Ancient Greek Calculus

Mathcamp 2020

Outline

Precalculus

AP Calculus AB: Eudoxus

AP Calculus BC: Archimedes

Outline

Precalculus

AP Calculus AB: Eudoxus

AP Calculus BC: Archimedes

Hippocrates of Chios and his Lune

Hippocrates of Chios and his Lune

Hippocrates of Chios and his Lune

Hippocrates of Chios and his Lune

Hippocrates of Chios and his Lune

Greek geometric figures

Greek geometric figures

Greek geometric figures

Greek geometric figures

Greek number-theoretic figures

Greek number-theoretic figures

Basic facts from proportion theory

Basic facts from proportion theory

- If $A: B:: C: D$, then $A: C:: B: D$

Basic facts from proportion theory

- If $A: B:: C: D$, then $A: C:: B: D$ i.e. if $a / b=c / d$, then $a / c=b / d$

Basic facts from proportion theory

- If $A: B:: C: D$, then $A: C:: B: D$ i.e. if $a / b=c / d$, then $a / c=b / d$
- If $A: B:: C: D$ and A, B, C, D are lengths, then the rectangle with side lengths A, C has the same area as the rectangle with side lengths B, D

Basic facts from proportion theory

- If $A: B:: C: D$, then $A: C:: B: D$ i.e. if $a / b=c / d$, then $a / c=b / d$
- If $A: B:: C: D$ and A, B, C, D are lengths, then the rectangle with side lengths A, C has the same area as the rectangle with side lengths B, D
i.e. if $a / b=c / d$, then $a c=b d$

Basic facts from proportion theory

- If $A: B:: C: D$, then $A: C:: B: D$ i.e. if $a / b=c / d$, then $a / c=b / d$
- If $A: B:: C: D$ and A, B, C, D are lengths, then the rectangle with side lengths A, C has the same area as the rectangle with side lengths B, D
i.e. if $a / b=c / d$, then $a c=b d$

Goal: Prove such results for arbitrary ratios

Outline

Precalculus

AP Calculus AB: Eudoxus

AP Calculus BC: Archimedes

A theory of the real numbers

A theory of the real numbers

A theory of the real numbers

Definition (Elements V.5)

"Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order." (trans. Thomas Little Heath)

A theory of the real numbers

Definition (Elements V.5)

"Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order." (trans. Thomas Little Heath)

When is a / b equal to c / d ?

A theory of the real numbers

Definition (Elements V.5)

"Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order." (trans. Thomas Little Heath)

When is a / b equal to c / d ? For any integers m, n, consider ma, mc, nb, nd.

A theory of the real numbers

Definition (Elements V.5)

"Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order." (trans. Thomas Little Heath)

When is a / b equal to c / d ? For any integers m, n, consider ma, mc, nb, nd.

$$
m a<n b \Longleftrightarrow m c<n d
$$

A theory of the real numbers

Definition (Elements V.5)

"Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order." (trans. Thomas Little Heath)

When is a / b equal to c / d ? For any integers m, n, consider ma, mc, nb, nd.

$$
m a=n b \Longleftrightarrow m c=n d
$$

A theory of the real numbers

Definition (Elements V.5)

"Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order." (trans. Thomas Little Heath)

When is a / b equal to c / d ? For any integers m, n, consider ma, mc, nb, nd.

$$
m a>n b \Longleftrightarrow m c>n d
$$

A theory of the real numbers

Definition (Elements V.5)

"Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order." (trans. Thomas Little Heath)

When is a / b equal to c / d ? For any integers m, n, consider $m a, m c, n b, n d$.

$$
m a \lesseqgtr n b \Longleftrightarrow m c \lesseqgtr n d
$$

A theory of the real numbers

Definition (Elements V.5)

"Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth, when, if any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the second and fourth, the former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in corresponding order." (trans. Thomas Little Heath)

When is a / b equal to c / d ? For any integers m, n, consider ma, mc, nb, nd.

$$
m a \lesseqgtr n b \Longleftrightarrow m c \lesseqgtr n d
$$

i.e. $a / b=c / d$ iff for all m, n,

$$
\frac{a}{b} \equiv \frac{n}{m} \Longleftrightarrow \frac{c}{d} \equiv \frac{n}{m} .
$$

The method of exhaustion

The method of exhaustion

Theorem (Elements XII.2)
If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

The method of exhaustion

Theorem (Elements XII.2)
If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$.

