ 1nYn −H(X)

∣∣∣∣ > δ

)
n→∞−→ 0.

Equivalently, suppose we define the typical set Tn,δ ⊆ X n by

Tn,δ =
{

(x1, . . . , xn) ∈ X n : 2−n(H(X)+δ) ≤ p(x1, . . . , xn) ≤ 2−n(H(X)−δ)}
=

{
(x1, . . . , xn) ∈ X n : H(X)− δ ≤ − 1

n
log p(x1, . . . , xn) ≤ H(X) + δ

}
.

Then what we’ve found is that this typical set is indeed typical, in the sense that

Pr((X1, . . . , Xn) ∈ Tn,δ)
n→∞−→ 1.

Moreover, we see that the elements of Tn,δ are “almost” equiprobable, in the sense that each
(x1, . . . , xn) ∈ Tn,δ has probability between 2−n(H(X)+δ) and 2−n(H(X)−δ); this is known as
the asymptotic equipartition property. From these bounds, it is also simple to compute that
|Tn,δ| ≈ 2nH(X), for an appropriate notion of ≈.

Using this, it is easy to prove the theorem. First, to find an encoding that works and uses
k = n(H(X)+ε) bits, we pick an arbitrary injection Tn,δ ↪→ {0, 1}k, and extend it arbitrarily
to a map X n → {0, 1}k. With probability tending to 1, when we sample (X1, . . . , Xn), we
will fall into the typical set, so our encoding will be injective on the inputs we are likely to see,
meaning that we’ll be able to decode; the only way an error can happen is if we land outside

5

Claude Shannon, Master of Uncertainty Yuval Wigderson

the typical set, which happens with vanishing probability. For the reverse direction, we see by
the pigeonhole principle that no matter how we map Tn,δ → {0, 1}k where k = n(H(X)− ε),
we will get many collisions. But all elements of Tn,δ are “essentially” equiprobable, so we
will encounter one of these collisions with high probability, meaning that we will not be able
to decode without a high probability of error.

5 Channel coding

Definition 2. A channel W : X → Y is a random function from X to Y . More precisely,
W is a collection of probability distributions on Y , one for every x ∈ X , denoted p(y | x). If
x ∈ X is the input to the channel, then the outupt is distributed according to p(· | x).

Example. The binary erasure channel (BEC) with probability p is the channel with X =
{0, 1} and Y = {0, 1, ?}, and transition probabilities given by

p(? | 0) = p(? | 1) = p, p(0 | 0) = p(1 | 1) = 1− p, p(0 | 1) = p(1 | 0) = 0.

In other words, each symbol is erased (replaced with ?) with probability p, and kept un-
changed with probability 1− p. There is no chance of confusing the symbols.

Example. The binary symmetric channel (BSC) with probability p is the channel with
X = Y = {0, 1}, and transition probabilities

p(0 | 0) = p(1 | 1) = 1− p, p(0 | 1) = p(1 | 0) = p.

In other words, every symbol is swapped with the other one with probability p, and kept
unchanged with probability 1 − p. Note that the BSC can equivalently be thought of as
adding to the input a random variable X ∼ Ber(p), where addition is done mod 2.

In order to communicate across a noisy channel, we will apply an error-correcting code.
Namely, we wish to pick an encoder E : X k → X n and a decoder D : Yn → X k, so that
when we apply the channel W n : X n → Yn (where each coordinate is run through W
independently), we can decode with low probability of error. Namely, we define

pe = max
x∈Xk

Pr(D(W (E(x))) 6= x),

where the probability is over the randomness in W . The rate of such an encoding is defined
to be k/n, which measures the number of symbols of information we can send per symbol
transmitted.

Theorem 6 (Channel coding theorem). For every channel W , there is a number C = C(W)
(called the channel capacity) such that the following holds. For every R < C, and ε > 0,
there is an encoding algorithm with rate ≥ R and pe < ε, for n sufficiently large. However,
for every R > C, every encoding algorithm has pe > 1− ε for all n sufficiently large.

6

Claude Shannon, Master of Uncertainty Yuval Wigderson

Shannon’s proof of this theorem was one of the earliest uses of the probabilistic method.
Rather than exhibiting an encoding algorithm that achieves this, he instead picked a code
at random, and proved that with positive probability, it has the desired properties.