The method of exhaustion

Theorem (Elements XII.2)
If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.
remaining area
$<a_{2}-x$

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$.
Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

$$
a_{2}-p_{2}<a_{2}-x
$$

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

$$
a_{2}-p_{2}<a_{2}-x
$$

$$
p_{2}>x
$$

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

$$
a_{2}-p_{2}<a_{2}-x
$$

$$
p_{2}>x
$$

$$
\frac{p_{1}}{p_{2}}=\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{a_{1}}{x}
$$

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$. Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

$$
\begin{aligned}
& a_{2}-p_{2}<a_{2}-x \\
& p_{2}>x \\
& \frac{p_{1}}{p_{2}}=\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{a_{1}}{x} \\
& \frac{x}{p_{2}}=\frac{a_{1}}{p_{1}}
\end{aligned}
$$

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$.
Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

$$
\begin{aligned}
& a_{2}-p_{2}<a_{2}-x \\
& p_{2}>x \\
& \frac{p_{1}}{p_{2}}=\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{a_{1}}{x} \\
& \frac{x}{p_{2}}=\frac{a_{1}}{p_{1}}
\end{aligned}
$$

But $a_{1}>p_{1}$, so $x>p_{2}$!

The method of exhaustion

Theorem (Elements XII.2)

If two circles C_{1}, C_{2} have diameters d_{1}, d_{2} and areas a_{1}, a_{2}, then $a_{1} / a_{2}=\left(d_{1} / d_{2}\right)^{2}$.

Proof by contradiction. Fix $x \neq a_{2}$ such that $a_{1} / x=\left(d_{1} / d_{2}\right)^{2}$.
Suppose first that $x<a_{2}$.
Lemma: If we bisect an arc of a circle, the area of the triangle is at least $1 / 2$ the area of the circular segment.

$$
\begin{aligned}
& a_{2}-p_{2}<a_{2}-x \\
& p_{2}>x \\
& \frac{p_{1}}{p_{2}}=\left(\frac{d_{1}}{d_{2}}\right)^{2}=\frac{a_{1}}{x} \\
& \frac{x}{p_{2}}=\frac{a_{1}}{p_{1}}
\end{aligned}
$$

But $a_{1}>p_{1}$, so $x>p_{2}$! Swap C_{1} and C_{2} to deal with $x>a_{2}$.

Outline

Precalculus

AP Calculus AB: Eudoxus

AP Calculus BC: Archimedes

Archimedes

Archimedes

- Area vs. circumference of a circle

Archimedes

- Area vs. circumference of a circle

$$
3 \frac{10}{71}<\pi<3 \frac{1}{7}
$$

Archimedes

- Area vs. circumference of a circle

$$
3 \frac{10}{71}<\pi<3 \frac{1}{7}
$$

- Area of a parabolic segment

Archimedes

- Area vs. circumference of a circle

$$
3 \frac{10}{71}<\pi<3 \frac{1}{7}
$$

- Area of a parabolic segment
- Center of mass of a parabolic segment

Archimedes

- Area vs. circumference of a circle

$$
3 \frac{10}{71}<\pi<3 \frac{1}{7}
$$

- Area of a parabolic segment
- Center of mass of a parabolic segment
- Volume and surface area of cylinder vs. sphere

Archimedes

- Area vs. circumference of a circle

$$
3 \frac{10}{71}<\pi<3 \frac{1}{7}
$$

- Area of a parabolic segment
- Center of mass of a parabolic segment
- Volume and surface area of cylinder vs. sphere
- \{Volumes, centers of mass\} of \{ellipsoids, paraboloids, hyperboloids\} of revolution

Archimedes's spiral

Archimedes's spiral

Archimedes's spiral

Archimedes's spiral

Archimedes's spiral

Since all the sectors have the same angle, their areas are proporitional to their radius squared. So this all boils down to

$$
\sum_{i=1}^{n} i^{2} \sim \int_{0}^{1} x^{2} d x=\frac{1}{3}
$$