Rather than prove the theorem in full generality (which is somewhat difficult), we will
sketch a proof technique that demonstrates a connection to the noisy source coding discussed
in the previous section. Suppose for now that X = F2 is the finite field with two elements,
and that the channel W is the BSC with parameter p. In other words, W works by sampling
a random variable X ∼ Ber(p) and then adding it to the input (where addition is done in
the field F2). Suppose additionally that we restrict our attention to linear codes, where the
functions E : Fk2 → Fn2 and D : Fn2 → Fk2 are required to be linear maps between the relevant
vector spaces over F2. If we run an input u = (u1, . . . , un) through the channel W , the
output will be

(Y1, . . . , Yn) = (u1, . . . , un) + (X1, . . . , Xn),

where X1, . . . , Xn are iid Bernoulli random variables. Since we assume that the encoding
function E is linear, there exists some map P : Fn2 → Fn−k2 whose kernel is the image of E.
Applying P to Y , we see that

P (Y1, . . . , Yn) = P (X1, . . . , Xn),

since P (u1, . . . , un) = 0 by the choice of P . Now, if we can recover (X1, . . . , Xn) from its
image under P in Fn−k2 , then we can also recover the original message. So the channel coding
problem has turned into a compression problem, of compressing (X1, . . . , Xn) into n−k bits.
Other than the (important) fact that we are restricting ourselves to linear maps, this is
precisely the situation we dealt with in the previous section, and we know that the threshold
for possibility is when n − k = nH(X), or equivalently when the rate k/n is 1 −H(X). In
other words, assuming everything done in the previous section works with linear maps, we
have essentially proven the channel coding theorem for this special case, and identified the
capacity as 1−H(X). In other words, in this channel, where a random noise drawn from X
is added to every input symbol, exactly H(X) bits of information are destroyed per bit sent.

6 Polar codes

Since Shannon’s proof of the channel coding theorem uses a random code, the main question
left open by Shannon’s work was how to explicitly construct the codes that he proved exist.
Despite a lot of very beautiful work that gave rates very close to the channel capacity C,
it remained open for 60 years how to actually achieve the capacity. These were finally
constructed by Arıkan in 2009, in a shockingly simple and elegant construction. I’ll sketch
the construction of how these polar codes can be used to achieve capacity for source coding,
namely how to encode a sequence of n iid Bernoulli random variables into essentially nH(p)
bits with vanishing error probability. Since this compression will be linear, this will also solve
the corresponding channel coding problem above; however, it is important to note that this
construction is actually substantially more general, and works for essentially every channel.

7

Claude Shannon, Master of Uncertainty Yuval Wigderson

To start, let X1, X2 be two independent Ber(p) random variables, and consider the new
variables

U1 = X1 +X2 U2 = X2.

Note that since this simple linear transformation is invertible, we have that

H(U1, U2) = H(X1, X2) = 2H(p).

Moreover, we can write
H(U1, U2) = H(U1) +H(U2 | U1),

by an important property of entropy called the chain rule; essentially, this says that the
information learned from the pair (U1, U2) is the same as the information gotten by first
learning U1 and then, knowing this, learning U2.

However, note that U1 is distributed as a Bernoulli random variable with parameter q =
2p(1−p). For p 6= 1

2
, q is strictly closer to 1

2
than p is. Therefore, H(U1) > H(X1). Moreover,

by the chain rule and the conservation of entropy, we thus learn that H(U2 | U1) < H(X2). In
other words, we started with a pair (X1, X2) where the information was equally distributed
in the two coordinates, and we’ve generated a new pair where the first coordinate has more
information than the second.

Now, given n = 2m variables X1, . . . , Xn we can recursively apply this operation. Namely,
we can define the matrix

Gn =

(
1 1
0 1

)⊗m
and then the vector U = GnX. Since Gn is invertible, we have that

nH(p) = H(X1, . . . , Xn) = H(U1) +H(U2 | U1) + · · ·+H(Un | U1, . . . , Un−1).

Moreover, by recursing the above argument and using the martingale convergence theorem,
one can show that almost all the terms on the right-hand side converge to 0 or 1. Therefore,
there must be exactly nH(p) many of them that converge to 1. Then we may encode the
vector (X1, . . . , Xn) by only keeping those coordinates of U whose conditional entropy is
close to 1, and by doing so we keep essentially all the information of X. One can then use
this fact to show that decoding can be done with negligible error probability, which makes
intuitive sense because essentially all the information has been kept.

8

